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Abstract: Nowadays, mobile robots have become a useful tool that permits solving a wide range
of applications. Their importance lies in their ability to move autonomously through unknown
environments and to adapt to changing conditions. To this end, the robot must be able to build a
model of the environment and to estimate its position using the information captured by the different
sensors it may be equipped with. Omnidirectional vision sensors have become a robust option thanks
to the richness of the data they capture. These data must be analysed to extract relevant information
that permits estimating the position of the robot taking into account the number of degrees of freedom
it has. In this work, several methods to estimate the relative height of a mobile robot are proposed
and evaluated. The framework we present is based on the global appearance of the scenes, which has
emerged as an efficient and robust alternative comparing to methods based on local features. All the
algorithms have been tested with some sets of images captured under real working conditions in
several indoor and outdoor spaces. The results prove that global appearance descriptors provide a
feasible alternative to estimate topologically the relative altitude of the robot.

Keywords: mobile robots; omnidirectional vision sensors; global appearance descriptors; topological
maps; localization; height estimation.

1. Introduction

Over the last few years, mobile robotics has become a technology that has gained presence in
many kinds of environments to solve different problems, both in industries, educative centres and
in households. To increase their range of applications, mobile robots must be able to solve the task
they have been designed for in a truly autonomous way. With this aim, two crucial abilities must be
developed: the robot must be able to build a model of the environment where it has to move and to
estimate its position and orientation within this model.

Mobile robots may be equipped with different kinds of sensors that provide them with information
that permits solving the mapping and localization problems. These sensors can be categorised into
proprioceptive and exteroceptive. On the one hand, proprioceptive sensors measure the state of the
robot. Encoders installed in the wheels are an example. Through an odometry process they permit
estimating the displacement of the robot, but the error in this estimation tends to grow indefinitely.
This is why enconders tend to be used in combination with other sources of information [1]. On the
other hand, exteroceptive sensors measure some information from the environment where the robot is
moving. Among them, some researchers have made use of GPS, SONAR and laser sensors in previous
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works. First, GPS (Global Positioning Systems) constitute a robust choice outdoors, but the information
they provide close to buildings and on narrow streets is less reliable [2]. Second, SONAR and laser
sensors permit measuring the distance to the objects around the robot using different technologies.
The use of laser sensors has extended substantially in mobile robotics [3] because they tend to present
an improved precision and angular resolution comparing to SONAR. Nevertheless, they also present a
higher cost, weight and power consumption.

More recently, vision sensors have gained popularity because they present several advantages.
They capture a big quantity of information from the environment, which can be used to carry out
many high level tasks, apart from mapping and localization, such as people and objects detection
and recognition. They also present a relatively low cost and power consumption comparing to
laser rangefinders and the information they provide is stable both outdoors and indoors, unlike
GPS, whose signal tends to degrade indoors. Vision sensors can be used either as the only source
of information from the environment or in combination with other kinds of sensors [4]. Initially,
monocular configurations were used but later works tried to expand the field of view through other
configurations such as binocular [5] or omnidirectional [6–8]. In recent years, the use of omnidirectional
vision sensors has expanded thanks to the big quantity of information they capture (as they are able to
take images with a field of view of 360 deg around the robot) with a relatively low cost. Nevertheless,
working with omnidirectional visual data is a complex task when the robot has to create models of
large and complex environments while moving with more than 3 Degrees Of Freedom (DOF). In these
cases, it is necessary to extract some information from the scenes to build a robust model that gathers
relevant and invariant knowledge from the environment and that permits estimating the position of
the robot with the required DOF. Extracting this useful information from the scenes is a key point since
images are very high dimensional data that change not only when the robot moves along any DOF but
also under other circumstances such as variations in lighting conditions.

Two main approaches have been used by the researchers to compile such information. On the
one hand, some relevant landmarks or outstanding points or regions (either natural or artificial) can
be extracted and described using any local descriptor that captures the appearance of the landmarks’
neighbourhood trying to get invariance to position, scale and rotation [9–12]. On the other hand, each
scene can be represented through a unique global appearance descriptor that contains information on
the whole scene [13–16].

Many authors have addressed the mapping and localization problems using vision sensors.
The different approaches proposed can be roughly classified into three different types, depending
on the contents and the internal structure of the models. First, a metric map can be built trying
to define the position of some outstanding points of the environment with respect to a reference
system. These models permit estimating the position of the robot with geometrical accuracy up to a
specific error [17–19]. Second, topological maps usually represent some characteristic places of the
environment and the connectivity relationships between them. They tend to be simpler representations
but they contain usually enough details for most applications [20]. Third, hybrid maps try to gather
the advantages of the two previous approaches. They arrange the information into several layers
with different levels of detail, containing topological models in the top layers that permit a rough
localization and metric models in the bottom layers to refine this localization [21–23].

Traditionally, metric maps have been built using methods based on the extraction, description
and tracking of local features along a set of scenes captured by the vision sensor mounted on the
robot. This information is often combined with other sources of information, such as odometry
or laser [24]. However, these models tend to be quite complex and not easily interpretable by a
human operator, and the localization process is usually elaborated and computationally expensive.
In contrast, topological maps offer more intuitive representations of the environment [25]. Visual
global-appearance approaches may be used to create such models, since no metric information can be
extracted from global descriptors. They lead to simpler models where the localization process is more
straightforward, based mainly on the pairwise comparison between image descriptors [26].
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The problem of robot localization using visual models of the environment has been thoroughly
studied when the trajectory of the robot is contained in the ground plane. Researchers have made use
both of local features [27] and global appearance [28] to build image descriptors that permit solving
this problem. Beyond that, in some applications, it may be useful to estimate the altitude of the
robot with respect to this plane, without changing the visual map nor including any further visual
information. The proposal of the present work fits within this area. The main objective consists in
extracting some information from the images that permits estimating the relative altitude of the robot,
using the previously built visual model of the environment.

About the choice of the approach to describe the scenes, some researchers have addressed the
altitude estimation problem using local descriptors [29–32]. However, the literature on altitude
estimation using only visual information and global appearance descriptors is quite sparse and few
works can be found on this topic, despite the advantages that global appearance descriptors can offer
to the mapping and localization problems [33]. Taking this into account, this work is focused on
studying the performance of global-appearance methods to solve this problem. The only source of
information used is a catadioptric vision sensor mounted on the mobile platform.

The contribution of this paper is twofold. On the one hand, some global appearance approaches
are defined to incorporate the altitude information in the descriptors and some methods are proposed
to estimate robustly this relative altitude without changing nor including any additional information to
the visual model of the environment. On the other hand, a comparative evaluation of these methods is
carried out to analyse their behaviour both indoors and outdoors. The altitude estimators we propose
go beyond the classical topological notion of connectivity and introduce the concepts of closeness and
farness, thus some altitude estimators are proposed that estimate the relative height of a robot except
for a scale factor. The results of this paper jointly with the developments presented in [26,34] prove the
usefulness of the global appearance descriptors to estimate the position and orientation of the robot in
the ground plane and its altitude with respect to this plane, in a straightforward way. This supposes a
step ahead towards the definition of global appearance descriptors that permit building models of the
environment and localization when the robot moves with 6 DOF.

The remainder of the paper is structured as follows. Section 2 makes a review of some techniques
to describe globally the appearance of omnidirectional visual information. Then, in Section 3 the
methods implemented to estimate topological height from visual information are detailed. After that,
Section 4 describes the geometry of the vision system and the sets of images used to carry out the
experiments, whose results are presented in Section 5. At last, the conclusions and future works are
outlined in Section 6.

2. Omnidirectional Imaging and Global Appearance Descriptors

Along the paper, the use of omnidirectional visual information along with global appearance
descriptors is proposed to develop some height indicators. This section presents some fundamentals
on the kind on sensors used to obtain the omnidirectional images (Section 2.1) and on the mathematical
methods used to describe the global appearance of these images (Section 2.2). The information
contained in these descriptors will be used in Section 3 to estimate topological height.

2.1. Catadioptric Vision Sensors

Catadioptric vision sensors consist of a conventional camera pointing towards a convex mirror
with their axes aligned. In this work, a hyperbolic mirror will be considered and the axes of
the mirror and the camera will be always parallel to the z-axis of the world reference system.
The world information reflects onto the mirror and the camera captures this reflection, composing the
omnidirectional image. Figure 1 shows the projection model of the catadioptric vision system, showing
the World Reference System (WRS), the Camera Reference System (CRS), centered on the focal point
of the hyperbolic mirror F′, and the Image Reference System (IRS). F is the focal point of the camera.
The figure shows the projection of a world point P onto the mirror Q and from the mirror to the image
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plane m. The image projected onto the image plane (plane of projection) is the omnidirectional view.
The calibration of the catadioptric system provides us with a function f (a) that permits calculating, for
each pixel in the image, the coordinates of the point of the mirror that has produced this pixel, respect
the CRS [35]. a is the distance between the pixel considered and the center of the image, expressed
in pixels. From the omnidirectional image, other projected versions of the visual information can be
obtained, such as the cylindric projection (panoramic image), the orthographic projection (projection
onto a plane) or the unit sphere projection [36]. Figure 2 shows (a) a sample omnidirectional image
and three different projections obtained from it; (b) orthographic projection onto a plane parallel to the
ground plane; (c) unit sphere projection and (d) cylindrical projection or panoramic view.

Figure 1. Projection model of the catadioptric vision system. The image projected onto the image plane
(plane of projection) is the omnidirectional view.

2.2. Global Appearance Descriptors

Descriptors based on the global appearance of images captured by a catadioptric vision system
have proved a good performance both in position and orientation estimation, when the movement
of the robot is restricted to the floor plane, as Gaspar et al. [36] and Payá et al. [26] show. These
methods extract the most relevant information from each image and reduce the amount of memory
necessary to store the visual information working with the image as a whole, i.e., avoiding the
extraction of landmarks or local features. In this work, three different techniques based on the Discrete
Fourier Transform (DFT) are considered: the Fourier Signature (FS), the two-dimensional Discrete
Fourier Transform (2D-DFT) and the Spherical Fourier Transform (SFT). In the next subsections a
brief outline of these description methods is made and some relevant mathematical properties are
presented. After that, in Section 3 some methods are proposed to develop height indicators using these
description methods and their properties.

2.2.1. Fourier Signature

The Fourier Signature (FS) was firstly described by Menegatti et al. [37], who used it to carry out
mapping and localization with a robot whose movement is restricted to the ground plane. It consists in
the representation of a panoramic image calculating the one-dimensional DFT of each row. Therefore,
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each row of the original image {rm} = {rm,0, rm,1, . . . , rm,N−1}, m = 0, . . . , M− 1 can be transformed
into the sequence of complex numbers {Rm} = {Rm,0, Rm,1, . . . , Rm,N−1}.

When the DFT of every row of the image im(xi, yi) ∈ RM×N is calculated, a new matrix
IM(u, yi) ∈ CM×N is obtained, being u the frequency variable (cycles/pixel). The components of this
matrix are complex numbers thus it can be decomposed into a magnitudes matrix A(u, yi) ∈ RM×N

and an arguments matrix Θ(u, yi) ∈ RM×N . Taking the properties of the DFT into account [37], only
a subset of k columns can be retained to represent the image: A(u, yi) ∈ RM×k and Θ(u, yi) ∈ RM×k,
k ≤ N.

(a) (b) (c)

(d)

Figure 2. (a) Sample omnidirectional image and (b) orthographic; (c) unit sphere and (d) cylindrical
projections.

The FS presents another interesting property when used to describe a panoramic image. If the
image comes from an omnidirectional vision sensor mounted vertically on the robot, then, the modules
matrix A(u, yi) is invariant against rotations around the vertical axis. Let’s consider two panoramic
images captured from the same position on the ground plane but having the robot different orientations
with respect to the vertical axis, with relative orientation φ, as shown in Figure 3. If the row m of the
first image is represented as the sequence {rm} = {rm,n}, n = 0, . . . , N − 1 then the same row in the
second (rotated) image is {rm,n−q}, where q is the shift between images, measured in pixels, which
is proportional to the relative rotation between images q = N · φ/360, where φ is measured in deg.
Visually this shift appears as a circular shift of the columns of the image (Figure 3).

The rotational invariance can be expressed by the DFT shift theorem as:

F [{rm,n−q}] = Rm,le−j 2πql
N , l = 0, . . . N − 1, (1)

where F [{rm,n−q}] is the one-dimensional DFT of the shifted sequence, and Rm,l are the components
of the one-dimensional DFT of the non-shifted sequence (row {rm}).

Taking this theorem into account, when the movement of the robot is contained in the ground
plane, the magnitudes matrix can be used to estimate the position (since it is invariant to rotation), and
the arguments matrix to estimate the relative orientation.
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Figure 3. Two panoramic images captured indoors from the same (x, y) position in the floor plane and
a change of orientation φ = 68 deg. The result is a circular shift of the columns.

2.2.2. Two-dimensional Discrete Fourier Transform

The two-dimensional Discrete Fourier Transform (2D-DFT) of an image im(xi, yi) ∈ RM×N can
be expressed as a new matrix IM(u, v) ∈ CM×N that can be split into two matrices, one containing
the magnitudes A(u, v) ∈ RM×N (or power spectrum) and other with the arguments Θ(u, v) ∈
RM×N . Since the most relevant information in the Fourier domain concentrates in the low frequency
components and the high frequency information is usually more affected by noise, retaining only a
number of low frequency components may lead to better results in localization with an improved
computational cost. Taking this fact into account, the number of rows retained from the matrices A
and Θ will be k1 ≤ M and the number of columns k2 ≤ N.

Another interesting property when working with panoramic images is the rotational invariance,
which is reflected in the shift theorem:

F2[im(xi − x0, yi − y0)] = IM(u, v) · e−2π j( ux0
N +

vy0
M ),

u = 0, . . . , N − 1, v = 0, . . . , M− 1.
(2)

where IM(u, v) is the 2D-DFT of the original image im(xi, yi) and im(xi − x0, yi − y0) is a shifted
version of this image. According to this theorem, the power spectrum of the shifted image remains the
same of the original image and only a change in the argument of the components of the transformed
image is produced, whose value depends on the shift along the xi-axis (x0) and the yi-axis (y0). Thanks
to this property, this transform has previously been used to estimate the position and orientation of a
robot when it moves on the ground plane [26]. In this case, if the robot captures two panoramic scenes
im1 and im2 from the same position on the ground plane but with different orientations, the magnitudes
matrices A1 and A2 are the same and only a shift along the xi-axis is produced, which can be calculated
from the theorem and used to estimate the relative orientation.

Equation (2) also shows that the first row of the 2D-DFT, which corresponds with v = 0, is only
affected by shifts along the xi-axis of the image, whereas the first column of the transform, which
corresponds with u = 0, is only affected by shifts along the yi-axis.

2.2.3. Spherical Fourier Transform

Omnidirectional images can be projected onto the unit sphere when the intrinsic parameters of
the catadioptric vision system are known. Being θ ∈ [0, π] the colatitude angle, and φ ∈ [0, 2π)

the azimuth angle, the projection of the omnidirectional image im(xi, yi) ∈ RM×N onto the 2D
sphere can be expressed as f (θ, φ). As shown in [38], the spherical harmonic functions Ylm form a
complete orthonormal basis over the unit sphere. Any square integrable function defined on the sphere
f ∈ L2(s2) can be represented by its spherical harmonic expansion as:
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f (θ, φ) =
∞

∑
l=0

l

∑
m=−l

f̂lmYlm(θ, φ), (3)

with l ∈ N and m ∈ Z, |m| ≤ l. f̂lm ∈ C denotes the spherical harmonic coefficients, and Ylm the
spherical harmonic function of degree l and order m defined by:

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ)eimθ , (4)

where Pm
l (x) are the associated Legendre functions.

It is also possible to build a rotationally invariant representation of omnidirectional images
using the Spherical Fourier Transform (SFT). Considering B the band limit of f , the coefficients of
e = (e1, ..., eB) are not affected by 3D rotations of the signal, where:

el =

√
∑
|m|≤l

| f̂lm|2. (5)

More information and examples of applications of the SFT in navigation tasks can be found
in [39–42]. Makadia et al. [39] introduce the estimation of 3D rotations extending the shift theorem
to the SFT. Schairer et al. [40] present a rotation estimation algorithm based on the SOFT (SO(3)
Fourier Transform), being SO(3) the 3D Rotation Group. On the other hand, Huhle et al. [41] and
Schairer et al. [42] show a localization method using the SFT applied to omnidirectional images and a
predictive model of Gaussian probabilistic regression.

In this work, we take advantage of the rotational invariance properties of the DFT to describe the
scenes, using el with this aim.

3. Development of Height Indicators Using Global Appearance Descriptors

Our previous works [26,34] have focused on building a visual model of the environment and
estimating the position of the mobile platform when its movement is contained in the ground plane,
using the global appearance of the scenes with this aim. However, as stated previously, it is also
interesting to study the possibility of estimating the altitude of the vehicle with respect to the plane
where it moved when the visual model was created. With this goal, several methods are proposed in
this section and analysed in the subsequent sections in order to know the accuracy and advantages of
each one.

In all cases, only visual information will be used to estimate the relative altitude. The two images to
compare are named reference and test image (imR and imT respectively) and the algorithms estimate the
height of imT with respect to imR. Since the objective of this work consists in studying the performance
of some methods in altitude estimation, we consider the images to compare have been captured along
a line which is parallel to the z-axis of the WRS, being the axis of the catadioptric system in vertical
position (Figure 1). This way, we isolate the effect of height changes in the images.

To compare two scenes using their global appearance, a distance measurement must be defined.
In this work, the image distance is defined as the Euclidean distance between descriptors. Being
~dT ∈ Rn×1 the descriptor of the test image, and ~dR ∈ Rn×1 the descriptor of the reference image,
the image distance can be obtained as:

dist(~dT , ~dR) =

√
(~dT − ~dR)T · (~dT − ~dR). (6)

The best match among a set of different comparisons is found by choosing the one with
minimum distance.

The next subsections present the relative height estimation methods in detail. Four methods
based on global appearance have been implemented and tested. They are based on the descriptors
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presented in Section 2.2. Also, for comparative purposes, an additional method that uses local features
is proposed in Section 3.5.

3.1. Method 1: Central Cell Correlation of Panoramic Images

In a panoramic image, the most distinctive information is usually in the central rows of the scene.
In outdoor environments, the bottom rows normally correspond to the terrain, and the upper rows
to the sky and in indoor environments they correspond to the floor and ceiling respectively. If the
altitude of the catadioptric system changes whether upwards of downwards, the area constituted by
the central rows of the panoramic image is less likely to go out of the camera field of view. Taking this
fact into account, in this method, the global appearance of the central rows of the reference and test
images is compared to estimate the relative height between their capture points.

First, the algorithm computes a global appearance descriptor of the central cell of imR (the portion
composed by the central rows). To obtain this descriptor either the FS (Section 2.2.1) or the 2D-DFT
(Section 2.2.2) can be used. This process is repeated for different cells situated above and below the
central cell. In Figure 4 a sample image and some cells extracted from it are shown. The central cell is
emphasized with a wider line, and some additional cells have been defined both above and below it.
d is the vertical distance (measured in pixels) from each additional cell to the central one.

Considering now a test image imT , the algorithm computes the descriptor of the central cell,
compares it with all the descriptors of the cells extracted from imR and retains the best match.
The position (d) of the cell in imR that best matches the central cell of imT is a measurement of
the relative altitude. Therefore, the displacement is measured in pixels and it can be considered as a
topological distance

Figure 4. Set of cells defined in a reference panoramic image for height estimation using the central cell
correlation technique.

To illustrate this method, two 128× 512 panoramic images captured from different heights are
considered (Figure 5). On the one hand, Figure 5a is the reference image (imR). On the other hand,
Figure 5b is the test image (imT) and it was captured from a height 60 cm higher than imR. In this
example, the size of the cells is equal to 64× 512 pixels and FS is used to describe these cells.

(a) (b)

Figure 5. Two panoramic images captured from different heights, to illustrate method 1. (a) Reference
image and (b) test image.

First, imR is considered and its central cell is extracted. After that, the FS of this cell is calculated
and its magnitudes matrix is obtained. The result is the descriptor A(0)

R , where the superscript (0)
indicates that this is the descriptor of the central cell. This process is repeated for different cells situated
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above and below the central cell. To do it, a set of cells is considered, whose distances to the central
cell are, in this example, d = [−25,−24, . . . ,−1] ∪ [1, 2, . . . , 25] pixels. After that, the descriptors of the
cells A(d)

R will be available, where the superscript (d) indicates the distance to the central cell.
Second, imT is considered. Its central cell is extracted, the FS of this cell is calculated and the

magnitudes matrix is obtained. The result is the descriptor A(0)
T .

When all this information is available, the algorithm calculates the Euclidean distance
(Equation (6)) between the descriptor A(0)

T and each of the descriptors A(d)
R , considering

d = [−25,−24, . . . ,−1, 0, 1, . . . , 24, 25]. The distance d associated to the descriptor A(d)
R that best

matches A(0)
T can be considered as a height indicator. Figure 6 shows dist(A(0)

T , A(d)
R ) versus d.

In this case, the minimum is produced at d = 3. Since d > 0, the height of imT is higher than
imR.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

5

d (pixels)

Figure 6. Euclidean distance between the magnitudes matrices of the reference image cells and the test
image central cell versus d.

3.2. Method 2: 2D-DFT Vertical Phase

This method is based on the use of the 2D-DFT and the shift theorem presented in Section 2.2.2.
Traditionally, this method has been used to estimate the relative orientation of the robot with respect to
the vertical axis when its movement is contained in the ground plane [26]. In this case, a change in the
orientation of the robot produces a circular shift of the columns of the panoramic image which can be
estimated through the shift theorem (Equation (2)).

Besides, this descriptor can also be used to estimate relative height since a vertical displacement
of the robot will produce a shift of the rows of the panoramic image that can also be estimated
through the shift theorem. However, the use of the theorem in this case is not direct because, unlike a
rotation around the vertical axis, a vertical movement does not produce a circular shift of rows and the
information in the scene is thus modified; after the vertical displacement some rows of the original
image will go out and new rows will appear. Taking this fact into account, the magnitudes matrix of
the transformed image will experience some changes hence the shift theorem is not exactly met.

Despite the issues described above, the preliminary experiments showed that the great majority
of the visual information remains after a vertical displacement therefore a circular shift of the image’s
rows will be assumed when using this method. For this reason, in order to estimate topologically the
vertical displacement between the reference and the test images, we use the arguments matrices of
their 2D-DFT, ΘR and ΘT , where only the k1 × k2 first components have been retained. We consider
k1 = k2 = NF.

As stated before, a vertical movement in the spatial domain produces a change in the phase of the
coefficients in the frequency domain. Our approach simulates different shifts on the matrix ΘR (using
Equation (2)), compares each shifted matrix with ΘT and retains the shift that produces the best match.
A circular shift of S deg of the rows of the reference image produces a change on its arguments matrix
ΘR ∈ RNF×NF that can be simulated through the next expression:

Θrotated
R = ΘR + S ·VRM, (7)
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where VRM is the Vertical Rotation Matrix, defined as:

VRM =


0 0 · · · 0
1 1 · · · 1
2 2 · · · 2
...

...
. . .

...
NF − 1 NF − 1 · · · NF − 1


NF×NF

. (8)

To illustrate this property we consider a sample panoramic image imR ∈ RM×N , where M = 500
and N = 2000. From it, a new image imrotated

R with the same size is generated, considering a circular
shift of NR = 25 rows (the displacement is towards the top of the image). This is equivalent to
generating a shift S = NR · 360/M = 18 deg. The original and the shifted images are shown in
Figure 7a,b respectively.

(a)

(b)

Figure 7. (a) Original panoramic image imR and (b) resulting image imrotated
R after considering a circular

shift of rows equivalent to S = 18 deg.

Using these two images, the next sequence of operations is carried out. First, the 2D-DFT of
both images is calculated, resulting the matrices IMR and IMrotated

R . Second, the magnitudes and
the arguments matrices of both transforms are obtained and just the first NF = 4 rows and columns
are retained. Equation (9) shows the two magnitudes matrices and Equation (10) the two arguments
matrices, expressed in the range [−180,+180] deg.

AR =


149, 3 5, 7 8, 8 2, 4
24, 6 10, 0 5, 5 5, 9
10, 3 7, 8 4, 6 1, 7
9, 5 4, 5 3, 1 1, 3

 · 106; Arotated
R =


149, 3 5, 7 8, 8 2, 4
24, 6 10, 0 5, 5 5, 9
10, 3 7, 8 4, 6 1, 7
9, 5 4, 5 3, 1 1, 3

 · 106. (9)

ΘR =


0 135, 1 −92, 6 104, 3

−45, 3 108, 7 121, 6 −8, 4
151, 4 147, 7 41, 2 −135, 3
−67, 4 23, 0 −117, 6 −106, 5

 ; Θrotated
R =


0 135, 1 −92, 6 104, 3

−27, 3 126, 7 139, 6 9.6
−172, 6 −176.3 77, 2 −99, 3
−13, 4 77, 0 −63, 6 −52, 5

 . (10)

On the one hand, Equation (9) shows that both magnitudes matrices are identical, as expected
according to Equation (2). On the other hand, the relationship between both arguments matrices meets
Equation (7), as detailed in the next equation:
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Θrotated
R = ΘR + S ·VRM = ΘR +


0 0 0 0
18 18 18 18
36 36 36 36
54 54 54 54

 . (11)

Taking all these facts into consideration the next steps are followed in the height estimation
application. First, from the reference image imR, a set of rotated versions is generated Θrotated

R
considering S = [−180 + ∆S,−180 + 2∆S, . . . , 180] deg. In the experiments, ∆S is given a value
equal to 0.5 deg.

Second, when a new test image imT arrives, the arguments matrix of its 2D-DFT is obtained
ΘT ∈ RNF×NF and compared with the set of matrices Θrotated

R generated from the reference image.
The coefficient S that produces the best match (the minimum distance) is a topological measurement
of the relative altitude between images.

3.3. Method 3: Multiscale Analysis of the Orthographic View

In this method a multiscale analysis is carried out to estimate the relative height. This analysis
consists in carrying out several artificial zoomings of the central area of the scenes and has been used
previosly to estimate the topological distance between the capture points of two scenes when the robot
moves in the ground plane [43]. To obtain consistent results, the projection plane of the images must
be perpendicular to the direction of the movement. Since we consider vertical movements in this work,
an orthographic projection of the omnidirectional image onto a horizontal plane must be used.

The method consists in generating several orthographic projections of the reference image,
considering different focal distances to the plane where the image is projected. This is equivalent
to generating a set of orthographic projections with different zooms. Figure 8 shows a sample
omnidirectional image and three of its orthographic views, assuming three different focal distances fc

for the projection plane.

(a) fc = 5 (b) fc = 5 (c) fc = 8 (d) fc = 11

Figure 8. (a) Original omnidirectional image and (b), (c), (d) three of its orthographic projections
considering different focal distances

After that, the different projections are described using global appearance. This way,
a set of descriptors is generated from imR, each one with a focal distance associated:
{(~dR, f c1 , f c1) ; (~dR, f c2 , f c2) ; . . . ; (~dR, f ci

, f ci) ; . . . . . . (~dR, f cM , f cM)}.
When a new omnidirectional test image arrives, the algorithm computes an orthographic

view with a specific focal distance and calculates its descriptor, obtaining the pair (~dT , f cT). Next,
the descriptor of the test image ~dT is compared with all the descriptors of the reference image and the
best match (minimum distance) is retained.

i0 = arg min
i

(
dist(~dT , ~dR, f ci

)
)

. (12)
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We retain the focal distance of the reference image where the minimum is found, f ci0 . The difference
between the focal distance of the test image projection and the focal distance of the matched reference
image projection is a topological measurement of relative height: ∆ fc = f cT − f ci0 .

In the experiments, the set of focal distances for the reference image are generated in the range
f ci = [4, 11], while the focal distance of the test image is f cT = 7.

3.4. Method 4: Change of the Camera Reference System (CRS)

The fourth method consists in simulating an artificial movement of the camera and calculating
the new coordinates of the pixels of the image after the movement. Some researchers (such as
Valiente et al. [44]) have used this technique to simulate a displacement of the Camera Reference
System (CRS) using the epipolar geometry.

To obtain the new image after the artificial displacement, the next steps are followed. First, each
pixel of the original omnidirectional image is retroprojected to obtain its coordinates with respect to
the WRS. Let m ∈ R2 be the coordinates of one pixel of the omnidirectional image (with respect to
the IRS) and a the distance from this pixel to the center of the omnidirectional image. The function
f (a) (an example is shown in Equation (15)), obtained from the calibration of the catadioptric system,
permits calculating the point of the mirror Q that projects onto this pixel m. This point can be
retroprojected onto the unit sphere and, as a result, the coordinates of this projection M ∈ R3 respect to
the CRS can be obtained. After that, a movement of the camera is simulated through a change of the
CRS and the new coordinates M′ respect the new CRS system will be:

M′ = M + ρ ·~T, (13)

being ~T the unitary displacement vector, and ρ the scale factor, which is proportional to the amount of
displacement. In this work, to simulate a vertical displacement ~T = [0, 0, 1].

Using the new coordinates of the projection of the point onto the unit sphere M′, the corresponding
point on the mirror Q′ can be obtained and projected onto the new image plane, where the new
coordinates respect the IRS will be m′. Repeating this operation for all the pixels of the original image,
the result will be the new omnidirectional image after the simulated movement. After this process,
some pixels of the original image may lay out the new image plane and some pixels of the new
image may be empty. In this case, the value of these pixels is estimated as the average value of its 8
nearest neighbours.

Once the new omnidirectional image after the artificial movement has been calculated, different
projections can be obtained. Specifically, in this work, the orthographic view, the panoramic image
and the unit sphere projection are considered. Figure 9 shows the simulated vertical movement of
the catadioptric system. On the one hand, Figure 9a shows the projection of a world point P onto
the original image plane m (plane of projection 1) and onto the new image plane after the simulated
vertical movement m′ (plane of projection 2) obtained using epipolar geometry. F′1 and F′2 are the focal
points of the hyperbolic mirror before and after the movement and F1 and F2 are the focal points of
the camera. On the other hand, Figure 9b shows two sample omnidirectional images and panoramic
projections considering the original image plane (ρ = 0) and the new image plane after the simulated
movement (ρ = 0.4).

In order to estimate the relative height between two scenes, the algorithm simulates several
displacements of the reference image imR by giving different values to ρ, and compares each of them
with the test image imT, considering ρ = 0, i.e., without CRS movement, and using global appearance.
Finally, the algorithm selects the best match. The coefficient ρ associated with this match is a topological
measurement of the vertical distance between images. In the experiments, the coefficient ρ of the
reference image will be given values between −0.3 and 0.3.
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(a)

(b)

Figure 9. (a) Projection of a world point P onto the image plane before and after the simulated vertical
movement and (b) omnidirectional images and their panoramic projections considering the two
different CRS positions.

3.5. Method 5: Matching of SURF Features

The last method makes use of local features extracted from the omnidirectional scenes to estimate
topological height. SURF features are used with this aim [45]. This method has been introduced for
comparative purposes, since using local features is a mature approach to solve the localisation problem.

The method starts extracting and describing the SURF features of the reference and test
omnidirectional scenes. After that, a matching process is carried out; the points of the test image are
matched with the points of the reference image. Considering a purely vertical movement, the points of
the test image will move along the radial direction, towards the centre of the image if the movement is
upwards and towards the periphery if the movement is downwards.

Taking this fact into account, the matching process can be optimized by searching the possible
match along the radial line associated to each point in the test image. Figure 10a shows two sample
omnidirectional images captured indoors and superimposed, with a relative vertical movement
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between them. The SURF points have been extracted from the reference image (red points) and from
the test one (green crosses), described, and matched (yellow lines show the matches). This figure
shows a number of outliers (those matches which are not produced in the radial direction). Figure 10b
shows the same two images, but the matches of the test image SURF points have been searched along
the radial line in the reference image. In these sample images, the local features of the test image tend
to be closer to the centre of the image. This means that the robot has moved upwards to capture the
test image with respect to the reference one.

(a) (b)

Figure 10. SURF points matched in two images captured with a different relative height (a) with no
constraint and (b) searching a match only along the radial line.

If PR = {pR
1 , pR

2 , . . . , pR
n } and PT = {pT

1 , pT
2 , . . . , pT

n} are, respectively, the set of SURF points
extracted and matched from the reference and the test image (where the point pR

j matches the point

pT
j ), then, the average distance between each pair of matched points (Figure 10b) can be considered as

a topological measurement of the height difference between images:

d1 =
1
n
·

n

∑
i=1

dist{pT
i , pR

i }, (14)

where dist{pT
i , pR

i } is the Euclidean distance between pT
i and pR

i . This distance is considered positive
when pT

i is closer to the centre than pR
i and negative otherwise. This indicator is expected to provide

a topological estimation of height. Furthermore, its linearity will depend on how linear the average
displacement of the corresponding SURF points is when the omnidirectional vision system changes
its altitude.

A popular alternative to obtain more robust results from the corresponding landmarks is the use
of RANSAC (RANdom SAmple Consensus) [46]. An example of application in mobile robotics can
be found in [47]. This way, in this paper, we also propose using RANSAC to estimate the relative
topological altitude. Initially, a random subset of matched points can be used to have an estimation of
the relative altitude, d2 , calculated using Equation (14). After that, the rest of matched points can be
used to corroborate this estimation. A pair of matched points corroborates this estimation if the distance
between them is equal to d2 plus or less a specific threshold. After repeating this process a number of
times with different initial subsets of matched points, the estimation d2 which is corroborated by a
higher number of matched points is considered a measurement of the relative altitude.

During the experiments, both methods will be considered. First, the average distance between
all the matched points will be calculated (the estimated height is d1) and second, the RANSAC-based
method will be considered (d2) and the linearity of both methods will be assessed using a variety of
images captured both indoors and outdoors.
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4. Sets of Images

Several complete sets of images captured both indoors and outdoors have been used to test the
five methods proposed in the previous section. They have been captured by ourselves inside and in the
surroundings of the Innova building at Miguel Hernandez University (Spain), and they are available
from [48]. In this section, the main features of these sets of images are presented.

The catadioptric vision sensor used consists of an Imaging Source DFK 21BF04 color camera with
1280× 960 pixels resolution, and a hyperbolic mirror, whose model is Eizoh wide 70. Table 1 shows
the main specifications of the mirror. Additional information on the mirror can be found in [49].

Table 1. Specifications of the mirror.

Parameters Mirror Eizoh Wide 70

Geometry Hyberbolic
Maximum Diameter 70 mm

Height 35 mm
Angle of view above the horizon 60 deg
Angle of view below the horizon 60 deg

The camera has been adapted to a tripod that permits capturing images with a range of 165 cm
along the z-axis of the WRS. Also, the mirror has been mounted above the camera, with their axes
aligned. The distance between the focal points of the mirror and the camera is equal to 65 mm. Figure 11
shows the equipment used. The calibration of the camera has provided the following equation:

f (a) = −212.5180 + 3.200 · 10−3 · a− 8.1262 · 10−6 · a3+

+ 1.4931 · 10−8 · a4.
(15)

As stated in Section 2, this function permits obtaining the coordinates of the retroprojection of
each pixel of the image onto the hyperbolic mirror with respect to the CRS. a represents the distance in
pixels between the pixel considered and the center of the omnidirectional image.

(a) (b) (c)

Figure 11. (a) Hyperbolic mirror, (b) Color CCD Camera and (c) tripod.

To capture the sets of images, 21 positions have been defined on the ground plane indoors and
outdoors. On each position a line parallel to the z-axis of the WRS has been considered and a set
of images has been captured along each vertical line. Outdoors, 10 positions have been defined
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and 12 omnidirectional images per position have been captured, changing only the coordinate along
the z-axis. This coordinate takes values between 125 cm and 290 cm with a gap of 15 cm between
consecutive capture points. Indoors, 11 positions have been defined. The ceiling has limited the
number of images captured from some positions. Table 2 shows the z-coordinate of each capture point
and the number of images captured from each z-coordinate, considering both the oudoor and the
indoor database. Figure 12 shows the position of the different ground positions above which each
set of images has been captured. For each omnidirectional image, a cylindrical and an orthographic
projection have been calculated with 256× 1024 and 256× 256 pixels each.

Table 2. z-coordinates of the capture points of the sets of images and number of images captured from
each z-coordinate.

h z (cm) # Im. Outdoors # Im. Indoors

1 125 10 11
2 140 10 11
3 155 10 11
4 170 10 11
5 185 10 11
6 200 10 11
7 215 10 11
8 230 10 10
9 245 10 8

10 260 10 6
11 275 10 6
12 290 10 5

TOTAL # IMAGES 120 112

(a) (b)
Figure 12. Bird’s eye view of the positions above which each set of images was captured (a) outdoors
and (b) indoors.

About the choice of the capture positions, on the one hand, the outdoor images were captured
both close to and far from buildings, in a parking area and gardens. Some sample omnidirectional
images captured outdoors, from different positions, are shown in Figure 13. On the other hand, indoor
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scenes have been captured in several rooms of the building, including a laboratory, the hall and
common areas. These rooms present very different visual appearances. Figure 14 presents 3 scenes
of different indoor locations. The images have been captured in different times of the day in order
to include different lighting conditions. Also, although the coordinates (x, y) of each set and the
orientation of the system around the z-axis are considered to be constant, the nature of the acquisition
system has introduced small position and orientation changes between capture points. There are
two main phenomena that produce these changes. On the one hand, the camera may suffer a small
swing angle, due to the bending of the tripod. On the other hand, when changing the height of the
tripod, the camera may experience a small change of orientation around the z-axis. In our experiments,
the maximum value of both angles is equal to 3 deg. This way, it constitutes a challenging database
that permits testing the algorithms under real working conditions. The whole set of images and more
information on it is available on [48].

(a) (b) (c)

Figure 13. Sample omnidirectional images captured outdoors from three different locations varying the
relative position to buildings and lighting conditions. (a) Location 8, (b) location 3 and (c) location 6.

(a) (b) (c)

Figure 14. Sample omnidirectional images captured indoors, in three different rooms. (a) Location 7,
(b) location 10 and (c) location 11.

To see the effect that a height change has on the images, Figure 15 shows three images captured
above the same position but with different z-coordinates. As the height increases, most of the visual
information corresponds to the ceiling.
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(a) (b) (c)

Figure 15. Sample omnidirectional images captured indoors, from the same location, varying only the
height of the capture points. (a) z = 125 cm (h = 1); (b) z = 185 cm (h = 5) and (c) z = 275 cm (h = 11).

5. Experiments and Results

This section presents the results of the comparative analysis of the methods we propose to estimate
relative altitude. First, the configuration of the experiments is detailed. Second, the results are shown
and analysed.

5.1. Configuration of the Experiments

In the previous section, five methods are proposed to estimate the altitude using visual information.
On the one hand, the methods 1 and 2 make use of the panoramic image, the method 3 employs the
orthographic view, the method 4 can use any of the three projections: panoramic, orthographic or
unit sphere projection and finally, the method 5 uses the omnidirectional scene. On the other hand,
different appearance descriptors can been used to describe each kind of image projection. Taking this
into account, a total of 12 combinations method + image projection + descriptor are considered during the
experiments, to test their feasibility. Table 3 shows the configuration of each combination, specifying
the height estimation method, the image projection, the description method and the final measurement
of topological relative height obtained.

Table 3. Combinations of height estimation methods, kind of image projection and description method
considered to carry out the experiments. The final topological height measurement is also shown.

Height Estimation Method Image Projection Descriptor Height Indicator

1. Central Cell Correlation Panoramic Image FS d (pixels)
2D-DFT d (pixels)

2. 2D-DFT Vertical Phase Panoramic image 2D-DFT S (deg)

3. Multiscale Analysis Orthographic View FS ∆ f c
2D-DFT ∆ f c

Panoramic Image FS ρ
4. Camera 2D-DFT ρ
Reference System Orthographic View FS ρ
Movement 2D-DFT ρ

Unit Sphere Projection SFT ρ

5. Matching Local Features Omnidirectional Scene SURF d1(pixels)
SURF-RANSAC d2(pixels)

As far as the choice of the reference and test images is concerned, the following three conditions
have been considered in order to broaden the scope of the experiments:
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(c1) The bottom image of each set (h = 1 in Table 2) is considered to be the reference image, and the
rest of images of each set are considered as test images. Since each test image presents a different
altitude with respect to the reference image in each set, this situation allows us to analyse the
linearity of the estimated relative altitude versus the actual relative altitude.

(c2) The image captured at h = 5 (intermediate position, equivalent to z = 185 cm according to
Table 2) is considered to be the reference image, and the rest of images of each set are considered
as test images. This permits studying the behaviour of the methods to estimate both positive and
negative relative altitudes and analysing the symmetry of the behaviour.

(c3) Different reference images and altitude gaps are considered. This permits assessing the behaviour
of the algorithms independently on the image chosen as reference image and on the altitude gap.
For each set of images, we carry out as many comparisons as possible considering different images
as reference. For example, considering a gap ∆h = 2, equivalent to 30 cm, we compare the first
image with the third, the second with the fourth, and so on until carrying out all the experiments
that the range of height permits. Table 4 shows the number of experiments for each height gap and
data set in this condition. All these experiments are carried out both with positive and negative
relative heights.

Table 4. Configuration of the experiments considered in condition (c3). Height gaps considered and
number of experiments for the outdoor and indoor sets of images

∆h ∆z (cm) # Experiments Outdoors # Experiments Indoors

2 30 100 90
4 60 80 68
6 90 60 46
8 120 40 25

5.2. Results

This subsection presents the results of the experiments. First, the computational cost of the
altitude estimation process is shown. Second, the accuracy of the methods to estimate the altitude is
analysed, according to the experimental configurations explained above.

To study the computational cost, the experiments have been carried out using Matlab running
on a 2.4 GHz Intel Core i5 processor. Table 5 shows the results. We analyse separately the necessary
time to describe a reference image (column tRe f in the table) and the necessary time to describe a
test image, compare it with the reference image and estimate the relative height (column tTest in the
table). In general, in the case of global-appearance methods, tRe f tends to be higher than tTest because
describing the reference image implies using different cells in the method 1 (Central Cell Correlation
method), several scales in the method 3 (Multiscale Analysis) and a number of artificial movements
in method 4 (CRS Movement). On the one hand, methods 1 and 2 are the computationally lighter
methods. Both of them need less than 0.08 s to describe a reference image and to estimate the relative
height of a test image. On the other hand, methods 3 and 4 are more expensive to describe each
reference image. Comparing both methods tTest is lower in the case of the method 4, except when using
SFT to describe the images. The combination of the method 4 along with the SFT is, computationally,
the most expensive global-appearance choice. Comparing with the local-features method (method 5),
all the global-appearance methods present a lower tTest, except method 4 with the SFT.

In typical applications, a set of images is usually available initially to create a model of the
environment. Using this model, the height of the robot can be estimated subsequently. This way,
the description of the reference image is a process that can be carried out offline, during the creation of
the model. Also, we have given priority to the precision over the computational cost to describe the
reference image in this work. In a real application, the number of scales, cells or artificial movements
could be reduced depending on the accuracy required. Once the model is available, during the
localization process, the necessary time to estimate the height is tTest. This time is critical so that the
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robot can navigate in real time. Table 5 shows that all the algorithms proposed present a reasonable
tTest to be implemented in a real application. The greatest part of this time is used to describe the test
image. This implies that once described, comparing it with a number of reference images would be a
very quick process.

Table 6 shows the size of the descriptor for every configuration analysed. The table shows
separately the necessary memory to store the descriptor of a reference image (MemRe f ) and the
descriptor of a test image (MemTest). In general, the size of the FS descriptor is similar to the SFT,
and the 2D-DFT is the most compact descriptor. Global-appearance methods tend to produce more
compact descriptors for the test image, compared to the local-features method.

Table 5. Computational cost to describe a reference image, tRe f and to describe a test image and
estimate its relative height, tTest.

Height Estimation Method Image projection Descriptor tRe f (s) tTest (s)

1. Central Cell Correlation Panoramic Image FS 0.0450 0.0011
Panoramic Image 2D-DFT 0.0709 0.0017

2. 2D-DFT Vertical Phase Panoramic Image 2D-DFT 0.0032 0.0662

3. Multiscale Analysis Orthographic View FS 11.5117 0.1908
2D-DFT 10.6323 0.1800

Panoramic Image FS 11.8509 0.0405
4. Camera 2D-DFT 11.3911 0.0385
Reference System Orthographic View FS 11.6408 0.0273
Movement 2D-DFT 11.3409 0.0241

Unit Sphere Proj. SFT 17.8813 0.2985

5. Matching Local Features Omnidirectional Scene SURF 0.0939 0.2354
SURF-RANSAC 0.0978 0.3810

Table 6. Necessary memory to store all the necessary information from a reference image, MemRe f ,
and to store the information from a test image, MemTest.

Height Estimation Method Image Projection Descriptor MemRe f (KB) MemTest (KB)

1. Central Cell Correlation Panoramic Image FS 1312 32
2D-DFT 328 8

2. 2D-DFT Vertical Phase Panoramic Image 2D-DFT 8 8

3. Multiscale Analysis Orthographic View FS 3904 64
2D-DFT 488 8

Panoramic Image FS 1296 16
4. Camera 2D-DFT 162 8
Reference System Orthographic View FS 2496 64
Movement 2D-DFT 312 8

Unit Sphere Proj. SFT 1952 64

5. Matching Local Features Omnidirectional Scene SURF 99 99
SURF-RANSAC 99 99

After studying the computational cost, the accuracy in height estimation will be analysed in the
next paragraphs. The results will be represented graphically using the average value of the estimations
vs the actual height of the test image htest, according to Table 2. Standard deviation bars are also shown
on each data point.

Figure 16 presents the results obtained outdoors in conditions (c1) and (c2) (considering h = 1
and h = 5 as reference images, blue continuous and green dashed curves respectively). In all cases,
the height measurement behaves monotonically increasing as the actual height of the test image rises.
Moreover, when the height of the test image is below the reference image (in the case of hre f = 5),
indicators are negative.
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Figure 16. Results of the experiments in conditions (c1) (blue continuous) and (c2) (green dashed
curves), considering all the combinations method-image projection-descriptor shown in Table 3. Outdoor
images. (a) Method 1 + Pano. Im. + FS. (b) Method 1 + Pano. Im. + 2D-DFT. (c) Method 2 + Pano. Im. +
2D-DFT. (d) Method 3 + Orthogr. View + FS. (e) Method 3 + Orthogr. View + 2D-DFT. (f) Method 4 +
Pano. Im. + FS. (g) Method 4 + Pano. Im. + 2D-DFT. (h) Method 4 + Orthogr. View + FS. (i) Method 4 +
Orthogr. View + 2D-DFT. (j) Method 4 + Unit Sphere Proj. + SFT. (k) Method 5 + SURF. (l) Method 5 +
SURF + RANSAC.
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When the actual height difference is lower than ∆h = 3 (∆z = 45 cm), the standard deviation in
all cases is low enough to determine the relative height between images unequivocally. In general,
the variance of the results is high for test images that were captured far away of the reference image.
This effect is specially pronounced when using panoramic images, both with the central cell correlation
(Figure 16a,b), and with the CRS movement methods (Figure 16f,g). A high variance in the results
means that the indicator is not reliable in those height gap ranges. On the other side, the configurations
that use orthographic projections tend to present a relatively low variance.

The results of the 2D-DFT Vertical Phase method (Figure 16c) present a high variance for those
test images which are distant from the reference image. It is important to highlight that, as presented
in Section 3.2, this method is based on the DFT shift theorem, which assumes that a pure circular shift
of rows occurs. However, when the visual system moves vertically, new information is introduced and
other existing disappears. This fact produces a difference in the 2D-DFT coefficients that implies an
intrinsic error on the vertical phase estimation. As the height gap between images increases, this error
tends to be more significant.

As far as description methods are concerned, in the case of panoramic and orthographic projections,
results do not present remarkable differences between the FS and the 2D-DFT, although the variance
is slightly lower using the first descriptor. About the unit sphere projection, no comparative can be
carried out as the only method to describe this projection is the SFT. Its results show a clear linear
tendency, whereas deviation of the results is high for vertical gaps higher than 60 cm.

As a conclusion, the techniques that use the orthographic view tend to present a quite linear
behaviour with a relatively low variance in outdoor environments. Also, no relevant differences can be
found in the linearity of global-appearance methods comparing to local-features methods. However,
some global-appearance configurations present an improved deviation.

Figure 17 shows the results obtained indoors in conditions (c1) and (c2) (considering h = 1 and
h = 5 as reference images, blue continuous and green dashed curves respectively). To make it possible
a homogeneous comparison, the same scale is used in the equivalent subfigures in Figures 16 and 17.
Compared to the outdoors results, the sensitivity of the height indicators is higher as the slope of the
curves is greater, specially when using the panoramic projection. The main reason for this behaviour is
the relative distance of the elements with respect to the catadioptric vision sensor. Indoors, the elements
of the environment are generally closer to the catadioptric system than outdoors. For this reason, when
the height of the visual system changes, the distribution of the elements in the image suffers a greater
variation, since the angle of incidence of the rays that represent the objects has also a higher variation.
Figure 18 presents the variation of the angle of incidence of two world points P1 and P2 whose distance
to the vision system is different, when the height of this system changes. The figure shows that α1, which
represents the change of the angle of projection of the closest point (P1) is higher than the angle of P2 (α2).
Moreover, the objects in an indoor scene generally present a greater range of distances with respect to
the visual system. For that reason, when the catadioptric system moves vertically, the objects contained
in the scenes experience movements with different magnitude depending on the distance from these
objects to the catadioptric system. Figure 19 shows the panoramic view of two images captured from the
same ground point but with different heights. We can observe that the element highlighted in red suffers
a greater height variation in the scene (h′1 − h1) comparing to the object highlighted in green (h′2 − h2),
which is more distant to the sensor. Also, when the camera is near the ceiling, there is a loss of visual
information as the ceiling is more present in the scene.

Therefore, the results obtained indoors (Figure 17) show how the linear trend tends to degrade
and the standard deviation tends to be higher in the case of the greater height gaps when using the
panoramic image. This behaviour is specially remarkable when the 2D-DFT Vertical Phase method is
used (Figure 17c). The techniques based on the orthographic projection present again a quite linear
behaviour with a relatively low deviation, since they gather elements that are located at a similar
distance from the camera (mainly the floor plane). The use of local-features presents the same general
problems (lack of linearity and relatively high deviation in high altitude gaps).
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Figure 17. Results of the experiments in conditions (c1) (blue continuous) and (c2) (green dashed
curves), considering all the combinations method-image projection-descriptor shown in Table 3. Indoor
images. (a) Method 1 + Pano. Im. + FS. (b) Method 1 + Pano. Im. + 2D-DFT. (c) Method 2 + Pano. Im. +
2D-DFT. (d) Method 3 + Orthogr. View + FS. (e) Method 3 + Orthogr. View + 2D-DFT. (f) Method 4 +
Pano. Im. + FS. (g) Method 4 + Pano. Im. + 2D-DFT. (h) Method 4 + Orthogr. View + FS. (i) Method 4 +
Orthogr. View + 2D-DFT. (j) Method 4 + Unit Sphere Proj. + SFT. (k) Method 5 + SURF. (l) Method 5 +
SURF + RANSAC.
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Figure 18. Variation of the angle of incidence of rays from two points of the environment that are
situated at a different distance when the height of the visual system changes.

Figure 19. Two sample panoramic scenes captured indoors from different heights. The objects contained
in the scenes experience movements with different magnitude.

Finally, Figures 20 and 21 present the results of the experiment in condition (c3) (considering
positive and negative gaps respectively), according to the configurations shown in Table 4. These
results show again a quite linear behaviour, which is similar, in several cases, to the behaviour of
local-appearance methods, and the ability of the algorithms to distinguish between positive and
negative displacements. It is worth highlighting the results of the orthonormal projection because they
present, in general, a quite linear behaviour with a relatively low standard deviation.

In general, outdoor experiments present a more linear tendency comparing to indoors. Also,
the height indicators present clearly higher absolute values when working with indoor images, except
for methods based on the orthographic projection. Multiscale analysis techniques and the CRS applied
to the orthographic projection are the techniques that present a lower difference between indoor and
outdoor images and the standard deviation of their results is relatively low.
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Figure 20. Results of the experiments in conditions (c3) using outdoor (blue continuous curves)
and indoor (green dashed curves) sets of images and considering all the combinations method-image
projection-descriptor shown in Table 3. Only positive vertical height gaps are considered in this experiment.
(a) Method 1 + Pano. Im. + FS. (b) Method 1 + Pano. Im. + 2D-DFT. (c) Method 2 + Pano. Im. + 2D-DFT.
(d) Method 3 + Orthogr. View + FS. (e) Method 3 + Orthogr. View + 2D-DFT. (f) Method 4 + Pano. Im.
+ FS. (g) Method 4 + Pano. Im. + 2D-DFT. (h) Method 4 + Orthogr. View + FS. (i) Method 4 + Orthogr.
View + 2D-DFT. (j) Method 4 + Unit Sphere Proj. + SFT. (k) Method 5 + SURF. (l) Method 5 + SURF +
RANSAC.
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6. Conclusions

In this work, five methods to estimate the height of a mobile platform have been proposed and
a comparative evaluation has been carried out. All the methods use only omnidirectional images
captured by a catadioptric vision sensor mounted on the platform. Four of them are based on
global appearance and, also, an additional method based on local features has been included, with
comparative purposes. A complete and exhaustive set of experiments has been carried out to test the
validity of each approach. Some challenging sets of images captured both indoors and outdoors have
been used to carry out the experiments.

Next, we enumerate the principal conclusions obtained from the results:

• All the methods proposed are able to detect the relative height between the capture points of
two images captured along a vertical line, dealing successfully with little displacements in the
floor plane and small changes in the orientation of the visual system produced during the capture.

• Some of the indicators present a quite linear tendency. In general, this linear tendency is clearer
when using images captured outdoors.

• The sign of the indicators provides information about the direction of the vertical movement.
Therefore, a negative sign indicates that the test image is below the reference image.

• In some cases, the results present a relatively high standard deviation, mainly when the height
gap between the reference and the test images increases. In general, this effect is more clearly
noticeable indoors.

• Techniques based on the orthographic projection of the omnidirectional images present the most
linear behaviour and the lowest deviation, specially with the method based on the Camera
Reference System (CRS) movement. This way, a larger working range can be obtained with
this method.

• The different techniques rely on the movement of the scene objects to estimate the relative height.
Since this movement is quantitatively higher indoors, the indicators obtained with this database
present, in general, higher absolute values. As the orthographic projection mainly gathers the
floor information, the methods based on this projection present less difference between indoor
and outdoor scenes. Therefore, the magnitude of the indicators based on this projection is less
dependent on the capture environment. This is an additional advantage of this kind of projection,
specially when using the CRS method along with the FS.

• In the indoor environment, the slope of some indicators tends to decrease as the height increases.
It happens mainly in the methods based on multiscale analysis and in CRS movement. Also,
the effect is more pronounced when the reference image is hre f = 1, what means estimating higher
height gaps. The effect shown in Figure 19 may have an influence on this behaviour: the objects
in the scene experience movements with different magnitude as the height of the camera changes,
and this effect will be more pronounced in the case of the higher height gaps, leading to a loss of
linearity in these cases.

• When comparing to methods based on local features, only the global-appearance methods that
make use of the panoramic image have shown relatively worse results (as they present a higher
standard deviation in most cases). The other global appearance-methods prove to be an efficient
alternative to local features both considering their computational cost, and the linearity and
standard deviation of the results.

In the light of the above, this work has demonstrated the possibility of using descriptors based
on global appearance to carry out height estimation with accuracy. The results would permit the
development of integrated visual navigation systems as future developments. Provided that a robot
has 4 DOF ((x, y, z) and change of orientation θ around the z-axis), first, an estimation of the coordinates
x, y, and θ could be carried out using the principles presented in the work [26]. Once this position and
orientation is known, the methods exposed in the present paper could be used to estimate topologically
the relative height z.
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Figure 21. Results of the experiments in conditions (c3) using outdoor (blue continuous curves)
and indoor (dashed curves) sets of images and considering all the combinations method-image
projection-descriptor shown in Table 3. Only negative vertical height gaps are considered in this experiment.
(a) Method 1 + Pano. Im. + FS. (b) Method 1 + Pano. Im. + 2D-DFT. (c) Method 2 + Pano. Im. + 2D-DFT.
(d) Method 3 + Orthogr. View + FS. (e) Method 3 + Orthogr. View + 2D-DFT. (f) Method 4 + Pano. Im.
+ FS. (g) Method 4 + Pano. Im. + 2D-DFT. (h) Method 4 + Orthogr. View + FS. (i) Method 4 + Orthogr.
View + 2D-DFT. (j) Method 4 + Unit Sphere Proj. + SFT. (k) Method 5 + SURF. (l) Method 5 + SURF +
RANSAC.
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The methods based on the orthographic projection, both using the Multiscale Analysis and the
CRS Movement, have presented the best performance. It is interesting to highlight that, despite the
fact that the height estimators calculated cannot be considered metric estimators, they go beyond the
classical concept of topological distance because they contain not only connection or neighborhood
relations but they also give us an idea of closeness or farness from the reference image. This is an
interesting conclusion as it would permit using these estimators to build hybrid maps of a large
environment, including height information, using the methods explained in [34].

Future works will focus on this mapping line, since having complete maps of an environment
would be very useful in many applications, when the robot has to estimate this position with more
than 3 DOF. Also, these methods may be complemented to estimate the pose of the mobile platform
when it has 6 DOF, using a unique initial model that contains information on all the necessary DOF.
For this purpose, the SFT seems to be the most suitable descriptor, thanks to its invariance against
rotations around any axis, and a deeper experimentation with this method could be carried out.
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