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Abstract: Existing collision avoidance methods for autonomous vehicles, which ignore the driving
intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban
environments because of their high false detection rates of collisions with vehicles on winding roads
and the missed detection rate of collisions with maneuvering vehicles. This study introduces an
intent-estimation- and motion-model-based (IEMMB) method to address these disadvantages. First,
a state vector is constructed by combining the road structure and the moving state of detected
vehicles. A Gaussian mixture model is used to learn the maneuvering patterns of vehicles from
collected data, and the patterns are used to estimate the driving intent of the detected vehicles.
Then, a desirable long-term trajectory is obtained by weighting time and comfort. The long-term
trajectory and the short-term trajectory, which are predicted using a constant yaw rate motion model,
are fused to achieve an accurate trajectory. Finally, considering the moving state of the autonomous
vehicle, collisions can be detected and avoided. Experiments have shown that the intent estimation
method performed well, achieving an accuracy of 91.7% on straight roads and an accuracy of 90.5%
on winding roads, which is much higher than that achieved by the method that ignores the road
structure. The average collision detection distance is increased by more than 8 m. In addition,
the maximum yaw rate and acceleration during an evasive maneuver are decreased, indicating an
improvement in the driving comfort.

Keywords: intent estimation; motion model; autonomous vehicle; collision avoidance; trajectory
prediction

1. Introduction

More than 3000 people die in traffic accidents every day, and most of these deaths are caused by
human errors [1]. Autonomous driving technologies have a great potential for reducing traffic accidents
and, thus, improve road safety. Over the past few decades, autonomous vehicle technologies have
taken a significant leap from concept to reality and have been successfully demonstrated [2]. However,
the safety of driving in urban environments is a challenging problem that remains unsolved [3,4].
A reliable collision detection and avoidance system is indispensable for intelligent vehicles. To ensure
that an intelligent vehicle performs in a collision-free and smooth manner, two main requirements
should be satisfied. First, the local environment, including the road structure and drivable areas, should
be perceived and understood, which is helpful in the decision-making process. Second, dynamic
obstacles must be reliably detected and predicted using information from on-board sensors, which
allows for potential collisions to be detected and avoided in a timely manner.
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Using traditional solutions, the dynamic obstacles can be detected by fusing information from
different sensor in adjacent frames. Then, potential collisions can be predicted and avoided using
a motion model that assumes that the obstacles are moving at a constant speed or with a constant
acceleration. In Boss [5], which is the winner of the 2007 DARPA Urban Challenge, a dynamic obstacle
list is generated by fusing data from different sensors, and moving obstacles are modelled with the
point model or the box model. A multi-layer mechanism is used to detect potential collisions, and
moving obstacles are assumed to move along lanes [6]. A dynamic obstacle is passed to a more accurate
collision checking layer if a collision between the autonomous vehicle and the dynamic obstacle is
detected in a rough layer. A proper local path will be generated to avoid the potential collision if the
most accurate layer concludes that a collision will occur. In Junior [7], the autonomous vehicle that
placed second in the Urban Challenge, dynamic obstacles are detected by comparing two synthetic
scans acquired from different sensors over a brief time interval, and particle filters are used to track
the obstacles. Then, an obstacle is avoided with a linear model. In 2012, a new dynamic obstacle
avoidance and representation method [8] was proposed that takes advantage of data from 3D LIDAR
(Light Detection and Ranging) and 2D LIDAR. A collision point is obtained with a linear model that
assumes that the dynamic obstacles are moving along the lane at a constant velocity, and the intelligent
vehicle avoids the collision point to prevent potential collision. These collision avoidance methods
may fail when the detected vehicles are maneuvering, especially on winding roads (in transportation
engineering, the term “horizontal curves” is used instead of “winding road”), which may lead to
collisions or undesirable evasive paths. The velocity-based intent-estimation method was introduced
in [9,10] and is used to predict obstacle maneuvers at road intersections. However, this method is
limited to intersections, and no accurate trajectory of the detected vehicles is available, which is crucial
for collision avoidance.

In addition, a driver behavior estimation method that maps the continuous moving states of
detected vehicles into a discrete space of maneuvers was proposed by Gadepally [11]. This method has
not been used in the collision avoidance system for autonomous vehicles, and no road information is
considered, resulting in a high false detection rate on winding roads. Inspired by this method, we have
proposed an intent-estimation-based collision avoidance method for autonomous vehicles [12], and
our experimental results show that the performance of the collision avoidance system is improved
applying this method. However, the accuracy of the intent estimation is not sufficiently high for urban
environments, as a fixed threshold is used to decide the driving intent, and the motion model used to
predict the trajectory is rough.

To improve safety and comfort, a new intent-estimation- and motion-model-based (IEMMB)
collision avoidance method that combines driving intent and a motion model is proposed in this
paper. This method is effective for normally moving and maneuvering vehicles on both straight
roads and winding roads. With this method, the driving intents of detected vehicles are estimated,
including left lane change, right lane change and normal moving, and an accurate long-term trajectory
is generated considering timeliness and comfort. Then, an accurate trajectory is obtained by combining
the long-term trajectory and the short-term trajectory that is predicted with a constant yaw rate motion
model. The experimental results show that the intent estimation method performed well, achieving
an accuracy of 91.7% on straight roads, and it is 90.5% on winding roads. The distance between the
autonomous vehicle and the detected collision point when a collision is firstly detected, which is also
called collision detection distance, is increased by more than 8 m compared with the method proposed
in [8] that ignores the driving intent of detected vehicles. In addition, the yaw rate and acceleration
of the autonomous vehicle during an evasive maneuver are decreased, which indicates improved
driving comfort.

The remainder of this paper is organized as follows. In Section 2, we present the IEMMB collision
avoidance method in detail. In Section 3, experiments in real traffic scenes are conducted, and the
results are discussed. Section 4 gives our conclusions on this system and identifies future work that
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needs to be completed. Some computation and data used in this paper are attached in Appendixs A
and B.

2. Intent-Estimation- and Motion-Model-Based Collision Avoidance Method

2.1. Overview

For autonomous vehicles, the trajectories of the detected vehicles are not deterministic, as they
are affected by the environment, the destination of the driver and driving habits, which increase the
difficulty of collision avoidance. However, certain considerations about the dynamic features of the
moving vehicle, traffic rules and the road structure around the vehicle can provide some information
to facilitate predictions. For instance, it is known that the maximum acceleration of a vehicle is limited,
and the trajectory curvature must be smaller than a certain value to ensure stability. The varying
driving habits of different drivers may lead to different trajectories; however, some common rules
should be followed to ensure comfort and safety, such as following the center line of the lane, which is
defined as normal moving in this paper.

The structure of the proposed IEMMB method is shown in Figure 1.
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Figure 1. Structure of the collision avoidance method. Driving intent estimation and trajectory
prediction are the two main components of this method.

Online sensor information and a priori environmental information are combined to increase the
accuracy and robustness of environmental perception, which is crucial to collision avoidance. Then, the
road structure and moving vehicles are extracted; the driving intent of the detected moving vehicles
can be estimated using this information. In the next step, the long-term trajectory considering driving
intent and the short-term trajectory considering the current moving state, as well as motion model are
combined to predict the real trajectory. With the prediction, potential collisions can be detected, and
appropriate evasive maneuvers will be generated to avoid collisions in the space or time dimension.

2.2. Intent Estimation

Detected moving vehicles can be extracted from sensor information, and their moving features
become accessible. All of the detected vehicles can be modelled with a state vector in the form of
Equation (1), as shown in Figure 2.

→
ξ = [ xp yp θ v a w ] (1)

where (xp, yp) is the position, θ represents the moving direction of the vehicle, v and a are the velocity
and acceleration, respectively, and w is the yaw rate of the vehicle. For a vehicle moving along a
straight lane, as shown in Figure 3a, the trajectory of the vehicle can be predicted with its moving state,
although the trajectory may fail when subject to the conditions in Figure 3b,c. In Figure 3b, the vehicle
performs a left lane change, and the vehicle in Figure 3c moves along a winding road. In addition
to the moving state, the road structure should be considered when estimating the driving intents of
detected vehicles.
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Figure 3. Typical trajectory: (a) normal moving; (b) lane change; (c) normal moving on a winding road. 

By matching the lane marks and road edges with an accurate lane-level map, the accurate 
position of the vehicle on the map is accessible, as well as the lane number and the road shape.  
The trajectories of the moving vehicles are strongly influenced by the road shape because drivers 
tend to follow the center line of a lane, which can be modeled with a quadratic curve, as shown in 
Equation (2). 
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intersection. Therefore, we mainly discuss normal moving and lane changes in this paper. For a 
normally moving vehicle, the trajectory is similar to the center line of the lane. On the other hand,  
a vehicle that is changing its lane is leaving the center line and will enter an adjacent lane. A set of 
lane change trajectories, obtained from the onboard sensors, are shown in Figure 4. It can be seen that 
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By matching the lane marks and road edges with an accurate lane-level map, the accurate position
of the vehicle on the map is accessible, as well as the lane number and the road shape. The trajectories
of the moving vehicles are strongly influenced by the road shape because drivers tend to follow the
center line of a lane, which can be modeled with a quadratic curve, as shown in Equation (2).

y = k2x2 + k1x + k0 (2)

where k2, k1 and k0 are coefficients. In urban environments, the trajectory of a vehicle is decided by the
driver and can be divided into the following categories.

• Normal moving (moving along the lane)
• Left change
• Right lane change
• Turn

For most turns at intersections, the driving intent can be estimated by identifying the lane being
driven on. For a driver who wants to turn left, he/she will enter the left-turn lane before entering
the intersection. Therefore, we mainly discuss normal moving and lane changes in this paper. For a
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normally moving vehicle, the trajectory is similar to the center line of the lane. On the other hand,
a vehicle that is changing its lane is leaving the center line and will enter an adjacent lane. A set of lane
change trajectories, obtained from the onboard sensors, are shown in Figure 4. It can be seen that the
shapes of the change trajectories are different in both longitudinal and horizontal directions, which
increases the difficulty of intent estimation. To estimate the intent of the driver, a state vector of the
moving vehicle is constructed.

Xcar = [ dl dr θ γ ] (3)

where dl are distances between the vehicle and the left lane mark and dr corresponds to the distance
between the vehicle and the right lane mark. θ is the heading direction of the vehicle, and γ is the
current curvature of its path.

γ = w
/

v (4)

The center line of the lane where the vehicle is moving can also be represented with a state vector:

Xlane = [ dl dr θlane γlane ] (5)

where θlane is the road direction and γlane is the road curvature. Besides, dl and dr are set as half of
the lane width. These variables can be obtained with the mentioned quadratic curve mentioned in
Equation (1) and road information from the map. The computation of θlane and γlane is attached in
Appendix A, and the results are shown in Equations (6) and (7).

θlane = arg tan(2k2x + k1) (6)

γlane =
2k2

(4k2
2x2 + 4k2k1x + k2

1 + 1)
3
2

(7)

Then, the deviation of the vehicle from the lane center can be presented as follows:

D2 = (Xlane − Xcar)
T(Plane + Pcar)

−1(Xlane − Xcar) (8)

where D2 is the chi-square distance between the two vectors, Xcar and Xlane. Plane is the covariance
matrix of the lane state vector, and Pcar is the covariance matrix of the vehicle state vector. The moving
process is continuous, whereas the maneuvering space is discrete. Intent recognition is performed by
mapping a set of continuous features into the discrete maneuvering space. In [13], the value of D is
used to estimate the maneuvering intent of the vehicle. If the value is small, the vehicle is assumed to
maintain its lane, whereas the vehicle is performing a lane change if the value is larger than a fixed
threshold. This method faces a challenge, i.e., a fixed threshold would introduce a high false detection
rate. To improve the robustness, a feature vector is constructed as follows:

M =
{
[ D a yaw ]

T
}

n
(9)

where n is the number of samples that we use in the intent-estimating process and a represents the
acceleration in the direction of the lane. This vector contains the relationship between the vehicle
and lane, as well as the moving state of the detected vehicle. As for a lane change, the prediction
is successful if the intention of changing lane is estimated before any part of the vehicle enters the
target lane.
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Data in Table 1 are used to illustrate the computation of the feature vector. To eliminate the effect
of different dimensions, acceleration is measured with m/s2 and yaw is measured with degree/s;
the feature vector is normalized with Z-score standardization, which is introduced in Appendix A.
The third row and the forth row show the means µ and standard deviation σ of the features. Two
examples, extracted from a right lane change and a normal moving event, are shown in the fourth row
and the fifth row. The Z-scores of the samples are shown in the last two rows.

Table 1. Means and standard deviations of feature vectors and two feature vector samples.

Examples D a yaw

µ 0.9 −0.1 1.91
σ 0.40 1.76 0.69

Vector_1 (left lane change) 1.1 −0.8 1.6
Vector_2 (normal moving) 0.6 0.4 0.8

Z-score of Vector_1 0.5 −0.82 0.45
Z-score of Vector_2 −0.75 0.28 −1.61

To obtain accurate driving intent, a learning method that utilizes Gaussian mixture models
(GMM) [14] is applied. GMM consists of a basis Gaussian distribution with a linear method. For a
feature vector M of length n, the probability distribution function is as follows:

P(M|λ) =
n

∏
t=1

K

∑
k=1

ωkηk (10)

where K is the number of mixture Gaussian distributions and ωk denotes the mixture weights of the

kth mixture function, which satisfy the condition
K
∑

k=1
ωk = 1. The GMM can be represented with a set

of components λk = {ωk, uk, ∑k} and Equation (11):

ηk(M) =
1√

(2π)d
∣∣∣∑K

∣∣∣ e
− 1

2 (M−µk)
T ∑−1

k (M−µk) (11)

The expectation maximization algorithm [15] is used to learn the parameters of the GMM, namely,
{ωk, µk, ∑k}, ∀k ∈ (1, · · · , K). In this paper, we use a GMM of three possible mixtures related to the
three mentioned maneuvers of interest, i.e., normal moving, left lane change and right lane change.
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For each state vector M, the posterior probability with each component λk of the GMM can be
obtained, and the best matched component satisfies the following equation:

i = argmax[P(M|λk)] k = 1, · · · , K (12)

where i is the subscript of the component.
To obtain an intent predictor, trajectories of 200 drivers were collected, including trajectories on

straight roads and winding roads, and used in the training process. The data used are shown in Table 2.

Table 2. Data used in the training process.

Road Type
Maneuver Type Normal Moving Left Lane Change Right Lane Change

Straight Road 50 50 50
Winding Road 50 50 50

To obtain ideal results, the length of M, i.e., the value of n, should be chosen carefully.
The performance is improved with increased n, although the real-time ability of the system decreases,
as shown in Figure 5.
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Figure 5. Relationship between the length of feature vector M and the accuracy of intent estimation.
The accuracy grows with the length while the growth rate is decreasing.

The growth rate of the accuracy decreases, and it is limited when n is larger than five. The accuracy
reaches 93.5% when n is five. In this paper, the system runs at 25 Hz, and n is set as five. It means that
the intent-estimation process needs approximately 200 ms, which is acceptable.

2.3. Trajectory Prediction with Intent and Motion Model

The maneuver intent can be estimated with the GMM-based method, but it is difficult to predict
the real trajectory as there are too many realizations for a maneuver. With the initial state, the intended
state and the maneuvering information, an ideal trajectory can be obtained. The prediction can be
divided into two steps. First, a set of trajectories is generated considering the randomness of driving
habits. Then, an appropriate trajectory is selected by considering comfort and duration. The Frenet
frame [16] along the lane center line is used to predict the trajectories and then converted to the initial
Cartesian coordinates. The lateral component is represented with d(t), and the longitudinal component
is s(t). The initial state and final state of the maneuver can be represented with ST0 and ST1.

ST0 = (s0,
.
s0,

..
s0, d0,

.
d0,

..
d0) (13)
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ST1 = (s1,
.
s1,

..
s1, d1,

.
d1,

..
d1) (14)

Going a step further, the initial state can be represented with Equation (15):



d0.
d0..
d0

s0
.
s0
..
s0


=



d∗0
v0 sin(θ0 − θ→

T
)√

(a2 + γ0v2
0) sin(θ0 − θ→

T
)

0
v0 cos(θ0 − θ→

T
)√

(a2
0 + γ0v2

0) cos(θ0 − θ→
T
)


(15)

where d∗0 is the distance between the initial position of the vehicle and the lane center line.

The orientation of the lane center line’s tangent vector
→
T is represented by θ→

T
. The normal acceleration

of the vehicle is represented as γ0v2
0. For the final state of the trajectory, the vehicle is supposed to be

moving along the lane center line, and the longitudinal acceleration is a constant value during the
maneuvering time. The state can be modeled with the following vector:

d1.
d1..
d1
..
s1

 =


d∗1
0
0
a0

 (16)

If the vehicle is performing a lane change, the value of d∗1 is the lane width; otherwise, it is set to
zero. The duration of a maneuver is limited, and it is set as tK. A set of trajectories can be obtained by
sampling the duration: t1 =

{
ti}

i=1···K. The lateral movement of the vehicle can be modeled with a
quintic curve [17], as represented in Equation (17):

d(t) = c5t5 + c4t4 + c3t3 + c2t2 + c1t + c0 (17)

Combing Equation (16) and (17), the following equation can be obtained:



t5
0 t4

0 t3
0 t2

0 t0 1
t5
1 t4

1 t3
1 t2

1 t1 1
5t4

0 4t3
0 3t2

0 2t0 1 0
5t4

1 4t3
1 3t2

1 2t1 1 0
20t3

0 12t2
0 6t0 2 0 0

20t3
1 12t2

1 6t1 2 0 0


∗



c5

c4

c3

c2

c1

c0


=



d0

d1
•
d0
•
d1
••
d 0
••
d1


(18)

For the longitudinal movement, a quartic line is used, which can be represented as follows:

s(t) = c4t4 + c3t3 + c2t2 + c1t + c0 (19)

The following equation can then be established:
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 (20)
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where
.
s = v0 + a ∗ t and a set of trajectories can be obtained by solving the previous two equations with

different ending times t1. To choose the most likely trajectory, two conditions should be considered:
the normal acceleration and the duration of the maneuver. The cost function can be summarized into
Equation (21):

Ci
K = max(an(t)) + ε ∗ t1

i, (i = 1, 2, 3, · · ·K) (21)

where ε is a coefficient that is used to measure the effects of comfort and time, which is selected by
analyzing collected data. In this paper, the value of ε is set as 0.5 to achieve the best result. The selected
maneuver trajectory TM is the trajectory with the smallest cost. All of the generated trajectories
are shown in Figure 6. The selected trajectory is marked with the blue dotted line, while the other
trajectories are in red.

TM = argmin(Ci
K)i=1···K (22)  
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Figure 6. Trajectory candidates, which are represented with red lines, and the selected ideal trajectory,
which is represented with a blue line. The selection of the ideal trajectory makes a balance of timeliness
and driving comfort.

The long-term trajectory prediction is a desirable result that ignores the current moving state,
which is indispensable for trajectory prediction. To increase the accuracy, the long-term predictions
and the short-term predictions should be combined. The short-term is achieved by taking advantage of
the current moving state of the vehicle and the constant yaw rate and acceleration motion model [18].
The velocity can be obtained as follows:[

vx

vy

]
=

[
(a0 ∗ t + v0) ∗ cos(w0 ∗ t + θ0)

(a0 ∗ t + v0) ∗ sin(w0 ∗ t + θ0)

]
(23)

where a0 and v0 are initial acceleration and velocity of the detected vehicle; w0 and θ0 represent the
initial yaw rate and moving direction of the detected vehicle. The trajectory TS can be obtained by
integrating the velocity:

TS =

[
x(t)
y(t)

]
=

 a0
w2

0
cos(θ(t)) + v(t)

w0
sin(θ(t)) + cx

a0
w2

0
sin(θ(t))− v(t)

w0
cos(θ(t)) + cy

 (24)

where cx and cy can be obtained by substituting the initial position into the equation.
We proposed a method that combines the short-term and long-term trajectory predictions by

generating a fit. The collected data show that the influence of the ideal trajectory F(t) increases with t,
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whereas the influence of the current moving state decreases, and the trajectory can be obtained with
Equation (25):

TAccu = F(t)TM + (I − F(t))TS (25)

Using this function, the problem becomes a curve-fitting problem, which is related by the
parameter t, a proportion of the maneuvering time ranging from zero to one. With our collected
data, the influence curve is shown as a red line in Figure 7. F(t) decreases much more slowly in the
first and third segments than in the second segment, which is in agreement with the practical situation.
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The trajectory prediction error of a typical lane change, which fluctuates with t, is shown
in Figure 8. The error in TS increases from 0 to more than 5 m, which is too large for collision
avoidance, and the error in TM first increases to more than 1 m, but then decreases. On the other hand,
the maximum error in TAccu is approximately 0.8 m, which is acceptable during the collision detection
process. The average errors of TS, TM and TAccu are 1.98 m, 0.72 m and 0.41 m, which indicate that the
accuracy of the fused trajectory is higher.
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Figure 8. Trajectory error comparison. The error of TS increases throughout the maneuver; while the
errors of TAccu and TM increase firstly and then decrease. TAccu is more in line with the real trajectory.
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2.4. Collision Avoidance

The trajectory of the autonomous vehicle is planned using a map of the local environment that
contains the road structure, static obstacles and moving obstacles. With the predicted trajectory of
detected moving vehicles and the planned trajectory of the autonomous vehicle, collision points
will be obtained if they exist. Then, the position of the collision points on the map will be marked.
Two methods can be applied by the collision avoidance system: avoiding the collision point in the time
dimension and avoiding the collision point in the space dimension. The two methods correspond to
acceleration and path re-planning. Appropriate evasive maneuvers will be taken to obtain a longer
collision distance and greater driving comfort. As shown in Figure 9a, the detected vehicle is moving
at a speed of vDV in the middle lane, and no intent to change lanes is detected. A potential collision
point, which is represented by a red point, is obtained using the longitudinal distance and velocity:

dcollision = vAV ∗
D

vAV − vDV
(26)

where D is the longitudinal distance, and dcollision defines the position of the collision point.
To guarantee timeliness, a lane change is chosen to avoid a potential collision.

For the scene in Figure 9b, the lane change intent of the detected vehicle can be estimated, and the
trajectory is predicted. A collision will occur after T:

dcollision = vAV ∗ T (27)

To guarantee the safety of the autonomous vehicle, a deceleration is performed to avoid the
collision point.Appl. Sci. 2017, 7, 457  12 of 21 
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3. Experiments and Discussion

The proposed method was tested on our autonomous vehicle “Intelligent Pioneer” [19–21], which
is equipped with various sensors, as shown in Figure 10. A Velodyne HDL-64E LIDAR (Velodyne,
San Jose, CA, USA), which models the environment by generating a point cloud, is mounted on the
top of the vehicle. An IBEO LIDAR (IBEO, Hamburg, Germany) and an SICK LIDAR (SICK, Hamburg,
Germany) are mounted in front of the vehicle, and a camera is mounted on the top. A SPAN-CPT
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and an RTK differential module are used to obtain accurate coordinates of the vehicle and its moving
state. The positioning error is less than 5 cm. A computer equipped with a Core i7-3610 CPU is used to
process the data.
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Figure 10. Intelligent Pioneer. The testing platform is equipped with a variety of sensors including a
three-dimensional LIDAR, a two-dimensional LIDAR and a camera.

A 750× 500 occupancy grid map with a resolution of 0.2 m is generated to represent the local
environment of the intelligent vehicle. The intelligent vehicle is located at (250, 500), and the direction
of the vehicle is parallel to the y-axis in the positive direction, as shown in Figure 11a. Grids in the map
are set as integer variables ranging from zero to 127 to represent different kinds of obstacles. The value
of the grid is set to eight if it is occupied by a static obstacle. Dynamic obstacles are represented by a
value of 28, and free areas are denoted with zero. A lane-level accurate map is used to recognize the
structure of the environment, including road edges, lane marks and crossings. The localization of the
intelligent vehicle on the map can be corrected by matching lane marks on the map with the lane marks
detected by the on-board camera. The accurate map is shown in Figure 11b. White lines represent lane
marks; sidewalks and stop lines red lines are the edges of the roads; and yellow lines are road barriers
that divide the road into two parts. The intelligent vehicle is represented by a red rectangle.

Appl. Sci. 2017, 7, 457  13 of 21 

The localization of the intelligent vehicle on the map can be corrected by matching lane marks on the 
map with the lane marks detected by the on-board camera. The accurate map is shown in Figure 11b. 
White lines represent lane marks; sidewalks and stop lines red lines are the edges of the roads; and 
yellow lines are road barriers that divide the road into two parts. The intelligent vehicle is represented 
by a red rectangle. 

(a) (b)

Figure 11. System introduction. (a) Local coordinate system; (b) road map. 

To evaluate the performance of the proposed method, experiments are conducted in an area 
covering straight roads and winding roads, as shown in Figure 12a. Testing roads are marked in blue 
and red, including straight roads and winding roads shown in (b) and (c). During the experiments, 
the vehicle moved autonomously along the roads and performed evasive maneuvers to avoid 
potential collisions. Vehicles that were moving in the detection area of the autonomous vehicle could 
be correctly detected. Then, their moving states, mentioned in [1], and the deviation from lane center
D  were recorded and used in the training process. The advantages of the proposed method lie in 
the accuracy of intent estimation, which increases safety and comfort during collision avoidance. 

 
(b) 

 
(a) (c)

Figure 12. Testing roads. (a) Satellite map of testing roads which are represented with red lines and 
blue lines; (b) a straight road where red lines are road curves, white lines are lane marks and blue 
points represent obstacles; (c) a winding road. 

Figure 11. System introduction. (a) Local coordinate system; (b) road map.

To evaluate the performance of the proposed method, experiments are conducted in an area
covering straight roads and winding roads, as shown in Figure 12a. Testing roads are marked in blue
and red, including straight roads and winding roads shown in (b) and (c). During the experiments,
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the vehicle moved autonomously along the roads and performed evasive maneuvers to avoid potential
collisions. Vehicles that were moving in the detection area of the autonomous vehicle could be correctly
detected. Then, their moving states, mentioned in [1], and the deviation from lane center D were
recorded and used in the training process. The advantages of the proposed method lie in the accuracy
of intent estimation, which increases safety and comfort during collision avoidance.
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Figure 12. Testing roads. (a) Satellite map of testing roads which are represented with red lines and
blue lines; (b) a straight road where red lines are road curves, white lines are lane marks and blue
points represent obstacles; (c) a winding road.

3.1. Performance of the Intent-Estimation Method

To test the performance of the intent-estimation method, a comparison was conducted between
our method and the method applied in [11] that utilized the motion characteristics of detected vehicles
and ignores the road structure. For the straight road scenes, 350 events were used in the test, including
278 normal moving events, 38 left lane changes and 34 right lane changes. For the winding road scenes,
233 normal moving events, 38 lane changes and 29 right lane changes were used.

The results of intent estimation on straight roads are shown in Table 3, and the results on winding
roads are shown in Table 4. The tables contain precision rate, recall rate and F-score, which were usually
used in information retrieval binary classification and pattern recognition. A high precision rate means
that an algorithm returns substantially more relevant results than irrelevant ones, and high recall rate
means that an algorithm returns most of the relevant results. The F-score is a combination of precision
rate and recall rate, which can be used to represent the accuracy of an algorithm. The computation of
the precision rate, recall rate and F-score is attached in Appendix B, as well as the confusion matrix of
the testing results.

On straight roads, the average F-score of the proposed method is 91.7%, and the average F-score
for the method used in [11] is 76.3%. On winding roads, our method achieves an average F-score of
90.5%, and it was 53.2% for the method used in [11]. The accuracy of our method is much higher on
both straight roads and winding roads compared with the method used in [11]. The difference between
the accuracy of our method on the two kinds of roads is 1.2%, while it is 20.1% for the method used
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in [11], which indicates that our method is more robust. The experimental results illustrated that our
method performs considerably better, especially on winding roads, than the method used in [11].

Table 3. Performance on straight roads.

Methods Intent Types True
Positive

False
Positive

False
Negative

Precision
Rate

Recall
Rate F-Score

Proposed
Method

Normal moving 270 8 8 97.1% 97.1% 97.1%
Left lane changes 34 5 4 87.2% 89.5% 88.6%
Right lane change 30 3 4 90.9% 88.2% 89.5%

Method in
[11]

Normal moving 249 19 29 92.9% 89.6% 91.2%
Left lane change 28 16 10 63.6% 73.7% 68.3%

Right lane change 25 13 9 65.8% 73.5% 69.4%

Table 4. Performance on winding roads.

Methods Intent Types True
Positive

False
Positive

False
Negative

Precision
Rate

Recall
Rate F-Score

Proposed
Method

Normal moving 221 9 12 96.1% 94.8% 95.4%
Left lane changes 33 7 5 82.5% 86.8% 84.6%
Right lane change 25 5 4 83.3% 86.2% 84.7%

Method in
[11]

Normal moving 176 36 57 83.0% 75.5% 79.1%
Left lane change 17 33 21 34% 44.7% 38.6%

Right lane change 14 24 15 36.8% 48.3% 41.8%

3.2. Performance of Collision Avoidance Method

Safety is the most important measure for autonomous vehicles and should be ensured during
the collision avoidance process. In addition, comfort is another measure that reflects the practicability
for passengers. To evaluate the performance of our collision avoidance method, a comparison was
conducted between our method and the method used in [8], which ignores the driving intent of other
vehicles. Figure 13 shows the distance between the autonomous vehicle and the detected collision
point when the collision point is detected on straight roads. It can be seen that collisions will be
detected at a longer distance with our method. Under our method, the average distance is 31.6 m,
whereas it is 23.2 m under the method used in [8]. The difference of the average collision detection
distance for the two methods is 8.4 m.Appl. Sci. 2017, 7, 457  15 of 21 
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Figure 13. Collision detection distance on straight roads. The detection distance of the intent-estimation-
and motion-model-based (IEMMB) method on a straight road is longer than the method used in [8].
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Figure 14 shows the collision detection distance on winding roads. Compared with the distance
on straight roads, it is shorter on winding roads, and the general tendency is similar. The average
distance of our method is 27.4 m, and the shortest distance is 19.2 m; in contrast, these values are
15.6 m and 8.1 m under the method used in [8]. The difference of average collision detection distance
for the two methods is 11.8 m. Potential collisions can be detected at longer distances with our method,
because the trajectories of the detected vehicles can be predicted by combining the estimated intent and
motion model. Then, evasive actions can be performed to avoid collisions with a sufficient distance.
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Figure 14. Collision detection distance on winding roads. The detection distance of the IEMMB method
on a winding road is longer than the method used in [8].

In addition to safety, comfort is another factor that must be considered when evaluating the
collision avoidance method. It can be inferred from [22] that the yaw rate and acceleration play import
roles in driving comfort. With increasing yaw rate and acceleration, comfort decreases. Figure 15
shows the peaks of the yaw rate during collision avoidance maneuvers when applying the IEMMB
collision avoidance method and the method used in [8]. It can be seen that the yaw rate of the IEMMB
method is mainly concentrated in the range of −10 to 10, whereas a considerable portion of the yaw
rate of the other method exceeds the range of −10 to 10. A smaller yaw rate indicates that our method
improves the comfort of autonomous driving.Appl. Sci. 2017, 7, 457  16 of 21 
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3.3. Typical Collision Avoidance Scenes 

A typical collision avoidance scene on a straight road is shown in Figure 17. The first row shows 
the real scene, and the second row shows the path planning result of the autonomous vehicle during 
the collision avoidance. As shown in Figure 17a, the autonomous vehicle is keeping its lane, and three 
vehicles are detected. The left top vehicle is performing a left lane change, and two vehicles are 
moving along their lanes. In Figure 17b, a new vehicle is detected, which is taking a right lane change. 
The trajectory of the white car is predicted with the intent-estimation- and motion-model-based 
method, and a potential collision between the vehicle and the autonomous vehicle is detected, which 
is marked with a red circle. Then, a deceleration is executed, and a right lane change path is generated 
to avoid the collision.  

Figure 15. Maximum yaw rate during collision avoidance.

Figure 16 shows the maximum accelerations during collision avoidance under our method and
under the method presented in [8]. It can be seen that the maximum acceleration of our method is
mainly distributed in the range of −2 to 2 m/s2, whereas the maximum acceleration of the method
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used in [8] often exceeds this range. This indicates that the evasive actions in [8] are fiercer and that
our method results in more comfortable collision avoidance actions.
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3.3. Typical Collision Avoidance Scenes

A typical collision avoidance scene on a straight road is shown in Figure 17. The first row shows
the real scene, and the second row shows the path planning result of the autonomous vehicle during
the collision avoidance. As shown in Figure 17a, the autonomous vehicle is keeping its lane, and
three vehicles are detected. The left top vehicle is performing a left lane change, and two vehicles are
moving along their lanes. In Figure 17b, a new vehicle is detected, which is taking a right lane change.
The trajectory of the white car is predicted with the intent-estimation- and motion-model-based
method, and a potential collision between the vehicle and the autonomous vehicle is detected, which
is marked with a red circle. Then, a deceleration is executed, and a right lane change path is generated
to avoid the collision.Appl. Sci. 2017, 7, 457  17 of 21 
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In the first picture, the driving intent of the vehicle, i.e., a right lane change, is inferred, and a collision 
point is obtained. Then, a deceleration is performed by the autonomous vehicle to avoid a potential 
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detected obstacle which is unique. 

Figure 17. Collision avoidance on a straight road. (a) Keep lane without collision point detected;
(b) collision point is detected and represented with a red point; (c) a lane change path is generated to
avoid the potential collision. Trajectories of detected vehicles are represented by yellow lines and the
planned path of the autonomous vehicle is represented by a green line. The red numbers represent the
sequence number of the processed data from sensors and the internal between two frames is 40 ms.
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Figure 18 shows typical collision avoidance scenes when the autonomous vehicle is moving on a
winding road. The detected vehicle is marked with a red rectangle, and its sequence number is 123.
In the first picture, the driving intent of the vehicle, i.e., a right lane change, is inferred, and a collision
point is obtained. Then, a deceleration is performed by the autonomous vehicle to avoid a potential
collision. The distance between the autonomous vehicle and the front vehicle decreased first from
23 m to 16 m and then remained greater than 16 m in the following scenes. The maximum acceleration
is 2.5 m/s2.
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Figure 18. Collision avoidance on a winding road. (a) A collision point is detected; (b) decelerate to
avoid the collision; (c) avoid potential collision successfully. The red number represents the ID of the
detected obstacle which is unique.

Figure 19 shows a typical collision avoidance process when applying the collision method used
in [8], which ignores the driving intent of the detected vehicle. The detected vehicle is marked
with red points, which are circled by a yellow rectangle. The velocity and moving direction of the
detected vehicle, as well as the planned path of the autonomous vehicle are marked in red. The green
box represents the dynamic obstacle detection range of the three-dimensional LIDAR, and the area
between the two green lines illustrates the detection area of the IBEO LIDAR. A collision point was not
detected until the detected vehicle entered the target lane as shown in Figure 18b. A lane change is
simultaneously performed by the autonomous vehicle to avoid the potential collision. The collision
point was detected too late, which resulted in a distance of 7.9 m between the autonomous vehicle and
the detected vehicle.
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Figure 19. Collision avoidance without intent estimation. (a) No collision is detected; (b) changing lane
to avoid a collision which is represented with a red point; (c) avoiding a potential collision successfully.
The green box represents the dynamic obstacle detection range of the three-dimensional LIDAR, and
the area between the two green lines illustrates the detection area of the IBEO LIDAR. The planned
trajectory of the autonomous vehicle is represented with a red line. The velocity and moving direction
of detected obstacles are written in red besides the detected obstacles.

4. Conclusions

To decrease the false detection rate of collisions with vehicles on winding roads and the missed
detection rate of collisions with maneuvering vehicles, this article introduced an intent-estimation-
and motion-model-based collision avoidance method for autonomous vehicles in urban environments.
The maneuvering intent of detected vehicles is estimated by combining the vehicles’ moving state
and the road structure. A GMM is used to train the intent predictor and then used to predict the
intent of detected vehicles. With the driving intent, an ideal long-term trajectory can be obtained
by making a balance between timeliness and comfort. The short-term trajectory can be obtained by
utilizing a constant yaw rate and acceleration motion model. Then, the long-term trajectory and the
short-term trajectory are combined by generating a linear fit to predict an accurate trajectory. Finally,
potential collisions are detected and can be avoided in the space dimension or in the time dimension by
taking evasive actions in advance. The experimental results demonstrated that the GMM-based intent
estimation method achieves a high accuracy, 91.7% on a straight road and 90.5% on a winding roads,
and the intent-estimation- and motion-model-based collision avoidance method improves the safety
and comfort of the intelligent vehicle on both straight roads and winding roads. The detection distance
of potential collisions, which is crucial in collision avoidance, is increased by more than 8 m. The yaw
rate and acceleration during collision avoidance are decreased compared with the traditional method.
Our future work will focus on expanding the scope of application of intent estimation, for instance
including the moving intent of pedestrians and bicycles. Besides, a further research on the road model
will be conducted to increase the accuracy of intent estimation.
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Appendix A

Computation of road direction θlane and road curvature σ:

µ = arctan(y′) = arctan(2k2x + k1x) (A1)

γlane =
y′′

(1 + (y′)2)
3
2
=

2k2

(4k2
2x2 + 4k2k1x + k2

1 + 1)
3
2

(A2)

where y is the quadratic curve used to model the lane.
Z-score standardization:
The standard score of a raw score x is:

z =
x− µ

σ
(A3)

where µ is the mean of the population and σ is the standard deviation of the population.

Appendix B

1. Computation of precision rate, recall rate and F-score:

precision =
TruePositive

TruePositive + FalsePositive
(A4)

recall =
TruePositive

TruePositive + FalseNegative
(A5)

F =
2 ∗ precision ∗ recall

precision + recall
(A6)

2. Confusion matrix on straight roads

Our Method
Ground Truth

Predicted Results
Normal moving Left lane change Right lane change

Normal Moving 270 4 4

Left lane change 4 34 0

Right lane change 4 0 30

Method in [11]

Ground Truth

Predicted Results
Normal moving Left lane change Right lane change

Normal Moving 249 16 13

Left lane change 10 28 0

Right lane change 9 0 25

3. Confusion matrix on winding roads
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Our Method

Ground Truth

Predicted Results
Normal moving Left lane change Right lane change

Normal Moving 221 7 5

Left lane change 5 33 0

Right lane change 4 0 25

Method in [11]

Ground Truth

Predicted Results
Normal moving Left lane change Right lane change

Normal Moving 176 33 24

Left lane change 21 17 0

Right lane change 15 0 14
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