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Abstract: Tensile properties optimization of AA 5456 aluminum alloy was carried out with
hybrid ultrasonic frequency pulsed variable polarity gas tungsten arc wending (HPVP-GTAW).
An orthogonal method was employed to conduct the experiments, and the tensile properties of AA
5456 aluminum alloy welded joints were measured and analyzed. Regression models were developed
based on the least square estimation by taking tensile strength, yield strength, percent elongation,
and ratio of reduction in area as response functions of variable polarity frequency f L, pulse frequency
f H and a dimensionless parameter ψ, which were calculated by background current Ib, peak current
Ip, and pulse duration δ, respectively. The developed regression equations were checked for validity
by coefficient of correlation r2 and confirmatory experiments. Optimum parameters of HPVP-GTAW
were achieved through the discussion on response surfaces and contour plots drawn using the
regression equations.
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1. Introduction

Aluminum-magnesium alloys, which are classified as non-heat treatable and strain hardening
alloy series, are extensively used in aeronautics and astronautics industries due to their great corrosion
resistance, excellent fatigue properties, and fracture toughness, in addition to the general characteristics
of aluminum alloys [1]. Welding fabrication is one of the key manufacturing methods for aluminum
alloy parts [2]. In general, the variable polarity gas tungsten arc welding (VP-GTAW) process is
popularly employed in the welding of thin aluminum alloy plates, in which the surface oxide film
can be effectively cleaned by cathode atomization in the negative polarity stage and the base metal is
principally melted in positive polarity stage [3].

The strengthening mechanism of non-heat treatable Al-Mg alloys, typical 5xxx series, is mainly
the result of the existence of alloying elements such as magnesium and silicon that play an important
role in precipitation strengthening and solid solution strengthening. Al-Mg 5xxx series contain
more than 3.0% magnesium, while the vaporization of alloying elements will occur during welding
fabrication. This vaporization loss may reduce the mechanical properties of welded joints by affecting
the chemical compositions of molten pool [4–6]. In order to enhance the weld quality of Al-Mg alloys,
metallurgical advantages of welds produced by high-frequency pulsed and magnetic arc oscillation
methods are frequently investigated, including stirring effect on molten pool, refinement of grains,
reduction of distortion, and control of segregation [7–9]. A novel hybrid ultrasonic frequency pulsed
VP-GTAW (HPVP-GTAW) technique has been developed in which ultrasonic frequency pulsed current
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is accurately superimposed in the positive polarity stage during VP-GTAW process. This process has
been employed in aluminum alloy welding, and series experimental results have proven that ultrasonic
frequency pulsed current is beneficial to the elimination of the weld porosity [10], the reduction of
the width of HAZ [11], the increase of the weld penetration [12], the refinement of the microstructure
in weld zone [13–15], and the improvement of the mechanical properties of welded joints [16–18].
However, research work on the optimization of process parameters with HPVP-GTAW has not been
done before.

The purpose of the present study was to optimize the HPVP-GTAW process parameters for
enhancing the mechanical properties of 5xxx aluminum alloy welded joints. Orthogonal design, a
multi-factor and multi-level experimental method, was employed in this study. Using this method,
some representative points were selected to design the experiments for the optimization of indicators,
thereby reducing the number of experiments [19,20]. Regression analysis method was also employed by
regarding tensile strength, yield strength, percent elongation, and ratio reduction in area as indicators,
and regression equations were obtained using the least square estimation. The optimum parameters of
HPVP-GTAW process for AA 5456 aluminum alloy were obtained by analyzing the response surfaces
and contour plots based on the regression equations.

2. Experimental Procedure

2.1. Materials

The base metal used in this study was AA 5456 aluminum alloy plates with a chemical composition
of Mg 5.8, Si 0.4, Mn 0.6, Zn 0.2, Cu 0.1, and Al balance (all in wt %). The gauge dimension was 200 mm
× 100 mm × 3 mm. The filler material selected was 2.4 mm in diameter ER5356, with a chemical
composition of Mg 5.0, Si 0.25, Mn 0.12, Zn 0.1, Cu 0.1, and Al balance (all in wt %). Typical “I” butt
joints of 200 mm in length were produced by hybrid ultrasonic frequency pulsed VP-GTAW process.

2.2. Welding Process Parameters

The schematic diagram of circuit topology and the actual welding current waveform of
HPVP-GTAW are shown in Figure 1. The HPVP-GTAW power source mainly includes constant
current generating circuit, high frequency pulsed current generating circuit (5 KHz–40 kHz high
frequency pulsed current) and full-bridge inverter circuit (0.1 KHz–1 kHz variable polarity current).
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Figure 1. Schematic diagram of circuit topology and output waveform of hybrid ultrasonic frequency 
pulsed variable polarity gas tungsten arc wending (HPVP-GTAW). TL—period of variable polarity 
current; fL = 1/TL—variable polarity frequency; In—negative current; Ib—high-frequency pulsed 
background current; Ip—high-frequency pulsed peak current; TH—period of pulsed current; δ = 
tpp/TH—pulse duration; fH = 1/TH—pulse frequency. 

Figure 1. Schematic diagram of circuit topology and output waveform of hybrid ultrasonic
frequency pulsed variable polarity gas tungsten arc wending (HPVP-GTAW). TL—period of variable
polarity current; f L = 1/TL—variable polarity frequency; In—negative current; Ib—high-frequency
pulsed background current; Ip—high-frequency pulsed peak current; TH—period of pulsed current;
δ = tpp/TH—pulse duration; f H = 1/TH—pulse frequency.
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According to the literature [11–13] and previous research work [14–18], among all the parameters,
the characteristic parameters, such as variable polarity frequency f L, high-frequency pulsed
background current Ib, high-frequency pulsed peak current Ip, pulse duration δ and pulse frequency
f H, have a greater influence on the weld penetration and tensile properties of aluminum alloy welded
joints. Then, the above-mentioned factors were taken as welding process parameters.

2.3. Variation Range of Welding Process Parameters

In order to ensure the uniformity of the input power, it is necessary to simultaneously adjust
Ip, Ib and δ. G.E. Cook [21,22] stated that the average input power by pulsed current is principally
determined by Equation (1).

Pin = A1 Ieff + A2 Iavg + A3 (1)

where Pin is the input power; Ieff is the effective current; Iavg is the average current; and A1, A2, A3 are
the constant values depending on arc length, dimension of electron, type of base metal material, and
shielding gas, etc. In this research, the error range of Ieff and Iavg should be controlled within ±5 A.
Meanwhile, a dimensionless parameter ψ was introduced to represent Ip, Ib, and δ synchronously. ψ is
calculated as,

ψ =
Ip × δ

Ib × (1 − δ)
(2)

A large number of trials have been conducted by changing the above pulsed current parameters
to obtain excellent bead appearance and full penetration. The selected working range of f L, f H and ψ

are listed in Table 1. Other constant welding process parameters are shown in Table 2.

Table 1. Levels of welding process parameters.

Level
Factor A: f L/kHz B: f H/kHz C: ψ

1 0.1 5 0.60 (Ib = 75 A, Ip = 180 A, δ = 0.2)
2 0.5 20 2.17 (Ib = 60 A, Ip = 130 A, δ = 0.5)
3 1 40 7.33 (Ib = 60 A, Ip = 110 A, δ = 0.8)

Table 2. Constant welding process parameters.

Parameter Symbol Value Unit

Filter wire - ER5356 φ2.4 mm -
Electrode - WC20 φ3.0 mm -

Argon flow rate vg 15 L·min−1

Welding velocity vw 150 mm·min−1

Feeding velocity vf 150 mm·min−1

Arc length h 3 mm
Duration ratio tp:tn 8:2 -

Negative polarity current In 120 A

2.4. Selection of Orthogonal Array

In this study, there were three welding parameters, and each parameter possessed three levels.
Therefore, L9(34) orthogonal experimental array was employed, as shown in Table 3.
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Table 3. L9(34) orthogonal experimental array.

No.
Factor A: f L/kHz B: f H/kHz C: ψ Null

1 1 (0.1) 1 (5) 1 (0.6) 1
2 1 (0.1) 2 (20) 2 (2.17) 2
3 1 (0.1) 3 (40) 3 (7.33) 3
4 2 (0.5) 1 (5) 2 (2.17) 3
5 2 (0.5) 2 (20) 3 (7.33) 1
6 2 (0.5) 3 (40) 1 (0.6) 2
7 3 (1) 1 (5) 3 (7.33) 2
8 3 (1) 2 (20) 1 (0.6) 3
9 3 (1) 3 (40) 2 (2.17) 1

2.5. Tensile Property Test

The specimens for tensile testing were cut transverse to the welding direction, and the cutting
sections were selected in the middle of the welding bead as seen in Figure 2a. To ensure accuracy and
repeatability, four tensile specimens were prepared for each experimental condition to calculate the
average value. As shown in Figure 2b, the dimensions of the specimens were processed according
to standard metallographic procedures. Tensile testing was conducted using a computer-controlled
DWD-50E electronic universal tensile testing machine at a strain rate of 3 mm/min.
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Figure 2. Dimensions of tensile specimens: (a) Schematic diagram of welding regarding to rolling
direction and extraction of tensile specimens; (b) Dimensions of flat smooth tensile specimen.

The results of nine groups of orthogonal experiments are listed in the Table 4, where TS is the
tensile strength, YS is the yield strength, PE is the percent elongation, and RA is the ratio of reduction
in area.
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Table 4. Tensile properties of AA 5456 Al alloy welded joints by orthogonal experiment.

No.
Factor A: f L/kHz B: f H/kHz C: ψ TS/MPa YS/MPa PE/% RA/%

1 1 (0.1) 1 (5) 1 (0.6) 311 198 7.7 8.4
2 1 (0.1) 2 (20) 2 (2.17) 335 211 7.7 8.6
3 1 (0.1) 3 (40) 3 (7.33) 318 204 8.1 8.6
4 2 (0.5) 1 (5) 2 (2.17) 339 213 7.6 10.9
5 2 (0.5) 2 (20) 3 (7.33) 340 215 7.7 9.5
6 2 (0.5) 3 (40) 1 (0.6) 334 210 7.5 9.6
7 3 (1) 1 (5) 3 (7.33) 356 226 8.4 9.9
8 3 (1) 2 (20) 1 (0.6) 358 229 9.7 12.8
9 3 (1) 3 (40) 2 (2.17) 334 213 7.6 8.9

3. Regression Analysis

3.1. Development of the Regression Models

Take indicators including tensile strength, yield strength, percent elongation and ratio of reduction
in area as response function of f L, f H and ψ. The response function can be expressed as the following:

y = f ( fL, fH , ψ) (3)

where f L, f H, ψ are independent variables and y is dependent variable. The function f can be developed
through regression analysis. The selected regression model involves the above three factors and the
interaction of high frequency parameters f H and ψ. It can be expressed as,

y = β0 + β1( fL) + β2( fH) + β3(ψ) + β4( fL
2) + β5( fH

2) + β6(ψ
2) + β7(ψ fH) (4)

where β0 is the regression constant; β1, β2, ···, β7 are the regression coefficients. β0, β1, β2, ···, β7 are
unknown parameters to be determined.

3.2. Determination of the Regression Coefficients

In order to determine the regression coefficients, the least square method is used based on the
thought that the regression coefficients can be estimated when the error sum of squares Q is at its
minimum, which can be expressed as Equations (5) and (6).

Q(β0, β1, · · · βp) =
n

∑
i=1

(yi − β0 − β1xi1, · · · , βpxip)
2 (5)

Q(β̂0, β̂1, · · · β̂p) = min
{

Q(β0, β1, · · · βp)
}

(6)

where β̂0, β̂1, · · · β̂p are the estimated values of the regression coefficients; n is the number of the
experiments; p is the number of independent variables. The regression coefficients can be acquired
when the partial differential of Q to β equals to zero, as given by Equation (7).

∂Q(β)

∂β
= 0 (7)

The regression coefficients are obtained through the computer-aided calculation software, and the
developed regression equations are given by Equations (8)–(11).

TS = 304.988 + 37.9527 fL + 1.8339 fH + 2.9213ψ − 11.2392 fL
2 − 0.0395 fH

2 − 0.1002ψ2 − 0.073ψ fH (8)

YS = 195.7674 + 17.3403 fL + 1.0875 fH + 0.2276ψ + 1.3576 fL
2 − 0.0248 fH

2 + 0.0768ψ2 − 0.0203ψ fH (9)
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PE = 8.3494− 0.8327 fL + 0.0518 fH − 0.7894ψ + 1.9906 fL
2 − 0.0018 fH

2 + 0.0756ψ2 + 0.0072ψ fH (10)

RA = 8.7995+ 8.7482 fL + 0.0534 fH − 1.0729ψ− 4.7774 fL
2 − 0.0029 fH

2 + 0.0719ψ2 + 0.0168ψ fH (11)

3.3. Checking the Adequacy of the Regression Equations

It is necessary to examine the fitting degree between the regression equations and experimental
values since the regression equations can be developed by least square method even though the
experimental values are of unordered points. The adequacy of regression equation is evaluated by
coefficient of correlation r2, which reflects the fitting degree of the regression equation and can be
calculated using the following expression [4].

r2 =
∑ (Yp − Yavg)

2

∑ (Ye − Yavg)
2 (12)

where Yp is the predicted value; Yavg is the average value of experimental value; Ye is the experimental
value. The value of r2 ranges from 0 to 1. When r2 tends to 0, it means that the fitting degree of
regression model is the lowest, and the fitting degree increases with the increase of r2. The experimental
values fall on the curve drawn by regression model when r2 approaches to 1, revealing that the
regression equation perfectly fit the actual values. The coefficients of correlation corresponding to
each regression equation are 0.87, 0.88, 0.84 and 0.86, respectively. It is evident that, all the coefficients
of correlation r2 of the developed models tend to 1, so that the developed regression equations
are significant.

3.4. Identification of the Validity of the Regression Equations

Confirmatory experiments have been conducted to identify the validity of the developed
regression equations by comparing the experimental results with the predicted values. The results are
listed in Table 5, where percent deviation is calculated by,

Percent Deviation =
EV − PV

EV
× 100% (13)

where EV is the experimental value; PV is the predicted value. From the results, it can be found that
the predicted values by regression equations fit the experimental results within a reasonable error.
Therefore, the regression equations can be used to predict the response of tensile properties to f L, f H,
and ψ.

Table 5. Validation of regression models by HPVP-GTAW for AA 5456 aluminum alloy.

Num. fL/kHz fH/kHz ψ EV PV Percent Deviation

Tensile strength

1 0.2 10 0.98 324 327.7 1.2
2 0.2 30 0.98 343 331.4 3.3
3 0.7 10 4.2 330 332 0.6
4 0.7 30 4.2 341 331 2.9

Yield strength

1 0.2 10 0.98 213 215.6 1.3
2 0.2 30 0.98 223 232.7 4.2
3 0.7 10 4.2 219 226.3 3.2
4 0.7 30 4.2 240 242.1 0.9
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Table 5. Cont.

Num. fL/kHz fH/kHz ψ EV PV Percent Deviation

Percent elongation

1 0.2 10 0.98 7.7 8.0 3.9
2 0.2 30 0.98 7.9 7.7 2.5
3 0.7 10 4.2 7.6 7.4 2.6
4 0.7 30 4.2 8.0 7.6 5.0

Ratio of reduction in area

1 0.2 10 0.98 9.6 9.8 2.0
2 0.2 30 0.98 9.4 8.9 5.3
3 0.7 10 4.2 10.4 10.3 0.9
4 0.7 30 4.2 10.8 10.5 2.7

4. Results and Discussion

The response surfaces of tensile strength versus f L, f H, and ψ obtained by Equation (8) are
shown in Figure 3. Tensile strength increases significantly as f L changes from 0.1 kHz to 1 kHz in
all conditions of f H and ψ. It reaches the maximum level when f L is 1 kHz. Therefore, 1 kHz is
the optimum parameter of f L in terms of the tensile strength. In order to determine the optimum
parameters of f H and ψ, contour plot and interaction of f H and ψ when f L is 1 kHz are illustrated in
Figure 4. It can be found that the tensile strength monotonically rises when f H is less than 20 kHz,
where it comes to the maximum level. The tensile strength declines as f H varies from the range of
20 kHz to 40 kHz. Therefore, 20 kHz is the optimum parameter of f H. In the point of ψ, tensile strength
increases with an increasing ψ in the condition that f H is constant at 20 kHz. Thus, 7.33 is the optimum
parameter of ψ. As shown in Figures 5 and 6, the changing tendency of yield strength is almost the
same as that of tensile strength, so that they share the same optimum parameters. In summary, the
optimum parameters on both tensile strength and yield strength are f L = 1 kHz, f H = 20 kHz and
ψ = 7.33 (i.e., Ib is 60 A, Ip is 110 A and δ is 0.8).
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The response surfaces and contour plots of percent elongation and ratio of reduction in area are
presented in Figures 7–10, respectively. It is observed that f L and f H regarding to both the percent
elongation and the ratio of reduction in area own the same changing tendency as tensile strength. As a
consequence, 1 kHz and 20 kHz are the optimum parameters of f L and f H, respectively. However, as
shown in Figures 8 and 10, the response of percent elongation and the ratio of reduction in area versus
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ψ show completely different changing tendency. The response values are at the maximum when ψ is
0.6 under the condition that f L is 1 kHz and f H is 20 kHz. As a result, the optimum parameter of ψ is
0.6. In general, the optimum parameters on both percent elongation and the ratio reduction in area are
f L = 1 kHz, f H = 20 kHz and ψ = 0.6 (i.e., Ib is 75 A, Ip is 180 A and δ is 0.2).
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The optimum parameter of ψ to tensile strength and yield strength is 7.33, while that to percent
elongation and ratio of reduction in area is 0.6. With every factor considered comprehensively, it
can be concluded that plastic properties, including percent elongation and ratio of reduction in
area, play a more important role in tensile properties than tensile strength because all the values
of tensile strength in these experiments are more than 300 MPa, which is high enough in most
applications. Plastic properties restrict the further improvement of mechanical properties of AA 5456
aluminum alloy [4]. Therefore, take 0.6 as the optimal parameter of ψ when plastic properties are at
maximum. In conclusion, the optimum parameters, which take tensile properties into comprehensive
consideration, are f L = 1 kHz, f H = 20 kHz and ψ = 0.6 (i.e., Ib is 75 A, Ip is 180 A and δ is 0.2).

The optimum parameters obtained above happen to be Group 8 in the orthogonal experiment, in
which the tensile strength is 358 MPa, the yield strength is 229 MPa, the percent elongation is 9.7%,
and the ratio of reduction in area is 12.8%. Compared with the results of other experiments, the tensile
properties of Group 8 are all at the maximum. The microstructure of weld zone with energy dispersive
spectrometer (EDS) analysis and X ray diffraction (XRD) analysis are shown in Figures 11 and 12,
respectively. The results of XRD analysis and EDS analysis show that the second-phase particles are
identified as intermetallic compound Mg2Al3. Weld zone of AA 5456 alloy is mainly composed of
α (Al) solid solution, around which are uniformly dispersed by β (Mg2Al3) second-phase particles.
The β (Mg2Al3) phase can improve the mechanical properties of AA 5456 alloy through distorting the
crystal lattice around α (Al), and then prevent the dislocation motion [23]. Figure 13 reveals that the
tensile fracture is characteristic of typical ductile feature due to the fact that there are obvious dimple
structures densely distributed in the fracture.
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5. Conclusions

Optimization of HPVP-GTAW process parameters, such as variable polarity frequency f L, pulse
frequency f H, and a dimensionless factor ψ calculated by background current Ib, peak current Ip and
pulse duration δ for AA 5456 aluminum alloy welded joints, have been systematically investigated.
The following conclusions are drawn from the results of this study:

(1) Regression models, which took tensile strength, yield strength, percent elongation, and ratio of
reduction in area as the response functions of process parameters f L, f H, and ψ, were developed
through least square estimation. The regression equations were proved to be effective by checking
the coefficient of correlation r2 and confirmatory experiments.

(2) The optimum parameters of HPVP-GTAW for AA 5456 aluminum alloy were obtained by
analyzing the response surfaces and the contour plots of tensile properties based on regression
equations. The optimum parameters were f L 1 kHz, f H 20 kHz and ψ 0.6 (i.e., Ib 75 A, Ip 180 A,
and δ 0.2).

(3) The maximum tensile properties were obtained with the above optimum parameters, and the
microstructural observation illustrated that there was a great deal of second-phase β (Mg2Al3)
uniformly distributed in the weld zone, which was beneficial to the improvement of the
mechanical properties of AA 5456 aluminum alloy welded joints.
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