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Abstract: In this paper, a simplified method is proposed to estimate the peak inter-story drift ratios
of steel frames with hysteretic dampers. The simplified method involved the following: (1) the
inelastic spectral displacement is estimated using a single-degree-of-freedom (SDOF) system with
multi-springs, which is equivalent to a steel frame with dampers and in which multi-springs represent
the hysteretic behavior of dampers; (2) the first inelastic mode vector is estimated using a pattern of
story drifts obtained from nonlinear static pushover analysis; and (3) the effects of modes higher than
the first mode are estimated by using the jth modal period, jth mode vector, and jth modal damping
ratio obtained from eigenvalue analysis. The accuracy of the simplified method is estimated using the
results of nonlinear time history analysis (NTHA) on a series of three-story, six-story, and twelve-story
steel moment resisting frames with steel hysteretic dampers. Based on the results of a comparison of
the peak inter-story drift ratios estimated by the simplified method and that computed via NTHA
using an elaborate analytical model, the accuracy of the simplified method is sufficient for evaluating
seismic demands.

Keywords: simplified estimation method; steel hysteretic damper; peak inter-story drift ratio;
inelastic mode vector; equivalent SDOF system

1. Introduction

Previous studies conducted over the past two decades have proposed energy dissipation systems
that use displacement-dependent dampers and/or velocity-dependent dampers [1]. Currently, a major
concern is associated with the need to design a structure with dampers; therefore, many studies have
been conducted on this subject [2]. An energy-based design procedure based on achieving a balance
between the mean energy dissipated per cycle by a structure and that dissipated by dampers was
developed for the seismic retrofitting of existing buildings [3]. By using parameters such as a maximum
damper ductility value and an elastic stiffness ratio between the bracing-hysteretic device system and
the moment frame system, a design procedure was investigated for frames equipped with a hysteretic
energy dissipation device [4,5]. By using a displacement-based design method, a design procedure was
investigated for buildings with hysteretic dampers [6–8]. To determine the optimal damper volume
related to seismic performance, extant studies have used a performance curve (called as performance
spectra) for an elastic system [9,10] and an inelastic system [2,11–13] in the design process of buildings
with dampers. However, these studies have not considered the turn from an elastic mode vector to an
inelastic mode vector caused by the yielding of a main structure. This would lead to the loss of accuracy
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in a large drift range. On the one hand, nonlinear time history analysis (NTHA) using an elaborate
analytical model is used to estimate the seismic performance of buildings with dampers. However,
this is time-consuming and it is more convenient to perform a seismic performance assessment.

In performance-based seismic design (PBSD), it is essential for the risk associated with the
performance level of a structure to be clear and transparent, such that decision makers can understand
the expected seismic performance of the structures [14]. Specifically, with respect to PBSD, NTHA
using hundreds (or thousands) of ground motion records is required to perform a probabilistic seismic
performance assessment of buildings. In recent years, for the seismic performance and probabilistic
collapse resistance assessment of buildings with energy dissipation systems, many studies that use
incremental dynamic analysis [15] and perform an NTHA using an elaborate analytical model have
been conducted [16–20]. However, NTHA using an elaborate analytical model also requires intensive
computations to estimate seismic demands [21]. Therefore, a simplified estimation method of inelastic
seismic demands is useful, and thus several estimation methods have been proposed by previous
studies [22–26]. These methodologies mostly focus on estimating the seismic demands of general
buildings and involve the use of equivalent single-degree-of-freedom (SDOF) systems converted
from a building structure. In most equivalent SDOF systems, a single skeleton curve is adopted
to represent the characteristics of a building structure [24–26]. In order to consider the behavior of
dampers, an equivalent SDOF system that includes two springs have been proposed for reinforced
concrete buildings with hysteretic dampers by using the results of nonlinear static pushover analysis
(NSPA) [27]. However, this model requires interpolation [27], and therefore, the model may necessitate
time and effort to approximate the behavior of the springs for the dampers.

In this paper, a simplified method is proposed to estimate the peak inter-story drift ratio of
steel frames with hysteretic dampers, and the method is evaluated for use in structural performance
assessment. In the method, an equivalent inelastic SDOF system of a steel frame with dampers is
presented to estimate the inelastic spectral displacement. The method is also employed to estimate the
first inelastic mode vector by using the pattern of story drifts obtained from NSPA. Additionally,
in order to consider the effects of modes higher than the first mode, the modal elastic spectral
displacement and the participation function are also estimated by using the jth modal period, jth mode
vector, and jth modal damping ratio, as obtained from eigenvalue analysis (EVA). In order to estimate
the accuracy of the simplified method, the simplified method is compared by using the results of
NTHA using an elaborate analytical model on a series of three-story, six-story, and twelve-story steel
moment resisting frames with dampers. Parametric analyses are performed for all the frames to
confirm the effects of damper properties, such as stiffness and yield deformation, on the accuracy and
stability of the simplified method.

2. Simplified Method to Estimate the Peak Inter-Story Drift Ratio of Steel Frames with
Hysteretic Dampers

In this section, a simplified method is proposed to estimate the inter-story drift ratio of a steel
frame with steel hysteretic dampers (called steel metallic dampers), such as buckling-restrained brace
dampers and added damping and stiffness dampers. The basic concept employed was presented
in a previous study [28]. The method is based on an inelastic modal predictor (IMP) [26], which is
an extension of an elastic response spectrum method with a square-root-of-sum-of-squares rule to
the inelastic response and is based on extant studies [22,23]. The simplified method also considers
the change in the mode vector caused by the yielding of a main building. Additionally, the method
accounts for additional steps in the IMP methodology to generate the equivalent SDOF system for
estimating the inelastic spectral displacement and for determining the step number N necessary to
derive the inelastic mode vector.
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2.1. Estimation of Peak Inter-Story Drift Ratios

In this study, based on a previous study [26,28], the peak inter-story drift ratio θP
i of the ith story

of steel frames with steel hysteretic dampers is evaluated as follows:

θP
i =

√√√√(PFI
1,i · SdI

1

)2
+

n

∑
j=2

(
PFE

j,i · SdE
j

)2
(1)

where SdE
j is a jth modal elastic spectral displacement that is obtained from response spectrum analysis

using a jth modal period and a jth modal damping ratio obtained from EVA. Additionally, PFE
j,i denotes

the participation function of an inter-story drift ratio for an elastic jth mode that is defined as follows:

PFE
j,i =

ΓE
j ·
(

sφE
j,i −s φE

j,i−1

)
hi

(2)

where hi and sφE
j,i signify the height of the ith story and the elastic jth mode vector obtained from EVA

of a steel frame with dampers, respectively. In this paper, the subscripts ‘s’ and ‘f ’ before the symbols
refer to the entire system and bare frame that is a multi-story frame without dampers, respectively.
Furthermore, ΓE

j denotes the participation factor for the elastic jth mode that is defined as follows:

ΓE
j =

n
∑

i=1
mi ·s φE

j,i

n
∑

i=1
mi ·

(
sφE

j,i

)2 (3)

where mi denotes the mass at the ith story.
In Equation (1), SdI

1 implies an inelastic spectral displacement, estimated using the equivalent
inelastic SDOF system with multi-springs that is described in Section 2.2. Moreover, PFI

1,i denotes an
inelastic participation function of the inter-story drift ratio evaluated via Equations (2) and (3) with
sφE

j,i replaced by φI
i , which is estimated using the pattern of story drifts obtained from NSPA at the Nth

step, corresponding to the SdI
1 value obtained from NTHA using the equivalent inelastic SDOF system

with multi-springs. The procedure for estimating the inelastic spectral displacement SdI
1 and inelastic

mode vector φI
i is explained in Section 2.3.

2.2. Equivalent Inelastic SDOF System for Steel Frames with Hysteretic Dampers

This section describes the methodology for converting steel frames with steel hysteretic dampers
into an equivalent inelastic SDOF system.

As shown in Figure 1a, the steel hysteretic dampers can be described using shear springs that
depend on inter-story drifts. In order to describe an inelastic behavior, a hysteresis rule of a spring
in the equivalent SDOF system can be defined by an approximated skeleton curve with respect to a
base shear force versus roof drift curve obtained from NSPA, as shown in Figure 1b. When all of the
structural components of a building behave in a similar manner, it is possible for an equivalent SDOF
system with an assumed single skeleton curve to estimate the inelastic seismic performance of the
entire system. However, if the hysteresis rules of each structural member, such as the dampers and
frame members, are significantly different, then the assumed single skeleton curve leads to a loss of
accuracy in estimating the seismic performance, because the assumed bilinear (or tri-linear) single
skeleton curve may not be sufficient to consider the behavior of the dampers.

In the shear frame with dampers (hereafter referred to as the MDOF system), the story shear
force is computed by accumulating the lateral force, which is resisted by the column elements and
the dampers above the story level. Therefore, the base shear force, which is the shear force on the
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first story, is computed by accumulating two lateral forces, namely, the lateral force resisted by the
column elements of each story and the lateral force resisted by the dampers of each story. In other
words, the lateral force resisted by the dampers can also be divided into several forces, as shown in
Figure 1d. Therefore, as shown in Figure 1e, the equivalent SDOF system of the MDOF system can be
described using multi-springs with skeleton curves approximated by the base shear force relative to
the roof drift curve, as shown in Figure 1d. Based on the fore-mentioned approach, the basic concept
of an equivalent inelastic SDOF system with multi-springs was presented in a previous study [28].
Parts of the theoretical development of the method used in this paper are also based on a previous
study [28]. The equivalent inelastic SDOF system with multi-springs comprises an effective mass s M1

and an effective height sH1 that are described in Section 2.2.1; an inelastic spring equivalent to the bare
frame that is described Section 2.2.2; and inelastic springs equivalent to the dampers that are described
Section 2.2.3.
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Figure 1. A multi-story frame with steel hysteretic dampers: (a) a shear frame with dampers; (b) a single
skeleton curve; (c) an equivalent inelastic SDOF system with a single inelastic spring; (d) multi-skeleton
curves; and (e) an equivalent inelastic SDOF system with inelastic multi-springs.

2.2.1. Mass and Height of Equivalent Inelastic SDOF System

With respect to the first mode, the effective mass s M1 that corresponds to the mass of the equivalent
SDOF system, and the effective height sH1 that corresponds to the height of the equivalent SDOF
system are expressed, respectively, as follows:

s M1 =

(
n
∑

i=1
mi ·s φE

1,i

)2

n
∑

i=1
mi ·s φE

1,i

(4)

sH1 =

n
∑

i=1

(
mi ·s φE

1,i · Hi

)
n
∑

i=1
mi ·s φE

1,i

(5)

where n and Hi are the number of stories and the height of the ith story above the base, respectively.
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2.2.2. Inelastic Spring Equivalent to Steel Frame

With respect to the first mode, the period Tf of the bare frame can be obtained from EVA.
Additionally, this period is also calculated as follows:

Tf = 2π

√
f M1

k f
(6)

where k f denotes the effective elastic stiffness of the bare frame and f M1 is the effective mass of the
bare frame that is defined using Equation (4) with sφE

1,i replaced by f φE
1,i, obtained from EVA of the

bare frame.
Equation (6) is used to represent the elastic stiffness k f of the bare frame, as follows:

k f =
4 · π2 · f M1(

Tf

)2 (7)

It is assumed that the period calculated by the effective elastic stiffness sk f of the spring, which
is represented as the only bare frame in the equivalent SDOF system with multi-springs, and the
effective mass s M1 is equal to the period of the equivalent SDOF system of the bare frame, as shown in
Equation (6). This assumption is represented as follows:

Tf = 2π

√
s M1

sk f
= 2π

√
f M1

k f
(8)

Based on Equations (7) and (8), the effective elastic stiffness of the spring representing the bare
frame in the equivalent SDOF system with multi-springs is defined as follows:

sk f =
4 · π2 ·s M1(

Tf

)2 (9)

In order to consider the post-elastic behavior of the bare frame, the stiffness reduction factors
(γ1 and γ2) after the elastic behavior are calculated based on the same method used in a previous
study [26], in which a tri-linear skeleton curve is assumed. Further details on the post-yield stiffness
can be found in a previous study [26].

The first and second yield drifts on the skeleton curve for the bare frame can be defined as follows:

δ = 1
θroo f ,1 · Hroo f

ΓE
1 ·s φE

1,roo f
, δ2 =

θroo f ,2 · Hroo f

ΓE
1 ·s φE

1,roo f
(10)

where θroo f ,1 and θroo f ,2 are the first and second yield drift ratios on the skeleton curve [26], respectively;
and Hroo f and sφE

1,roo f denote the height of the roof above the base and the first mode vector of the roof
of the steel frame with dampers, respectively.

The stiffness reduction factors and yield drifts are used to calculate the yield forces Q1 and Q2,
as follows:

Q1 = sk f · δ1, Q2 = sk f [δ1 + γ1(δ2 − δ1)] (11)

Subsequently, the skeleton curve of the inelastic spring that is equivalent to the bare frame is
determined by Equations (10) and (11).
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2.2.3. Inelastic Springs Equivalent to Dampers

This section describes the methodology used to estimate the skeleton curve of the inelastic springs
that are equivalent to the dampers in the equivalent SDOF system with multi-springs.

The force versus drift curve of the damper at the ith story of the MDOF system and the ith inelastic
spring of the equivalent SDOF system are shown in Figure 2a,b, respectively.
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Figure 2. Skeleton curves of the dampers and inelastic springs: (a) damper force versus inter-story
drift curve of the damper at the ith story in the MDOF system and (b) force versus drift curve of the ith
spring in the SDOF system.

As shown in the top portion of Figure 2a, by considering only the first mode, a lateral drift ∆i of
the ith story of the MDOF system can be expressed using the drift δ of the equivalent SDOF system,
as shown in the top portion of Figure 2b. This can be expressed as follows:

∆i = sφE
1,i · ΓE

1 · δ (12)

where sφE
1,i signifies the first elastic mode vector of the ith story as obtained from EVA. Thus,

the inter-story drift δi at the ith story of the MDOF system can be expressed as follows:

δi = ∆i − ∆i−1 =
(

sφE
1,i − sφE

1,i−1

)
· ΓE

1 · δ (13)

It is assumed that the energy Ed,i dissipated by the damper at the ith story of the MDOF system is
equivalent to the energy Ed,i dissipated by the ith inelastic spring of the equivalent SDOF system.

Based on this assumption and Equation (13), in the range of δi < dyd,i that corresponds to the yield
deformation of the damper at the ith story of the MDOF system, the stiffness kd,i of the ith inelastic
spring of the equivalent SDOF system can be expressed as follows:

kd,i = kd,i

(
sφE

1,i − sφE
1,i−1

)2(
ΓE

1

)2
(14)

where kd,i denotes an elastic stiffness of the damper at the ith story.
Based on a previous assumption that indicates Ed,i = Ed,i and Equations (13) and (14), when

δi = dyd,i, the yield deformation dyd,i of the ith inelastic spring of the equivalent SDOF system can be
expressed as follows:

dyd,i =
dyd,i(

sφE
1,i − sφE

1,i−1

)
ΓE

1

(15)
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Based on a previous assumption Ed,i = Ed,i and Equations (13)–(15), in the range of δi > dyd,i,
a post-elastic stiffness ratio αd,i of the ith inelastic spring of the equivalent SDOF system can be
determined as follows:

αd,i = αd,i (16)

where αd,i signifies the post-elastic stiffness ratios of the damper at the ith story.

2.3. Procedure for Estimating Inelastic Spectral Displacement and Inelastic Mode Vector

For estimating the peak inter-story drift ratio of the steel frame with steel hysteretic dampers by
using Equation (1), the inelastic spectral displacement SdI and the inelastic mode vector φI

i can be
estimated by the following steps (as shown in Figure 3):
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vector φI
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(1) Define the period Tf for the first mode of the bare frame, as obtained from EVA of the bare frame.

(2) By using the NSPA results of the bare frame, in which a lateral load pattern is based on the first
mode vector, define the stiffness reduction factor to consider the post-elastic behavior of the
bare frame.

(3) Define the mode vector sφE
1,i by performing EVA of the steel frame with dampers. Subsequently,

by using Equations (4), (5), and (14)–(16) with sφE
1,i, determine the effective mass s M1, the effective

height s H1, and the skeleton curves of the inelastic springs equivalent to the dampers.
(4) By using Equations (9)–(11) with sφE

1,i obtained from Step (3) and the stiffness reduction factor
obtained from Step (2), determine the skeleton curve of the inelastic spring equivalent to the
bare frame.
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(5) Generate the equivalent inelastic SDOF system with multi-springs using the effective mass s M1,
effective height sH1, and inelastic springs with the skeleton curves, as obtained from Steps (3) and
(4). Subsequently, perform NTHA using the equivalent inelastic SDOF system with multi-springs
to evaluate the peak drift ratio, as follows:

θ I
SDOF =

SdI

sH1
(17)

where SdI denotes the inelastic spectral displacement of the steel frame with dampers for the first
mode that is obtained from NTHA using an equivalent inelastic SDOF system with multi-springs.

(6) Obtain the shear force versus the drift curve for each story by performing NSPA of the steel frame
with dampers, in which the lateral load pattern is based on the first mode vector.

(7) Define the step number N at which the response corresponds to θ I
SDOF in the roof drift ratio

versus the step number curve obtained from the NSPA result in Step (6).
(8) Determine the first inelastic mode vector φI

i using the pattern of story drifts of the shear force
versus the drift curve defined in Step (6) at the Nth step defined in Step (7).

3. Numeral Examples

3.1. Building Models

In this paper, a numerical example is considered, as shown in Figure 4, with three two-dimensional
steel moment resisting frames (SMRFs) to estimate the accuracy of the simplified method. The SMRFs
are designed to satisfy the current seismic requirements in Japan in terms of both strength and drift.
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Figure 4. Analysis model: (a) a three-story steel moment resisting frame with dampers; (b) a six-story
steel moment resisting frame with dampers; and (c) a twelve-story steel moment resisting frame
with dampers.

Figure 4a shows the SMRF with three bays of 6.0 m and story heights of 4.0 m. Steel sections of
H-350×350×12×19 and H-450×200×9×14 are used for all the columns and all the beams, respectively.
The yield strength of the steel material and Young’s modulus are assumed to be 235 N/mm2 and
205,000 N/mm2, respectively. The mass of each story is 70 tons. According to EVA, the fundamental
natural period corresponds to 0.758 s. Additionally, NTHA is performed using the nonlinear dynamic
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analysis program SNAP ver.7 [29]. In SNAP ver.7, the beams and columns are modeled using the
beam element with elasto-plastic characteristics. The nonlinear behaviors of the beams and columns
are represented using the concentrated plasticity concept with rotational springs. The rotational
behavior of the plastic regions follows a trilinear hysteretic response based on ST3, which is the steel
hysteretic material model. The plastic moments at the ends of the columns and beams assume that
Mp = 592 kN·m for the columns and Mp = 387 kN·m for the beams. The beam and column elements
have three degrees of freedom in each node. Tangent stiffness-proportional damping is considered
with a 2% damping ratio for the first mode.

Figure 4b shows the SMRF with five bays and six stories. Steel sections of H-400×400×18×28 and
H-500×200×10×16 are used for all the columns and all the beams, respectively. The yield strength
of the steel material is assumed to be 325 N/mm2. The mass of each story is 130 tons. The plastic
moments at the ends of the columns and beams assume that Mp = 1634 kN·m for the columns and
Mp = 692 kN·m for the beams. According to EVA, the fundamental natural period is 1.23 s.

Figure 4c shows the SMRF with six bays and twelve stories. Table 1 also lists the plastic moments
at the ends of the columns and beams, and the steel sections. The yield strength of steel is assumed to
be 325 N/mm2. The mass of each story is 205 tons. Based on EVA, the fundamental natural period
corresponds to 2.17 s.

Table 1. Sections and plastic moments of the columns and beams of a twelve-story steel moment
resisting frame.

Element Label Section Mp (kN·m)

Columns

C4 �-550×22 2991.7

C3 �-550×25 3361.7

C2 �-550×28 3723.0

C1 �-550×32 4191.2

Beams

B4 H-550×250×12×22 1204.3

B3 H-550×250×12×25 1322.3

B2 H-550×250×12×28 1439.0

B1 H-550×300×14×28 1718.4

3.2. Properties of the Hysteretic Dampers

The properties of the steel hysteretic dampers are assumed to be proportional to those of the
bare frame. The stiffness ratio κ [10] that corresponds to the ratio of the damper stiffness to the story
stiffness of the frame is used to determine the stiffness of the damper at the ith story, as follows:

kd,i = κ · k f ,i (18)

where k f ,i is the lateral story stiffness of the bare frame that is determined by using the NSPA results.
The lateral stiffness ratio α (= k f /ktotal where ktotal = k f + kd) of reference [5,13] is equivalent to
1/(κ+ 1).

The yield drift ratio υ [27] that corresponds to the ratio of the yield deformation of the damper to
the story yield drift of the bare frame is used to determine the yield deformation of the damper at the
ith story, as follows:

dyd,i = υ · dy f ,i (19)

where dy f ,i is the yield story drift of the bare frame that is determined using the NSPA results.
In this paper, the stiffness ratio, the drift ratio, and the post-elastic stiffness ratio of the dampers

correspond to two values (1.5 and 3), two values (0.4 and 0.6), and one value (0.03), respectively.
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3.3. Earthquake Ground Motion Records

In conjunction with the frame models described in the previous section, 73 ground motions
selected from the PEER Strong Motion Database are used to investigate the simplified method.
A detailed list of the earthquakes can be found in a previous study [22].

3.4. Results and Discussion

In this paper, with respect to the simplified method, the first-mode response; first-mode and
second-mode responses; and first-mode, second-mode, and third-mode responses are considered
for a three-story frame, a six-story frame, and a twelve-story frame with dampers, respectively.
In Equation (1), the second and third modal elastic spectral displacements and the participation
functions are estimated by using the jth modal period, jth mode vector, and jth modal damping ratio,
respectively, as obtained from EVA of the steel frame with dampers.

To confirm the accuracy of the method used to generate an equivalent inelastic SDOF system,
the periods obtained from the EVA of the elaborate analytical model are compared with the periods
obtained from the EVA of the equivalent SDOF system. According to the comparison results, which are
not shown in this paper, the periods of the equivalent SDOF system with multi-springs are equivalent
to the periods of an elaborate analytical model.

The accuracy of the simplified method is expressed by the following: (i) its bias denoted as a
that is calculated by the median of the ratio of the peak inter-story drift ratio θP

i , which is estimated
by the simplified method, with respect to the corresponding peak inter-story drift ratio θi, which is
computed via NTHA using the elaborate analytical model; and (ii) its dispersion denoted as σ that
is calculated by the standard deviation of the natural logarithms of θP

i /θi. The parameters bias and
the dispersion are equivalently obtained by performing a one-parameter log-log linear least-squares
regression of θi on θP

i . A bias exceeding unity implies overestimation, while a bias less than unity
implies an underestimation of the average by the simplified method. In the paper, the accuracy of the
simplified method is confirmed by using 876 results of NTHA using the elaborate analytical model.

The structural demand parameter for evaluation is denoted by the maximum peak inter-story drift
ratio θmax, which corresponds to a maximum response over time and a peak with respect to the height
of the structure, because θmax correlates well with the structural and nonstructural damage in the
structure [30]. Figures 5–7 illustrate the regressions of θmax computed via NTHA using the elaborate
analytical model on the θP

max estimated by the simplified method for a three-story frame, a six-story
frame, and a twelve-story frame with dampers, respectively, that are subject to all the earthquake
records. The horizontal axis represents the maximum peak inter-story drift ratio that is computed via
NTHA using the elaborate analytical model, and the vertical axis corresponds to that estimated by the
simplified method. The figures also present the values of bias (a) and dispersion (σ), for which the solid
lines and the dotted lines denote the regression lines and the lines of θP

i /θi = 1, respectively. Based on
Figures 5–7, the maximum peak inter-story drift ratios estimated by the simplified method agree fairly
well with those computed via NTHA using the elaborate analytical model, irrespective of the difference
in the damper parameters with respect to the stiffness ratio κ and the drift ratio υ. The biases and
dispersions of the simplified method are in the range of 0.995–1.01 and 0.041–0.053, respectively, for the
three-story frame, as shown in Figure 5; 0.992–1.012 and 0.051–0.075, respectively, for the six-story
frame, as shown in Figure 6; and 1.005–1.033 and 0.059–0.075, respectively, for the twelve-story frame,
as shown in Figure 7. The ranges of the bias and dispersion of the simplified method increase as the
height of the structure increases. However, the value does not affect the estimation of the accuracy of
the simplified method because the increase in the value is very small.
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Figure 8 summarizes the bias (a) and the dispersion (σ) of the simplified method for:
(a) a three-story frame; (b) a six-story frame; and (c) a twelve-story frame with dampers that are
subjected to all the earthquake records. The biases and dispersions of θP

i estimated by the simplified
method are in the range of 0.972–1.151 and 0.025–0.179, respectively, for all the frames. In the case
where κ = 1.5, as shown in Figure 8c, the biases of θP

i estimated by the simplified method exceed 1.1
for the upper stories (i.e., 9–12 stories) of the twelve-story frame with dampers. However, the biases of
θP

i for the other stories of all the frames are less than 1.1. Additionally, the dispersions of θP
i estimated

by the simplified method are less than 0.02 for all the stories of all the frames. Therefore, the accuracy
of the simplified method is sufficient for evaluating the seismic demands, irrespective of the difference
in the damper parameters.

In this paper, the assumption Ed,i = Ed,i is used to convert the steel frame with dampers into
an equivalent SDOF system. To confirm this assumption, Figure 9 shows a one-to-one comparison
between the total energy dissipated by the dampers in the elaborate analytical model and the total
energy dissipated by the inelastic springs in the equivalent SDOF system. The vertical axis represents
the total energy dissipated by the springs of the equivalent SDOF system, and the horizontal axis
signifies the total energy dissipated by the dampers of the elaborate analytical model. As shown in
Figure 9a, the total energies dissipated by the springs agree well with those dissipated by the dampers.
In contrast, the total energy dissipated by the springs fluctuates slightly when compared with the total
energy dissipated by the dampers, as shown in Figure 9b,c. However, the total energy dissipated by
the springs agrees well with the total energy dissipated by the dampers, irrespective of the difference
in the magnitude of an earthquake. Therefore, the accuracy of the equivalent SDOF system is sufficient
to evaluate the seismic demands, irrespective of the difference in the damper parameters with respect
to the stiffness ratio κ and the drift ratio υ.
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4. Conclusions

In this paper, a simplified method is proposed to estimate the peak inter-story drift ratio of steel
multi-story frames with steel hysteretic dampers. In this method, with respect to the first mode,
the inelastic spectral displacement of a steel frame with dampers is estimated by using an equivalent
inelastic SDOF system that includes multi-springs in order to consider the hysteretic behavior of
dampers, and the inelastic mode vector is estimated by using a pattern of story drifts that is obtained
from NSPA of a steel frame with dampers with a lateral load pattern based on the first mode vector.
Additionally, in order to consider the effects of modes higher than the first mode, the second and
third modal elastic spectral displacement and the participation functions are also estimated by using
the jth modal period, jth mode vector, and jth modal damping ratio, respectively, as obtained from
EVA of the steel frame with dampers. In order to estimate the accuracy of the simplified method,
the simplified method is compared by using the results of NTHA that use an elaborate analytical
model on a series of three-story, six-story, and twelve-story SMRFs with dampers. In order to confirm
the effects of the damper properties, such as stiffness and yield deformation, on the accuracy and
stability of the simplified method, parametric analyses are performed for all the frames that are
subjected to all the earthquake records. The results indicate that the accuracy of the simplified method
is sufficient to evaluate the seismic demands, irrespective of the difference in damper parameters.
Therefore, this method reduces the computational time and effort required to perform a seismic
performance assessment.

Further, studies on different structural buildings such as a reinforced concrete structures and
studies on different layouts of dampers are needed to gain more insight into the efficiency of the
proposed method.
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