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Abstract: Polarization sensitive optical coherence tomography (PS-OCT) is an imaging technique
based on light scattering. PS-OCT performs rapid two- and three-dimensional imaging of transparent
and translucent samples with micrometer scale resolution. PS-OCT provides image contrast based on
the polarization state of backscattered light and has been applied in many biomedical fields as well as
in non-medical fields. Thereby, the polarimetric approach enabled imaging with enhanced contrast
compared to standard OCT and the quantitative assessment of sample polarization properties. In this
article, the basic methodological principles, the state of the art of PS-OCT technologies, and important
applications of the technique are reviewed in a concise yet comprehensive way.
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1. Introduction

Optical coherence tomography (OCT) is an imaging modality providing 2D and 3D images
with micrometer scale resolution [1–3]. Often considered an optical analog of ultrasound imaging,
OCT detects light backscattered from sample structures. However, since the speed of light is much
greater than that of sound, subtle differences in time delays corresponding to optical path lengths from
different scatter locations within the sample cannot easily be measured in a direct way. For instance, the
time delay corresponding to an optical path length of 10 µm is only on the order of ~30 fs. In order to
assess such short delay times, OCT employs the interference of low coherent light [4,5]. Low-coherent
light sources span a broad wavelength range, usually covering several tens of nanometers when used
for OCT. Before the light interacts with the sample, it is split into two. One portion is directed onto the
sample, while the other portion—the so-called reference beam—travels a defined path length before
being recombined and interfered with the light beam scattered by the sample. Now, since low-coherent
light consists of a continuum of wavelengths, the interference spectrum will be subject to modulations
which depend on the path length difference between the sample beam and the reference beam. From
the interference signal in the time or spectral domain, the axial position of scattering structures within
the sample can be reconstructed [4,5]. The respective depth profile (backscatter intensity vs. depth) is
called an axial scan (A-scan) and forms the basic unit of OCT images. By scanning the beam laterally
across the sample, two- and three-dimensional images can be assembled from the acquired A-scans.
OCT is a rapid imaging method providing 3D data comprising up to several millions of axial scans
within few seconds [6]. The axial resolution of OCT is usually in the order of a few micrometers
and, despite the high imaging speeds, the interferometric approach enables detection sensitivities of
reflected light signals as low as 10−10 of the input.
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During the past 25 years since its invention, OCT experienced a multitude of technological
advances leading to higher imaging speeds, improved resolution, and novel contrast mechanisms. One
so-called functional extension of OCT is polarization sensitive (PS) OCT. PS-OCT adds polarization
contrast to the technique. While the standard OCT is based solely on the intensity of light backscattered
or reflected by the sample, PS-OCT also detects its polarization state. Since the polarization state can
be measured for every pixel in a depth scan, PS-OCT can enhance the image contrast and also enables
quantitative measurements of a sample’s polarization properties. These properties are often linked to
the micro- or even ultrastructure of the sample which themselves are below the optical resolution limit
of OCT [7]. Hence, the detection of changes of polarization properties—be they due to disordered
microstructure in pathological tissue or due to stress and strain in a technical sample—may provide
access to quantities and markers that are of interest for a broad variety of applications.

PS-OCT has been applied in many biomedical as well as non-medical fields. Figure 1 shows
results of a search for scientific publications on PS-OCT using the free literature search engine PubMed
(https://www.ncbi.nlm.nih.gov/pubmed/). In Figure 1a, the number of publications per year was
plotted beginning with the first article on PS-OCT published in 1997 [8]. A rising trend of published
documents per year can be observed, peaking with more than 30 publications per year for the last
three years. The set of 360 publications was classified into seven medical fields and one non-medical
field. The latter included articles primarily focusing on technological aspects or on measurements of
technical (i.e., non-biological) samples. Figure 1b shows a pie chart with the break-up into the eight
fields. The most prominent field was ophthalmology including roughly a third of all publications,
followed by the ‘technical’ publications, reports on dental applications, PS-OCT in bones, cartilage,
muscles and tendons, and skin imaging. Further fields of application were imaging of cardiac and
vascular tissue, of cancerous tissue, and of neural tissue. The evolution of the eight groups over the
past 20 years is shown in Figure 1c. Here, an increasing number of research papers on PS-OCT in
the eye during the last decade can be observed. The relative share of publications grouped in the
respective fields is shown in Figure 1d.
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PubMed (https://www.ncbi.nlm.nih.gov/pubmed/, accessed on 5 January 2017). (a) Number of 
documents published per year since 1997; (b) Break-up of the publications into seven medical and 
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(c) Absolute numbers of publications per year are shown for the eight fields of application; (d) Time 
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This review paper strives to provide an overview of the state of the art in PS-OCT. While other
review papers provided a more in-depth discussion of the physical principles of the technique [9,10],
this article is particularly focusing on applications of PS-OCT. In the following, we will first introduce
basic concepts for describing polarization of light as well as commonly used technical approaches
for realizing PS-OCT. Then, using the eight categories mentioned above, we will discuss important
applications of PS-OCT in the biomedical field and for non-biomedical use.

2. Principles of Light Polarization and PS-OCT

2.1. Polarization of Light

Polarization of light describes the geometrical orientation of the oscillations of electromagnetic
waves. When considering a light beam as a transverse wave propagating in z-direction, its electric field
vector and magnetic field will not only be perpendicular to each other but also be perpendicular to z.
At any spatial coordinate and time point, such a wave can be characterized by the complex-valued field
components ex,y describing the oscillations in x- and y-direction, respectively. For a monochromatic
plane wave travelling in z-direction, these two complex-valued components form the so-called Jones
vector [11]. Depending on the amplitudes of ex and ey and on their respective phase delay δ, different
states of polarization will be observed, as illustrated in Figure 2a. A Jones vector having a relative
delay of 0◦ or 180◦ (i.e., half a wave) describes a linear polarization state. In case this linear state
oscillates only in x-direction or only in y-direction, it is termed a horizontal or vertical linear state,
respectively. When the x- and y-amplitudes are equal, the state is linear with an orientation of +45◦ for
δ = 0◦ and linear with an orientation of −45◦ for δ = 180◦. If the amplitudes in x- and y-direction are
equal but δ is a quarter of a wave (i.e., δ = ±90◦), the Jones vector will describe a right- or left-hand
circular polarization state. In the general case of arbitrary δ and amplitudes, the wave will be in an
elliptical polarization state.

As an alternative to describing polarization states by Jones vectors, a three-dimensional space
spanned by horizontal/vertical linear state, +45◦/−45◦ linear state, and right-/left-hand circular state
can be used (Figure 2b). Four-component, real-valued vectors [I Q U V]T, so-called Stokes vectors,
describe polarization states in this space [12]. Here, I corresponds to the intensity of light, and Q, U,
and V are the components along the three above-mentioned axes. Unlike Jones vectors, Stokes vectors
enable the characterization of light depolarization. In case of fully polarized light, I corresponds to
the length of the vector [Q U V], i.e., I =

√
Q2 + U2 + V2. Then, the light’s degree of polarization

DOP =
√

Q2 + U2 + V2/I equals unity. In case of depolarization, DOP is less than unity, and equals
zero for completely depolarized light. The unit sphere in Figure 2b is called a Poincaré sphere.

In order to describe the interaction of light with an optical element (or a sample investigated
by a PS-OCT system), an operator acts on the polarization vector of the interrogating light beam.
In Jones calculus, this operator is a complex-valued 2 × 2 matrix called Jones matrix (J) [11]. The
evanescent light beam is represented by eout = J ein, where ein is the input Jones vector (Figure 2c). If
the light beam traverses several optical elements (or sample structures), the resulting Jones vector can
be calculated by multiplying a cascade of Jones matrices to the input vector, JN JN−1 · · · J2 J1ein where
J1 through JN represent the polarization properties of N elements (or sample layers). Analogously,
real-valued 4 × 4 matrices—so-called Müller matrices (M)—are used to describe the interaction of
Stokes vectors with optical elements by the Stokes–Müller formalism: Sout = MSin (see Figure 2d) [12].

Different approaches of PS-OCT enable the pixelwise measurement of Jones vectors, Jones
matrices, Stokes vectors, or Müller matrices. Since the display and interpretation of these
multidimensional quantities is often not straight-forward (or even impossible), PS-OCT imagery
usually displays physical polarization measures directly related to relevant sample properties.
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Stokes vectors. Stokes vectors (red) describe any elliptical polarization state and their length scales 
with intensity of polarized light. The unit sphere is called a Poincaré sphere; (c) The interaction of  
a Jones vector with a sample can be described by multiplication with a Jones matrix describing the 
tissue properties; (d) Likewise, the interaction of a Stokes vector with a sample can be calculated by 
multiplying with a so-called Müller matrix describing the sample polarization properties. 
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Figure 2. Polarization of light. (a) Jones vectors. Depending on the amplitudes Ax,y and the relative
phase retardation δ of the transverse light wave components oscillating in x and z direction, different
polarization states such as linear for δ = 0◦ and δ = 180◦, circular for δ = ±45◦ and equal amplitudes
Ax = Ay, or elliptical for all other combinations can be described. The vector e = [Ax, Ay exp(iδ)]T is
called Jones vector; (b) Stokes–Müller representation of polarization states. Vectors in the 3D space
spanned by horizontal/vertical linear state, +45◦/−45◦ linear state, and right-/left-hand circular state
are called Stokes vectors. Stokes vectors (red) describe any elliptical polarization state and their length
scales with intensity of polarized light. The unit sphere is called a Poincaré sphere; (c) The interaction
of a Jones vector with a sample can be described by multiplication with a Jones matrix describing the
tissue properties; (d) Likewise, the interaction of a Stokes vector with a sample can be calculated by
multiplying with a so-called Müller matrix describing the sample polarization properties.

2.2. Polarization Effects

The polarization state of a light beam can be affected by interaction with optical components or
sample structures [7]. In the following, four polarization effects will be described which are relevant
for PS-OCT imaging.

• Preserved polarization. Many optical components and materials do not (or only negligibly)
change the polarization state of light traversing them, i.e., J = 1 and M = 1. Their interaction can
be described by eout = Jein = ein and Sout = MSin = Sin.

• Birefringence. In birefringent media, differently oriented polarization states experience different
speeds of light. When these basis polarizations are orthogonal linear polarizations (as in Figure 2a
along the x- and y-axes), the effect is referred to as linear birefringence. Birefringence may also
be circular or elliptical for respective different bases (eigenvectors); in this review, however, we
restrict our discussion to linear birefringence. Linear birefringence occurs for instance in retarders
such as wave plates, in crystals, and in many tissues with an oriented (e.g., fibrous) microstructure.
Birefringence—i.e., the difference ∆n of the refractive indices along the two axes–produces a phase
retardation δ, which is proportional to the length L of the retarder, δ = ∆n·L. The retardation δ of a
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quarter wave plate (QWP) for example amounts to 90◦ (π/2 rad). If aligned with its slow and fast
axes at 45◦ with respect to the x- and y-axes, the QWP would render a horizontal or vertical linear
state into a circular polarization state (Figure 2a, center). The Jones matrix of a retarder with a
retardation δ and aligned with an orientation ϑ = 0 is represented by

Jret(δ, ϑ = 0) =

[
eiδ/2 0

0 e−iδ/2

]
(1)

If an optical element such as a retarder is rotated by an angle ϑ, its Jones matrix J = J(ϑ = 0) is
transformed into T(ϑ) J T(−ϑ) where T(ϑ) is a rotation matrix. In Stokes-Müller formalism, the
propagation of light through birefringent tissue is represented by a circular rotation of the Stokes
vector tip on the Poincaré sphere. PS-OCT approaches based on Jones calculus or Stokes-Müller
formalism enable depth-resolved measurements of phase retardation and of birefringent axis
orientation [8,13–16].

• Diattenuation. Diattenuation (or dichroism) refers to a polarization dependent attenuation in an
optical medium. When the axes of a diattenuating optical element or structure are aligned with
the x- and y-direction, its Jones matrix is represented by

Jdiatt(p1, p2, ϑ = 0) =

[
p1 0
0 p2

]
(2)

where p1 and p2 correspond to the respective signal attenuation p1,2 = exp
(
−µa1,2

L
)

with
attenuation coefficients µa and the length L. Similar to the linear birefringence, the Jones matrix for
a diattenuating element oriented at ϑ can be computed by sandwiching Equation (2) by rotation
matrices. An extreme case of a diattenuating element with p1 = 1 and p2 = 0 is a linear polarizer
which only transmits light along axis 1. It should be noted that diattenuation in biological tissue
is usually very weak and thus is often assumed negligible for PS-OCT [16,17], although attempts
have been made to quantify diattenuation using PS-OCT [15,17,18].

• Depolarization. Depolarization or polarization scrambling refers to a more or less random change
of the incident polarization state at spatially adjacent sample locations. Using Stokes–Müller
polarimetry, depolarization can be described by the DOP discussed in Section 2.1. However, owing
to the coherent detection in OCT, DOP will always equal unity in any pixel of a PS-OCT dataset [9].
Therefore, in order to analyze polarization scrambling using PS-OCT, the randomization of
polarization states among neighboring speckles is investigated [19,20]. The Stokes vectors of
adjacent speckles will be more or less parallel in polarization preserving or weakly birefringent
media, while they will point in different directions in depolarizing media (Figure 3a). For the
purpose of depolarization assessment, the average Stokes vector can be calculated within a
small kernel including several speckles (Figure 3b). Typical kernel sizes for this calculation are
on the order of ~100 pixels spanning 2–3 times the axial resolution in depth and 2–3 times the
transverse resolution laterally [20]. Note also that pixels with low reflectivity (i.e., less than several
decibels above the noise floor) are usually excluded from the analysis. The length of the average
normalized Stokes vector is referred to as the degree of polarization uniformity (DOPU) [20]:

DOPU =

√
Q2

+ U2
+ V2/I (3)

where the overbar indicates the ensemble average and I denotes the average Stokes vector length
for normalization. As shown in Figure 3b, DOPU or the average Stokes vector length will be
close to unity in polarization preserving tissue, while it will be lower in the case of polarization
scrambling where the orientation of the Stokes vectors is more diverse. In DOPU images, DOPU
values at every spatial coordinate are color-coded. Recently, advanced depolarization measures
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have been developed including DOPU with noise floor normalization [21], spectral DOPU [22],
the depolarization index independent of the incident polarization state [23], and the differential
depolarization index providing a larger dynamic range for depolarization mapping [24]. Different
mechanisms can cause polarization scrambling, and the actual cause of depolarization observed in
DOPU images has not always been completely clarified. In biological tissues, depolarization can
be caused by multiple scattering or by scattering at non-spherical particles such as melanin
granules [25]. Since the strength of depolarization is proportional to the concentration of
polarization scrambling scatterers, depolarization measures such as DOPU may for instance
enable a quantitative assessment of the melanin concentration in ocular tissues [26].
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In general, polarization effects may be subject to dispersion, that is, their strength depends on 
wavelength. Since OCT is based on broadband light covering a wide range of wavelengths, efforts 
have been made to mitigate effects such as polarization mode dispersion in PS-OCT systems based 
on optical fibers [18,27–30]. 
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OCT is based on low coherence interferometry, i.e., the interference of broad band light [1,4].  
A multitude of different interferometer designs have been used for OCT. A sketch of a basic 
Michelson interferometer is shown in Figure 4a. Here, light from a low coherent light source such as 
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Figure 3. Depolarization measurement by PS-OCT. (a) Stokes vectors are plotted in Poincaré spheres
for polarization preserving tissue (left, pink window) and for depolarizing tissue (right, blue window).
Different Stokes vectors (red) correspond to the polarization states in adjacent image locations. In
order to assess polarization scrambling within the evaluation kernels represented by the pink and blue
rectangles overlaid on the OCT reflectivity image (center) of a rodent retina, the length of the average
Stokes vectors is computed; (b) The length of the average Stokes vector (shown in blue in the Poincaré
spheres) is decreased in case of depolarization. The DOPU image (center) assigns a color to the DOPU
value of each pixel. The color map plots values from DOPU = 0 (blue, completely depolarized) to
DOPU = 1 (red, uniform polarization). Pixels with low reflectivity (typically up to several decibels
above the noise level) are masked in black. Note that the resolution in the DOPU image is slightly
reduced by convolution with the evaluation kernel. In the DOPU image, most retinal structures appear
to be polarization preserving, while pigmented structures such as the retinal pigment epithelium and
the choroid scramble the polarization.

In general, polarization effects may be subject to dispersion, that is, their strength depends on
wavelength. Since OCT is based on broadband light covering a wide range of wavelengths, efforts
have been made to mitigate effects such as polarization mode dispersion in PS-OCT systems based on
optical fibers [18,27–30].
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2.3. Brief Basics of OCT

OCT is based on low coherence interferometry, i.e., the interference of broad band light [1,4].
A multitude of different interferometer designs have been used for OCT. A sketch of a basic Michelson
interferometer is shown in Figure 4a. Here, light from a low coherent light source such as a
superluminescent diode or a broadband laser is split into one beam that is directed on the sample and
another beam that serves as a reference. After the beam splitter, the beam in the sample arm is directed
onto the sample, whereas the reference beam is reflected by a mirror. Light backscattered and reflected
by the sample eS and light reflected by the reference mirror eR is recombined at the beam splitter.
The sample and reference beam interfere and their interference signal is detected at the interferometer
exit. The interference signal in the time domain can be described by

I(z) = IR + IS + 2
√

IR IS|γ(z− z0)| cos[2k0(z− z0)]. (4)
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Figure 4. Basic schemes for PS-OCT. (a) Basic scheme of OCT with a Michelson interferometer.
(b) PS-OCT with a single circular input state; (c) PS-OCT based on probing with several input
states; (d) PS-OCT based on a Mach–Zehnder interferometer with two input states generated by
a polarization delay unit. See text for descriptions of different approaches. The grey arrows indicate
the directions of light beams. Black pictograms indicate linear, circular, and elliptical polarization
states. LS—light source, POL—polarizer, QWP—quarter wave plate, RM—reference mirror, L—lens,
SAM—sample, PBS—polarizing beam splitter, DU—detection unit, POM—polarization modulator,
PS1/PS2—polarization state 1/2, BS—beam splitter, ∆z—path delay between polarization states,
PDU—polarization delay unit.

Here, IR ∼ |eR|2 is proportional to the intensity of the reference beam and IS ∼ |eS|2 is
proportional to the intensity of light backscattered or reflected by the sample. The third term contains
the interference information. Its first component

√
IR IS indicates that the strength of the interference

signal will scale with both the sample and the reference amplitude. The high sensitivity of OCT is
based on the fact that even weak light scatter signals IS from the sample can be amplified by a strong
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reference signal IR. The second component |γ(z− z0)| contains the complex degree of coherence γ(z)
which is inversely related to the spectral bandwidth of the light source (via the Fourier transform of the
spectral density). For broad bandwidth sources common in OCT, |γ(z)| will only be greater than zero
for a shallow depth around every scattering sample interface along the propagation direction z. Hence,
the high resolution of OCT is contained in this term. The third component cos[2k0(z− z0)] describes a
sinusoidal modulation of the interference signal along z. Here k0 = 2π/λ0 is the central wavenumber
of the spectrum. In order to acquire depth scans in time domain OCT, the signal intensity I(z) is
recorded at the interferometer exit while the reference mirror is axially translated in beam direction z.

Most modern OCT systems rely on frequency (or Fourier) domain detection of the interference
signal [5,31]. In such Fourier domain OCT systems, the reference mirror position is fixed and the
interference spectrum is acquired. This can be achieved by using a spectrometer at the interferometer
exit which disperses the interference signal into its spectral intensity components. Alternatively, a
broadband wavelength-swept light source can be used to rapidly tune the spectrum with a narrow
instantaneous bandwidth. In this case, the interference spectrum is recorded as a function of time by a
detector at the interferometer exit. For each interface, the acquired spectral interference signal

S(k, ∆z) = SR(k) + SS(k) + 2
√

SR(k)SS(k) cos[2∆z k]. (5)

contains three terms, similar to Equation (4). The first two terms contain the spectral densities returning
from the reference arm (R) and the sample arm (S). Via

√
SR(k)SS(k), the last term again is proportional

to the spectral densities of the reference beam and the sample beam. Note that the last term is subject to
a modulation cos[2∆z k] across wavenumber k, whose modulation frequency is proportional to the path
length difference between the light path to sample interface and the light path to the reference mirror,
∆z = zS − zR. The factor 2 accounts for the double pass through the interferometer arms. Since every
path length difference ∆z is encoded by a different spectral modulation frequency, the interference
signals from multiple depth locations can be recorded simultaneously. A frequency analysis using the
Fourier transform then provides the axial depth scan similar to Equation (4).

2.4. Technical Approaches to PS-OCT

During the past 25 years, a great variety of PS-OCT layouts has been devised. PS-OCT schemes
differ in terms of optical technology (fiber optics vs. bulk optics), number of input states, number of
detected variables, and reconstruction algorithm. The use of free-space beams in bulk optics permits
defined polarization states at any location within the interferometer. Fiber optics provide easier
system alignment, but the polarization of light will in general be influenced by birefringence and
polarization mode dispersion in optical fibers. PS-OCT has been performed with as little as one input
state and one detected intensity signal. Such settings correspond to regular OCT, however with altered
reference polarization for cross-polarization imaging [32,33] or for imaging with variable reference
polarization [34]. In contrast, the most comprehensive PS-OCT approaches detected up to 16 elements
of the sample’s Müller matrix—in every single image pixel [35–38]. In the following, we are going
to describe two major categories of PS-OCT schemes: PS-OCT with a single circular input stage and
PS-OCT based on sample illumination by multiple polarization states.

2.4.1. PS-OCT with a Single Circular Input State

PS-OCT with a single circular input state relies on a polarization sensitive low coherence
interferometer design devised by Hee et al. in 1992 [13]. The basic scheme using a Michelson
interferometer is shown in Figure 4b. Light from a low coherent light source is linearly polarized
before being split up into a reference arm (top) and a sample arm (right). In the sample arm, the beam
passes a QWP oriented at 45◦ which renders the original linear polarization into a circular polarization
state and then illuminates the sample. Sample illumination by circular light offers sensitivity to
any transverse orientation of birefringent media. If linearly polarized light were used for sample
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illumination, the sample’s fast or slow birefringent axis could align with the interrogating linear
polarization such that no birefringence would be observed. In the case of circular sample illumination
shown in Figure 4b, a birefringent sample will in general produce an elliptical state. The reflected or
backscattered light will transmit the QWP again and interfere with the reference beam at the beam
splitter. Due to double passing a QWP oriented at 22.5◦ in the reference arm, the reference beam is
a linearly polarized light beam oscillating at 45◦ which provides equal intensity components in the
horizontal and vertical orientation, respectively. At the interferometer exit, the OCT light beam is split
up into its horizontal (H) and vertical (V) component, which are detected by separate detection units.
By the respective amplitudes AH,V and the relative phase difference ∆Φ, Jones vectors are detected for
every image pixel. These Jones vectors enable the calculation of the sample’s birefringent properties,
namely of phase retardation δ [13,39] and fast birefringent axis orientation ϑ [14] as well as sample
reflectivity R:

R ∝ A2
H + A2

V (6)

δ = arctan
(

AV
AH

)
(7)

ϑ =
π− ∆Φ

2
(8)

Since δ = ∆n·L accumulates as a function of the light path L travelled in a birefringent material,
phase retardation measurements are cumulative. However, the measurement of δ is restricted to 0–90◦

due to the arctangent, which leads to cumulative retardation images with a banded structure caused
by increasing and artificially decreasing δ in strongly birefringent samples (cf. Figures 9 and 10). From
the detected amplitudes AH,V and the relative phase difference ∆Φ, the Stokes vector elements can
also be calculated for every image pixel [19]. These may then serve as the input for depolarization
images, for instance based on DOPU [20].

The beauty of the above scheme lies in its simplicity. Most implementations were done using
free-space optics [14,40–44], however fiber optic prototypes have also been reported based on
polarization maintaining (PM) fiber optics [45–52] and regular single mode fibers [53–55].

2.4.2. PS-OCT Based on Multiple Input States

PS-OCT systems using multiple polarization states as an input may provide access to additional
polarization quantities. The scheme described in Section 2.4.1 is based on a single circular input state
and relies on the assumptions that the sample is not diattenuating (which is a valid assumption for most
biological tissues [17,56]) and that the axis orientation of the birefringent structure does not change
along depth [43,44]. A method to overcome the latter limitation for retinal PS-OCT has been developed
to remove the impact of corneal birefringence on birefringence measurements in the back of the eye [57].
Nevertheless, for applications such as PS-OCT in samples with strongly varying birefringent fiber
orientations or for many approaches based on single-mode fiber optics, implementations based
on multiple polarization states can provide access to Stokes vector quantification, Jones matrix
characterization, and Müller matrix measurements [15–17,35–38,58–63].

In order to provide measurements of several polarization states, different approaches have been
proposed, only a few of which are described here. By adding a polarization modulator (e.g., an
electrooptic modulator) in the source arm, different input states can be produced in a sequential
manner. In a commonly used scheme depicted in Figure 4c, a consecutive pair of polarization states
corresponding to Stokes vectors perpendicular in a Poincaré sphere representation is generated at the
input of the interferometer. From the polarization states detected at the output of the interferometer,
depth-resolved Stokes vectors can be computed [64,65]. The retardation induced by birefringent
tissue is related to the angle of rotation of Stokes vectors on the Poincaré sphere. By computing this
angle between the Stokes vectors at the sample surface and those within the tissue, cumulative phase
retardation can be computed at any sample position [66,67]. Furthermore, the direction of the optic
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axis can be determined from rotations of the pair of perpendicular Stokes vectors on the Poincaré
sphere [68]. In such dual-input PS-OCT systems, polarization parameters such as retardation, axis
orientation, and diattenuation can also be assessed using the Jones formalism. In this approach, the
measured polarization states in the sample originating from the pair of input polarization states are
used to reconstruct the Jones matrix in every image pixel. An eigenvalue analysis of these measured
Jones matrices enables the calculation of phase retardation and diattenuation [15,16]. The Jones matrix
approach to PS-OCT also enables the measurement of the optic axis orientation [15,16]. Depth-resolved
measurements of the birefringent axis orientation have recently gained interest for mapping the
orientation of birefringent fibers in PS-OCT based tractography of collagenous tissue [69,70].

Alternatively, using a Mach–Zehnder type interferometer, only the polarization state in the sample
arm can be varied [71,72] from one scan to the next. By multiplexing two different states using a
passive polarization delay unit as shown in Figure 4d, the four elements of a Jones matrix can be
measured simultaneously [18,73,74]. In that case, the sample beam is split into two orthogonal input
Jones vectors which travel different path lengths in the sample arm and therefore generate signals at
different depths in the OCT image. These two input vectors provide an orthogonal system and their
response—i.e., the two Jones vectors measured via multiplexing—readily provides a Jones matrix [15].
Jones matrix OCT relates the Jones matrix Jmeas measured at each sample position to a reference matrix
(e.g., Jsur f ace at the surface of the sample), thereby yielding a unitary transformation of the sample
matrix Jsample [15,16,75]

J̃sample = Jmeas J−1
sur f ace. (9)

Here the tilde denotes the unitary transformation. From J̃sample, the polarization properties
can be computed. As such, Jones matrix PS-OCT can not only measure phase retardation but
also diattenuation [15], local birefringence [16], and local optic axis orientation [76]. Compared to
cumulative retardation measurements, local measurements of birefringent properties provide a more
intuitive approach to tissue architecture and composition. For instance, in collagenous tissue such as
skin, local birefringence can be used for the depth-resolved assessment of the collagen content [77,78].
Different applications of birefringence imaging of collagen in healthy and diseased tissues will be
discussed in Section 3.

2.5. Recent Advances in PS-OCT Technology

The development of PS-OCT has greatly advanced since Hee and coworkers first presented
birefringence-sensitive ranging [13]. Not only have PS-OCT devices become faster and the detection
schemes become more sophisticated, as briefly described in the previous section, but also the analysis
of PS-OCT images has improved a lot.

The first PS-OCT prototypes provided axial scan rates on the order of several hertz [8,13,14].
Later rapid reference scanning schemes [79,80] and advanced beam scanning approaches such as
transverse-scanning PS-OCT [40] sped up the technique to several frames (B-scans) per second. The
advent of Fourier domain OCT (or: frequency domain OCT), which computes A-scan signals by a
Fourier transform of the interference spectrum, provided a huge increase in detection sensitivity and
the possibility to scan even faster since no more mechanical reference mirror movement was required
to perform depth scanning [5,81–83]. First high-speed PS-OCT systems with spectrometer-based
detection provided scan rates of several tens of A-scans per second [41,68]. These spectral domain
(SD) PS-OCT prototypes employed two spectrometer cameras, one for each orthogonal polarization
channel. In order to reduce system complexity, cost, and alignment efforts, SD PS-OCT approaches
based on single camera detection were developed [42,49,84–89].

Fourier domain OCT can also be performed by using a frequency-swept laser and a high-speed
detector, such that interference spectra are acquired as a function of time rather than in parallel with a
spectrometer [90–92]. This variant of OCT is usually called swept-source (SS) OCT and sometimes
also referred to as optical frequency domain imaging (OFDI) or time-encoded frequency domain OCT.
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Providing the same sensitivity and speed advantages as spectrometer-based Fourier domain OCT,
SS-OCT was soon expanded by polarization sensitivity [47,71,75,93–97]. In particular the advent of
commercial laser technology providing longer imaging ranges led to the development of PS-OCT
at ultrahigh imaging speeds of 100,000 axial scans per second [18,54,73,74,98]. Even higher imaging
speeds were achieved by experimental swept lasers operating at several hundred kilohertz [50,99–102].

While PS-OCT technology has greatly advanced, there are still some limitations to the technique.
Being an optical method, its applicability is limited to imaging of superficial locations in tissues
and other objects. Further, PS-OCT has been used for qualitative imaging mostly; the exploitation
of quantitative measurements however bears great potential for diagnostics and other applications,
as will be demonstrated in the next sections. PS-OCT was also combined with other functional
OCT extensions such as Doppler OCT or OCT angiography [30,68,80,103–105]. Such combinations
may not only improve the contrast for vascular tissue components but also provide additional,
complementary insight into disease patterns [30,103,105,106]. In order to perform PS-OCT beneath
the body surface, endoscopic and needle-based PS-OCT was developed [28,29,107–112]. To further
increase the contrast and image range, PS-OCT has been combined with other technologies such as
ultrasound and fluorescence imaging [113,114].

In parallel to the impressive evolution of PS-OCT hardware, PS-OCT image processing also
underwent massive improvements. Real-time display of PS-OCT data was enabled by parallel
computing [115]. Computational methods were devised for removing polarization artifacts in order
to produce clearer PS-OCT images [21,27–29,57,116,117]. As PS-OCT is an interferometric technique
based on coherent light, images are subject to speckling which sometimes obscures structural details.
The size of speckles can be kept small by using broadband light sources and optics providing high
transverse resolution [46,118]. In image processing, speckle noise can be reduced by image averaging
and dedicated algorithms [119,120]. PS-OCT also enables the segmentation of structures based on
common polarization properties and the determination of interfaces between different tissue segments
based on changing polarization properties. Segmentation and image feature assessment was developed
based on depolarization [20,103,121–125] and birefringence [98,116,126–129]. Practical examples of
PS-OCT applications will be shown in the following sections.

3. PS-OCT Applications

3.1. PS-OCT in the Eye

OCT is most established in ophthalmology, where it has become a standard diagnostic method in
everyday clinical routine [130]. Also PS-OCT has been successfully applied for ophthalmic imaging
using experimental prototypes [131]. The eye features a variety of tissues exhibiting birefringence or
depolarization, which enable PS-OCT to provide additional contrast for discerning, segmenting, and
quantifying ocular structures. Birefringence can be found in fibrous tissues such as the retinal nerve
fiber layer (RNFL), the sclera (i.e., the white outer shell of the eye), the cornea, as well as in extraorbital
muscles and tendons. Depolarization is pronounced in structures containing melanin pigments such
as the retinal pigment epithelium (RPE), the choroid, and the pigment epithelium of the iris. Other
structures such as the photoreceptor layer, conjunctive tissue, and the stroma of the iris are rather
polarization preserving and do not markedly influence the polarization state of light.

The RNFL consists of the axons of the retinal ganglion cells. Since the RNFL is damaged in
glaucoma—the second leading cause of blindness worldwide [132]—and since RNFL birefringence
is connected to layer integrity [133,134], the polarization properties of the RNFL were investigated
as potential diagnostic markers for glaucoma. PS-OCT based assessment of the RNFL’s birefringent
properties might be particularly interesting since it was shown that polarization changes in
experimental glaucoma can be observed earlier than RNFL thickness changes [135]. Peripapillary
RNFL thickness is currently a key OCT parameter for glaucoma diagnostics in state-of-the-art clinical
routine [136]. In the vein of earlier scanning laser polarimetry approaches [137–139], PS-OCT was
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applied to investigate the RNFL using PS-OCT. After initial experiments in the primate retina [140],
RNFL birefringence was measured in vivo in the human eye by performing circular scans around
the optic nerve head [79,141]. Faster Fourier domain PS-OCT later enabled 2D mapping of RNFL
birefringence and retardation as well as comparisons to scanning laser polarimetry [18,73,142–145].
Exemplary PS-OCT fundus images mapping reflectivity and RNFL retardation in a human eye are
shown in Figure 5. Also in preclinical research, PS-OCT was used to investigate the birefringence
properties of the RNFL and their relation to the intraocular pressure, which is an important parameter
for glaucoma, in animals [135,146–148]. Aside from measuring their birefringence, PS-OCT was also
demonstrated for tracing nerve fiber bundles in the RNFL [149].

PS-OCT images of the human retina exhibit strong depolarization in pigmented structures such
as the RPE [150,151]. In the RPE, this depolarization is most pronounced around the fovea [152] and
correlates with the pigmentation status, i.e., it is reduced or even absent in albino patients [25,153].
Comparative measurements of PS-OCT and histology in rat eyes have revealed a correlation between
DOPU and the density of melanin pigments in the RPE and choroid (Figure 5e) [26]. Depolarization
has proven a particularly useful contrast for the assessment of the RPE in clinical cases, where it is often
hard to distinguish ocular structures in pathological eyes [20,103,154,155]. Based on DOPU images,
algorithms were developed to assess areas and volumes of lesions quantitatively [121]. In age-related
macular degeneration (AMD), PS-OCT was not only used to distinguish drusen characteristics but
also to quantify the area and volume of drusen during disease progression (Figure 5f–h) [122,124,156].
In late stage non-exudative (dry) AMD, PS-OCT enables the assessment of atrophic areas lacking RPE
(Figure 5a–d) [121,157,158]. In exudative diseases such as wet AMD, central serous chorioretinopathy,
and diabetic macular edema, PS-OCT was demonstrated for imaging and identifying fibrotic scars,
hard exudates, as well as pigment epithelial features [123,159–162]. Finally, PS-OCT also proved useful
to enhance contrast for imaging pathologic structures in less common retinal diseases such as macular
telangiectasia and Stargardt disease [163,164].

PS-OCT of the anterior eye markedly improves the contrast for birefringent, collagenous tissues
such as the cornea, sclera, and tendons as well as for the trabecular meshwork [40,84,94,127]. The
additional contrast has been exploited for automated, feature-based tissue discrimination [126].
Substantial changes in the birefringent appearance of the cornea can be observed in keratoconus as
shown in Figure 6a–e, such that PS-OCT was proposed as a diagnostic method for this disease [128,165].
Since corneal birefringence depends on the microstructure, PS-OCT was also proposed for imaging
changes during corneal crosslinking therapy [166]. After trabeculectomy, which is a surgical procedure
for glaucoma treatment, the evolution of filtering blebs was monitored by PS-OCT (Figure 6f) [167–169].
In the sclera, PS-OCT was used to image necrotizing scleritis [170] and to study birefringence changes
related to increased intraocular pressure [148,171].



Appl. Sci. 2017, 7, 474 13 of 34
Appl. Sci. 2017, 7, 474  12 of 32 
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overlaid on reflectivity image; (d) Fundus map indicating thickness of depolarizing pixels at the level 
of the RPE; (e) Relation of DOPU and melanin density assessed by histology in RPE/choroid of rat 
eyes (adapted with permission from [26], ARVO, 2015). (f,g) PS-OCT based layer segmentation in an 
AMD patient with drusen (adapted with permission from [121], SPIE, 2010). (f) Reflectivity B-scan 
with segmented inner limiting membrane (blue), RPE (red), and Bruch’s membrane (green). Drusen 
can be observed as bumpy elevations of the retina at the RPE level; (g) Drusen thickness map; (h) 
Drusen characteristics assessed by PS-OCT (courtesy by Dr. F. G. Schlanitz, Medical University of 
Vienna, Austria). Depolarizing pixels are marked in red. (i,j) Birefringence in the retinal nerve fiber 
layer (RNFL) imaged by PS-OCT (adapted with permission from [18], Optical Society of America, 
2014). (i) Fundus reflectivity map; (j) Fundus map showing increased phase retardation caused by the 
RNFL around the optic nerve head and by Henle’s fibers around the fovea. 
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Figure 5. PS-OCT in the posterior eye. (a–d) PS-OCT of a patient with late-stage AMD (adapted with
permission from [120], Optical Society of America, 2014). (a) Reflectivity B-scan; (b) DOPU B-scan
(color map: 0–1); (c) Depolarization in the retinal pigment epithelium (RPE, red) and choroid (green)
overlaid on reflectivity image; (d) Fundus map indicating thickness of depolarizing pixels at the level
of the RPE; (e) Relation of DOPU and melanin density assessed by histology in RPE/choroid of rat
eyes (adapted with permission from [26], ARVO, 2015). (f,g) PS-OCT based layer segmentation in an
AMD patient with drusen (adapted with permission from [121], SPIE, 2010). (f) Reflectivity B-scan with
segmented inner limiting membrane (blue), RPE (red), and Bruch’s membrane (green). Drusen can
be observed as bumpy elevations of the retina at the RPE level; (g) Drusen thickness map; (h) Drusen
characteristics assessed by PS-OCT (courtesy by Dr. F. G. Schlanitz, Medical University of Vienna,
Austria). Depolarizing pixels are marked in red. (i,j) Birefringence in the retinal nerve fiber layer
(RNFL) imaged by PS-OCT (adapted with permission from [18], Optical Society of America, 2014).
(i) Fundus reflectivity map; (j) Fundus map showing increased phase retardation caused by the RNFL
around the optic nerve head and by Henle’s fibers around the fovea.
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Figure 6. PS-OCT of the anterior eye. (a–e) PS-OCT of the cornea of a keratoconus patient (adapted 
with permission from [165], ARVO, 2007). (a) PS-OCT en-face image showing retardation at the 
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Horizontal and vertical reflectivity B-scan images. Decreased corneal thickness can be observed in the 
center; (d,e) Corresponding retardation B-scans exhibiting irregular pattern. (f) PS-OCT of blebs in 
the anterior eye after glaucoma surgery (adapted with permission from [167], ARVO, 2014). 
Photographs (red lines indicate locations of OCT scans), phase retardation and intensity images with 
PS-OCT at one day, one week, and one month after surgery. Cases of partial increase of phase 
retardation after surgery. Arrows indicate irregular and abnormal phase retardation. 

Figure 6. PS-OCT of the anterior eye. (a–e) PS-OCT of the cornea of a keratoconus patient (adapted with
permission from [165], ARVO, 2007). (a) PS-OCT en-face image showing retardation at the posterior
surface of the cornea. The red lines indicate the locations of the B-scans shown in (b–e); (b,c) Horizontal
and vertical reflectivity B-scan images. Decreased corneal thickness can be observed in the center;
(d,e) Corresponding retardation B-scans exhibiting irregular pattern. (f) PS-OCT of blebs in the anterior
eye after glaucoma surgery (adapted with permission from [167], ARVO, 2014). Photographs (red lines
indicate locations of OCT scans), phase retardation and intensity images with PS-OCT at one day, one
week, and one month after surgery. Cases of partial increase of phase retardation after surgery. Arrows
indicate irregular and abnormal phase retardation.

3.2. PS-OCT in Skin and Oropharyngeal Tissue

Since the imaging regime of OCT is usually restricted to superficial layers of scattering structures
(unless special probes such as catheters are used), skin is a preferred candidate for OCT imaging.
Using PS-OCT, dermal layers with different scattering and polarization properties can be observed,
including stratum corneum, dermis, and epidermis (Figure 7) [50,64,172,173]. Oral and laryngeal
tissue have also been imaged by PS-OCT. In the oropharyngeal tract, PS-OCT was demonstrated for
investigating the mucosa of the vocal fold and for detecting lesions in the buccal mucosa based on
increased birefringence [174,175].
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Via dermal birefringence, PS-OCT provides access to tissue alterations caused by deformation, 
scarring, and burns [106,177–179]. Figure 7j shows an example of scarred skin exhibiting significantly 
higher birefringence than normal skin (Figure 7i). Additionally, wound healing processes including 
collagen restoration can be followed with PS-OCT [180,181]. Moreover, Stokes vector based 

Figure 7. PS-OCT of skin. (a–e) Cross-sectional PS-OCT image of human skin (adapted with permission
from [176], Optical Society of America, 2013). (a) Scan location at the proximal interphalangeal joint of
middle finger; (b) Reflectivity image. SC stratum corneum, D dermis, ED epidermis; (c) Retardation
image. CLS “column” like structure; (d) Axis orientation image; (e) DOPU image. (f–j) Birefringence
and vascular imaging of a hypertrophic scar and adjacent normal skin (adapted with permission
from [106], P. Gong, 2014). (f) Photograph. Locations of PS-OCT scans are indicated by two blue
squares; (g,h) Vasculature maximum intensity projections of the normal skin and scar, respectively;
(i,j) En face birefringence maps of the normal skin and scar, respectively.

Via dermal birefringence, PS-OCT provides access to tissue alterations caused by deformation,
scarring, and burns [106,177–179]. Figure 7j shows an example of scarred skin exhibiting significantly
higher birefringence than normal skin (Figure 7i). Additionally, wound healing processes including
collagen restoration can be followed with PS-OCT [180,181]. Moreover, Stokes vector based
depolarization imaging can reveal multiple scattering as well as pathological conditions in skin
such as cancer [19,24,58], as will be discussed in the next section.

3.3. PS-OCT in Cancerous Tissue

Cancer alters tissue microstructure. This alteration can change the optical properties of affected
tissues. PS-OCT has been applied for imaging cancerous tissues in several organs. Altered birefringence
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and depolarization characteristics enabled imaging and identification of skin lesions such as basal cell
carcinoma (Figure 8a–d) [24,182,183].
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with permission from [24], Optical Society of America, 2016). (a) Reflectance B-scan image. BCC
indicates the basal cell carcinoma tumor position; (b) Linear retardance along the x–y direction;
(c) Linear retardance along the ±45◦ directions; (d) Normalized differential depolarization index
image. Scale bar is 0.5(x) × 0.3(z) mm. (e–j) Needle-based PS-OCT of breast cancer (reproduced
with permission from [112], M. Villiger et al., 2016). Imaging was performed in grade 1 invasive
ductal carcinoma (e–g) and grade 2 invasive ductal carcinoma (h,j). (e,h) Structural intensity (I),
(f,i) overlay of tissue birefringence and intensity (I, ∆n), and (g,j) matching histological section stained
with hematoxylin and eosin. Scale bar in (e) is 1 mm and applies to panels (e–j).

Further promising results of PS-OCT based cancer imaging were reported in larynx, ovaries,
and bladder [32,184,185]. Several groups also successfully studied PS-OCT for imaging breast
cancer [112,186,187]. Figure 8 shows exciting results of PS-OCT imaging, which enabled the
differentiation of tumor from surrounding tissue. Using intraoperative scanning of excised tissue or in
situ needle-based imaging (cf. Figure 8e–j), PS-OCT could represent a promising method for reliably
demarking malignant breast tumors, thus reducing the re-excision rate due to positive margins.

3.4. PS-OCT in Muscles, Tendons, Cartilage, and Bone

Tendon was the first biological tissue imaged by PS-OCT [8]. Being collagen-rich structures,
tendons and muscles exhibit strong birefringence, which enables an easy discrimination from
surrounding supportive tissue by PS-OCT.

Since the integrity of collagen is an indicator for structural stability and pathologic state, PS-OCT
was suggested for collagen assessment in tendons and ligaments [189]. Consequently, PS-OCT was
used to visualize the evolution of the collagen fiber alignment via birefringence in tissue-engineered
tendons in response to varying growth environments and to investigate degenerative changes
related to rupture in Achilles tendons [190,191]. Lately, the influence of proteoglycans—which are
essential components of the tendon extracellular matrix associated with tendinopathies—on the optical



Appl. Sci. 2017, 7, 474 17 of 34

properties of tendons have been studied by PS-OCT [192]. In skeletal muscle of genetically-altered
(mdx) mice, exercise-induced ultrastructural changes were detected by PS-OCT in in vivo animals [193].
Compared to wildtype controls, the highly birefringent properties of skeletal muscles markedly
decreased in mdx mice, thus suggesting a relationship between the degree of birefringence detected
using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle. PS-OCT was also
shown to be capable of detecting muscle necrosis in dystrophic mdx mice [194].

In cartilage, PS-OCT can detect areas of enhanced or reduced birefringence in hyaline cartilage
(mostly composed of type-II collagen) and fibrocartilage (predominantly type-I collagen) related to
degeneration and repair mechanisms [195]. In an in vivo study on human knee joints prior to partial
or total joint replacement treatment, reduced birefringence was found in degenerated cartilage [196].
PS-OCT images of one proximal joint surface of bovine tibia are shown in Figure 9d [188]. PS-OCT
using variable incidence angles was further used to investigate the 3D architecture of the collagen
fiber network in cartilage [197,198]. Due to its high sensitivity to cartilage disorder, PS-OCT proved a
promising tool for imaging cartilage in osteoarthritis in both humans and animal models [199,200].Appl. Sci. 2017, 7, 474  16 of 32 
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Figure 9. PS-OCT of tendon and cartilage. (a–c) First published PS-OCT images (adapted with
permission from [8], Optical Society of America, 1997) showing birefringence of bovine tendon. (a) Fresh
tendon; (b) Tendon after exposure to high-power laser irradiation. The banded structure appears
disturbed compared to (a); (c) Color-coded intensity image; (d) PS-OCT optical phase retardation
images at the various sites on a bovine tibia. The banded appearance in retardation images is indicative
of high birefringence in some areas (adapted with permission from [188], G. M. Peavy, 2008).

3.5. PS-OCT in Vessels and Cardiac Tissue

Birefringence of vessel walls is a promising diagnostic parameter for arteriosclerotic vascular
disease accessible by PS-OCT [201]. In atherosclerosis, artery walls locally thicken and may
form atherosclerotic plaque lesions, which may be categorized into stable and unstable (called
vulnerable) plaques. Ex vivo scanning compared to histology as well as catheter based PS-OCT
imaging of atherosclerotic artery walls have revealed altered birefringence patterns in atherosclerotic
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plaques [202–204]. Examples of different plaques imaged by PS-OCT as well as corresponding
histologic images are shown in Figure 10 [205].

Appl. Sci. 2017, 7, 474  17 of 32 

atherosclerotic plaque lesions, which may be categorized into stable and unstable (called vulnerable) 
plaques. Ex vivo scanning compared to histology as well as catheter based PS-OCT imaging of 
atherosclerotic artery walls have revealed altered birefringence patterns in atherosclerotic plaques 
[202–204]. Examples of different plaques imaged by PS-OCT as well as corresponding histologic 
images are shown in Figure 10 [205]. 

 
Figure 10. PS-OCT of cardiac tissue and vessels. (a–c) PS-OCT images of ex vivo chicken myocardium 
(adapted with permission from [14], Optical Society of America, 2001). (a) Intensity image; (b) Phase 
retardation image; (c) Image of fast axis distribution. (d–f) 3D visualization of a carotid arterial sample 
(adapted with permission from [70], Optical Society of America, 2015). (d) OCT intensity image; (e) 
Fiber orientation tractography; (f) Fiber alignment map in the vessel wall. Surface layers were partly 
removed in three sections to reveal OCT intensity and fiber orientation/alignment at three 
representative depths in the arterial wall. (g–r) PS-OCT images of fibrous plaques (adapted with 
permission from [205], Elsevier, 2007). (g–i) OCT intensity images; (j,k) Phase retardation images 
(scale range: 0–180°) showing high birefringence; (l) Retardation image of fibrous plaque showing 
black region corresponding to low birefringence below the luminal surface. (m–o) Picrosirius red 
stained histology section, showing orange-red fibers (thicker fibers), yellow-green (thinner fibers) and 
low collagen content in the plaque under polarized light microscopy, respectively; (p,q) Trichrome-
stained histology images; (r) Corresponding histology section stained for α-smooth muscle actin 
shows numerous smooth muscle cells within the fibrous plaque. Scale bars are 500 µm. 

Information on the birefringent axis orientation provides access to fiber alignment in fibrous 
tissue (Figure 10a–c) [14]. Tractographic PS-OCT imaging was performed in the walls of blood vessels 
(Figure 10d–f) and in the mouse heart, thereby revealing fibrous layers with varying fiber orientations 
[69,70]. In rabbit hearts, the geometry of the perfusion border zone was investigated using PS-OCT 
and tissue clearing [206], and tissue discrimination was enabled by PS-OCT in rat hearts where 
decreased birefringence was observed in infarcted hearts [207]. 
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Figure 10. PS-OCT of cardiac tissue and vessels. (a–c) PS-OCT images of ex vivo chicken myocardium
(adapted with permission from [14], Optical Society of America, 2001). (a) Intensity image; (b) Phase
retardation image; (c) Image of fast axis distribution. (d–f) 3D visualization of a carotid arterial sample
(adapted with permission from [70], Optical Society of America, 2015). (d) OCT intensity image;
(e) Fiber orientation tractography; (f) Fiber alignment map in the vessel wall. Surface layers were
partly removed in three sections to reveal OCT intensity and fiber orientation/alignment at three
representative depths in the arterial wall. (g–r) PS-OCT images of fibrous plaques (adapted with
permission from [205], Elsevier, 2007). (g–i) OCT intensity images; (j,k) Phase retardation images (scale
range: 0–180◦) showing high birefringence; (l) Retardation image of fibrous plaque showing black
region corresponding to low birefringence below the luminal surface. (m–o) Picrosirius red stained
histology section, showing orange-red fibers (thicker fibers), yellow-green (thinner fibers) and low
collagen content in the plaque under polarized light microscopy, respectively; (p,q) Trichrome-stained
histology images; (r) Corresponding histology section stained for α-smooth muscle actin shows
numerous smooth muscle cells within the fibrous plaque. Scale bars are 500 µm.

Information on the birefringent axis orientation provides access to fiber alignment in fibrous
tissue (Figure 10a–c) [14]. Tractographic PS-OCT imaging was performed in the walls of blood
vessels (Figure 10d–f) and in the mouse heart, thereby revealing fibrous layers with varying fiber
orientations [69,70]. In rabbit hearts, the geometry of the perfusion border zone was investigated using
PS-OCT and tissue clearing [206], and tissue discrimination was enabled by PS-OCT in rat hearts
where decreased birefringence was observed in infarcted hearts [207].

3.6. PS-OCT in Teeth

PS-OCT has been used for imaging dental structures for almost 20 years [208–210]. In teeth,
PS-OCT provides contrast for dentin, enamel, as well as carious lesions. Dentin is a calcified tissue
and is a central component of teeth. On the crown, it is covered by enamel, a highly mineralized
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substance. The apatite crystals in dental enamel are highly ordered and produce negative birefringence.
In contrast, collagen makes dentin positively birefringent. Processes such as demineralization lead to
birefringence changes which can be observed by PS-OCT.

PS-OCT was demonstrated for the assessment of early and advanced demineralization in dentin
as well as in enamel (Figure 11d–e) [211–214]. Ablation of demineralized tooth structures was
monitored by PS-OCT [215]. Demineralization was also investigated in tooth roots [216]. PS-OCT
of enamel treated by CO2 laser irradiation confirmed inhibited demineralization [217]. In particular,
caries—characterized by mineral breakdown of teeth due to bacterial activity—has been an interesting
target for PS-OCT imaging. Caries lesions in various conditions were investigated and their progression
was followed longitudinally [209,210,218–220]. Consequently, also remineralization processes in
enamel and dentin were imaged based on their birefringence [211,221]. Recently, an automated
method for assessing remineralized lesions was developed based on PS-OCT [222].
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3.7. PS-OCT in Nerves and Brain 

Nerve fibers exhibit birefringence, an optical property that has been exploited for quantitative 
measurements in the retinal nerve fiber layer (see Section 3.1). Also nerve fibers in cerebral white 
matter or in peripheral nerves may be imaged by PS-OCT based on their birefringence [223]. 

Aside from neural structures in the central nervous system, peripheral nerves have also been 
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Figure 11. Dental PS-OCT. (a–c) PS-OCT tomograms of a carious lesion in enamel at the distal surface
of a human molar (adapted with permission from [209], Karger Publishers, 1999). (a) Reflectivity
image; (b) Phase retardation image; (c) Corresponding histologic section. (d–e) PS-OCT and transverse
microradiography (TMR) of tooth demineralization (adapted with permission from [213], John Wiley
and Sons, 2010). (d) PS-OCT image showing the cross-polarized signal; (e) Corresponding TMR. The
area of demineralization has a strong cross-polarized signal in (d) and appears darker in (e).

3.7. PS-OCT in Nerves and Brain

Nerve fibers exhibit birefringence, an optical property that has been exploited for quantitative
measurements in the retinal nerve fiber layer (see Section 3.1). Also nerve fibers in cerebral white
matter or in peripheral nerves may be imaged by PS-OCT based on their birefringence [223].

Aside from neural structures in the central nervous system, peripheral nerves have also been
imaged by PS-OCT. Improved delineation of the sciatic nerve boundaries to muscle and adipose
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tissues as well as quantitative birefringence measurements were enabled by the additional polarization
contrast [224]. In an experimental nerve crush model, decreasing birefringence was observed in parallel
to a loss of myelination (Figure 12a–d) [225]. The prostatic nerves—indiscernible from surrounding
tissue by standard, intensity based OCT—were identified in prostates of rats and humans, thereby
indicating the feasibility of PS-OCT as a method for intrasurgical imaging [226].

In the brain, PS-OCT was not only used to enhance the contrast of birefringent structures but
also to trace white matter structures as shown in Figure 12e–h. PS-OCT based tractography provides
images encoding the orientation of fiber tracts in different colors and can be used to verify diffusion
tensor based MRI tractography images with micrometer scale resolution [51,227–229]. Lately, PS-OCT
was also demonstrated for imaging a hallmark of Alzheimer’s disease, namely neuritic amyloid-beta
plaques as well as amyloidosis in cerebral vasculature [230]. PS-OCT images of birefringent neuritic
plaques are shown in Figure 12i–k.
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Figure 12. PS-OCT of neural structures. (a–d) PS-OCT of rat sciatic nerve two weeks post nerve crush
(adapted with permission from [225], B. H. Park, 2015). (a) Intensity image; (b) PS-OCT retardation
image; (c) Plot of average phase retardation per depth computed within the red lines shown in (b);
(d) Histologic image. Toluidine blue staining for assessing the myelination state; (e–h) En face PS-OCT
optic axis orientation maps quantitatively depict in-plane fiber orientations in the medulla (from [229]
with permission by Elsevier). The color wheel shows the orientation values ranging between −90◦

and 90◦. The brightness of colors in the images is determined by the en face retardance values.
(i–k) PS-OCT imaging of neuritic plaques in post mortem cerebral cortex of an Alzheimer’s disease
patient. (i) Rendering of 3D retardation data showing increased retardation in plaques. Color map
range: 7–41◦ (reproduced with permission from [230], B. Baumann et al., 2017). (j) Reflectivity B-scan
image; (k) Retardation B-scan image. The location of one plaque is marked by an orange arrow.
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3.8. Other Applications of PS-OCT

PS-OCT also found applications in biomedical fields other than those discussed in the previous
sections as well as in non-medical fields. One exciting use of PS-OCT is in imaging applications relying
on small particles as exogenous contrast agents. As such, plasmon-resonant nanoparticles like gold
nanostars are popular contrast agents in biophotonic imaging. In order to increase detection sensitivity
for single particles, their polarization-sensitive scattering signal in the near infrared can be modulated
by an external oscillating magnetic field [231]. PS-OCT can be used to detect these dynamic scattering
signals and was demonstrated for depth-resolved viscosity measurements based on the diffusion
of gold nanorods [232]. Based on temporal changes in polarization contrast parameters, a method
for differentiating light scatterers such as cells and gold nanorods was developed [233]. Recently,
PS-OCT based detection of gold nanorods was proposed for detecting nanotopological changes in 3D
tissue models of mammary extracellular matrix and pulmonary mucus (Figure 13d) [234]. Having a
non-invasive imaging technique like PS-OCT for studies of such tissue models may help to interpret
biophysical changes associated with disease progression.
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image. The arrows indicate highly strained areas at the teeth of the wheel; (c) Orientation of the slow 
optic axis (color-coded and displayed as vector-field scaled by the magnitude of the retardation);  
(d) Diffusion of gold nanorods (GNRs) in in vitro extracellular matrix models (adapted with 
permission from [234], A. Oldenburg,2014). Representative PS-OCT B-scan images showing cross-
polarized signal of fibroblasts in collagen I: Matrigel versus cell seed density and incubation time 
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Its sensitivity for microstructural changes affecting sample polarization properties along with 
its 3D imaging capabilities made PS-OCT also an interesting modality for materials science and 
nondestructive testing applications [236]. Using translucent glass-epoxy composite phantoms,  
the spatial distribution of mechanical stress was mapped by PS-OCT [237]. Strain mapping by also 
exploiting the optic axis orientation in PS-OCT images was demonstrated as a method for charting 
the directionality of strained sample areas (Figure 13a–c) [235]. Material dynamics were optically 

Figure 13. Nonmedical applications of PS-OCT. (a–c) Transversal ultrahigh resolution PS-OCT
images of the resist-wafer interface of a photoresist mold for a micromechanical wheel (adapted with
permission from [235], Optical Society of America, 2006). (a) Intensity image; (b) PS-OCT retardation
image. The arrows indicate highly strained areas at the teeth of the wheel; (c) Orientation of the
slow optic axis (color-coded and displayed as vector-field scaled by the magnitude of the retardation);
(d) Diffusion of gold nanorods (GNRs) in in vitro extracellular matrix models (adapted with permission
from [234], A. Oldenburg,2014). Representative PS-OCT B-scan images showing cross-polarized signal
of fibroblasts in collagen I: Matrigel versus cell seed density and incubation time show how GNRs
provide positive contrast within the matrix between cells, whereas cells appear dark.

Its sensitivity for microstructural changes affecting sample polarization properties along with
its 3D imaging capabilities made PS-OCT also an interesting modality for materials science and
nondestructive testing applications [236]. Using translucent glass-epoxy composite phantoms, the
spatial distribution of mechanical stress was mapped by PS-OCT [237]. Strain mapping by also
exploiting the optic axis orientation in PS-OCT images was demonstrated as a method for charting
the directionality of strained sample areas (Figure 13a–c) [235]. Material dynamics were optically
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investigated by translating measured phase retardation into stress images [238]. Thereby, dynamics
could be studied from the elastic regime over the deformation phase up to fracture.

4. Conclusions

PS-OCT is a versatile functional extension of OCT. As described in the section on the technical
background, only few modifications to the standard OCT layout are necessary for polarization
sensitivity. Of course, more sophisticated setups and advanced analysis methods were also developed.
This review aimed to provide a concise introduction to the basic principles underlying PS-OCT and a
crisp overview of advances in PS-OCT technology development. By highlighting research on state of
the art PS-OCT applications based on the published literature, the obvious potential of this powerful
technique for improved qualitative and quantitative imaging was portrayed. Given the achievements
of the past 20 years discussed here, we are anticipating exciting new technological developments,
advances of applied biomedical imaging, and potential applications in new fields for the next 20 years.
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