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Abstract:



Selective laser sintering (SLS) is a high-resolution additive manufacturing fabrication technique. To fully understand the process, we developed a computational model, using the finite element method, to solve the flow problem of sintering two viscoelastic particles. The flow is assumed to be isothermal and the particles to be in a liquid state, where their rheology is described using the Giesekus and XPP constitutive models. In this work, we assess the parameters that define this problem, such as the initial geometry, the Deborah number and other dimensionless parameters present in the rheological models. In particular, the conformation tensor is considered, which is a measure for the polymeric strain and plays an important role in the crystallization kinetics of semicrystalline polymers like polyamide 12, usually used in SLS.
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1. Introduction


Sintering can be described as the process where material particles are fused together by heat or pressure, without fully melting the material. Materials like metals, ceramics, glass and polymers can be used in this process. In viscous sintering, capillary forces act to minimize the surface area, where the surface tension is the driving force of the flow. Sintering of polymer powder is the basis of selective laser sintering (SLS), an additive manufacturing technique. SLS is a professional fabrication technique, since it enables the production of almost any shape or geometry. To fully exploit the possibilities, we need to understand the sintering process and the accompanying material aspects in detail.



Frenkel [1] was the first to give an analytical solution for the shape evolution of two spherical particles during coalescence. This model uses a mechanical energy balance, where the work done by the surface tension is in balance with the work done by viscous dissipation and is limited by the early stages of sintering. Eshelby [2] corrected this model for continuity, assuming biaxial extensional flow. Pokluda et al. [3] improved the corrected model by taking the change in particle radius into account. To describe the sintering of viscoelastic particles, Bellehumeur et al. [4] extended Frenkel’s approach with the steady-state upper-convected Maxwell (UCM) constitutive model, and Scribben et al. [5] continued this work by describing the transient viscoelastic coalescence of two particles using UCM.



Hopper [6] found an analytical solution for the time evolution of viscous planar flow in a region bounded by a smooth closed curve, driven by surface tension. His work includes the coalescence of two equally-sized cylinders. Richardson [7] extended this for geometries of two unequal cylinders. The work of Crowdy [8] gives exact solutions for the surface evolution of planar multiply-connected domains, including geometries with different particle sizes and pores.



Bellehumeur et al. [9] conducted sintering experiments using different commercial rotational molding-grade resins of high-density polyethylene and linear low-density polyethylene. Hopper’s model predicted the experimental data well, but underestimated the time required for the completion of coalescence. From experiments with acrylic resins, Mazur and Plazek [10] found that models based on Newtonian viscous flows underestimate the initial coalescence rate for this type of polymer, since in the early sintering stages, the deformation is quasi-elastic. Scribben et al. [5] compared their transient UCM model with experiments on isotactic polypropylenes and showed that the model improves the accuracy at short time scales, but does not decrease the error at long time scales.



Towards the computational modeling of viscous sintering, Ross et al. [11] developed a dynamic model of the sintering process of an infinite line of cylinders using the finite element method. The boundary element method was applied by Kuiken [12] to simulate how a moderately curved initial two-dimensional shape transforms itself into a circle, and Van de Vorst [13] used this method to solve a two-dimensional Stokes problem for multiply-connected domains in which the pores can shrink and disappear. Martínez-Herrera and Derby [14] used the finite element method to assess the two-dimensional viscous sintering of particles with different initial ratios of particle radii. Three-dimensional modeling is done by Jagota and Dawson [15,16] using the finite element method, assuming axisymmetry. Furthermore, both Van de Vorst [17] and Martínez-Herrera and Derby [18] extended their original two-dimensional models to axisymmetric problems. Zhou and Derby [19] developed a fully three-dimensional finite element model for viscous sintering. Hooper et al. [20] developed a model using the finite element method to study the sintering of viscoelastic particles using the UCM model. In their work, the initial conditions are chosen to be the quasi-steady-state velocity profile, compatible pressure and extra-stress fields, obtained by solving the conservation equations with all time derivatives set to zero while holding the boundary fixed.



In this work, we study the flow problem of the sintering of polymeric particles with a fully-transient viscoelastic finite element method. We assess the importance of the initial geometry, the Deborah number and other dimensionless parameters present in both the Giesekus and the eXtended Pom-Pom (XPP) constitutive model, all in an axisymmetric geometry of two spherical particles.




2. Problem Description


We consider two evenly-sized liquid polymer particles that are initially connected to each other by a neck. The initial geometry [image: there is no content] is given in Figure 1. The outer surface of the geometry is [image: there is no content], with [image: there is no content] the outwardly-directed unit normal vector. The geometry is assumed to be axisymmetric, where the axial coordinate is denoted by z and the radial coordinate by r, using the convention [image: there is no content]. The symmetry axis is given by [image: there is no content]. The radii of the particles R, together with the initial contact radius [image: there is no content], define the initial geometry. To avoid discontinuities in the slope of the interface, the parameter [image: there is no content] [20] rounds off the neck region. Due to the round off by [image: there is no content], the real initial contact radius becomes [image: there is no content]. These two liquid particles will merge into one larger sphere with radius [image: there is no content], determined by the initial volume of the geometry, under the influence of the surface tension prescribed on surface [image: there is no content].


Figure 1. Geometry [image: there is no content] of the two liquid polymer particles.



[image: Applsci 07 00516 g001]







3. Governing Equations


3.1. Balance Equations and Constitutive Models


The flow behavior of the sintering process of polymer particles as introduced in the previous section, assuming an isothermal flow, can be described using the momentum and mass balance. We assume the fluid to be incompressible, leading to the following set of equations:


ρDuDt=∇·σ+ρgeginΩ,



(1)






∇·u=0inΩ,



(2)




where D()/Dt denotes the material derivative, [image: there is no content] is the fluid density, [image: there is no content] the fluid velocity, [image: there is no content] the Cauchy stress tensor and g and [image: there is no content] the magnitude and direction of gravity, respectively. For the Newtonian constitutive equation, the Cauchy stress tensor is:


[image: there is no content]



(3)




Herein, p is the pressure and [image: there is no content] the viscosity. For viscoelastic fluids, the Cauchy stress tensor can be written as:


[image: there is no content]



(4)




with the viscoelastic extra-stress tensor [image: there is no content] written in the conformation tensor form:


[image: there is no content]



(5)




where [image: there is no content] is the solvent viscosity and G the modulus. For the Giesekus constitutive equation, the evolution of the conformation tensor [image: there is no content] is described by:


[image: there is no content]



(6)




Herein, ()▿=D()/Dt−(∇u)T·()−()·∇u denotes the upper-convected derivative, [image: there is no content] the relaxation time and [image: there is no content] the material parameter defining the amount of anisotropy. For the XPP model [21], the evolution of the conformation tensor [image: there is no content] is given by:


[image: there is no content]



(7)




where [image: there is no content] with q the number of arms at the end of the backbone, [image: there is no content] the relaxation time for the stretch and [image: there is no content] the relaxation time of the backbone orientation.



The conformation tensor [image: there is no content] is, besides the velocity [image: there is no content] and pressure p, the third unknown to be solved as a function of position and time.




3.2. Interface Tracking


The motion of the surface [image: there is no content] is tracked in a Lagrangian way, where the velocity of the surface is defined as:


[image: there is no content]



(8)




Herein, [image: there is no content] is the function that maps the curvilinear coordinates onto the spatial coordinates of the surface, and [image: there is no content] is the material velocity at the surface [image: there is no content].




3.3. Boundary Conditions


Along the surface [image: there is no content] of the fluid, as shown in Figure 1, a constant surface tension [image: there is no content] is prescribed using a Neumann boundary condition:


σ·n=∇s·γIs−poutnonΓ.



(9)




Herein, [image: there is no content] is the surface gradient operator, [image: there is no content] the second-order unit surface dyadic tensor and the outside pressure [image: there is no content]. For a more complex interfacial rheology, the current framework can be adjusted [22]. In the following, we assume [image: there is no content]. To impose symmetry, the velocity in the radial direction at the symmetry axis [image: there is no content] is set to zero:


ur=0onΓsym.



(10)







Finally, the origin [image: there is no content] is fixed to prevent rigid body motion along the z-axis:


uz=0at(0,0).



(11)







Furthermore, to solve the system for a viscoelastic fluid, we initially apply a zero polymer stress to the system by prescribing [image: there is no content].




3.4. Dimensionless Equations


To scale the governing equations, we introduce characteristic constant values from the problem parameters. We define the characteristic length as [image: there is no content], the characteristic velocity as [image: there is no content], the characteristic stress as [image: there is no content], the characteristic pressure as [image: there is no content] and a characteristic time [image: there is no content]. Herein, [image: there is no content] is the zero-strain rate viscosity and is defined as [image: there is no content] for Newtonian fluids and [image: there is no content] for viscoelastic fluids, where [image: there is no content] is the polymer viscosity. A dimensionless variable can be obtained by dividing the original variable by the characteristic value, for example:


[image: there is no content]



(12)







The dimensionless variable is represented by an asterisk superscript.



Scaling the boundary condition of Equation (8) leads to:


[image: there is no content]



(13)







Since both sides are assumed to be of the same order of magnitude, a definition for the characteristic time [image: there is no content] follows, and Equation (13) reduces to:


[image: there is no content]



(14)







Scaling the governing Equations (1) and (2) leads to:


LaDu*Dt*=∇*·σ*+BoeginΩ,



(15)






∇*·u*=0inΩ,



(16)




respectively. The two dimensionless numbers defining this flow problem are the Laplace number [image: there is no content], which is the ratio of the surface tension to the inertial forces, and the Bond number [image: there is no content], which is a measure of the gravity forces versus the surface tension forces. Both of these dimensionless numbers are negligibly small if we use the material parameters of polyamide 12 (PA12) powder (Table 1), which is most often used in SLS, i.e., [image: there is no content] and [image: there is no content]. Equation (15) reduces to:


−∇*·σ*=0inΩ.



(17)







Table 1. Material properties of polyamide 12 (PA12) powder for SLS at T=175∘C (melt).







	
Parameter

	
Symbol

	
Value

	
References






	
Density

	
[image: there is no content]

	
O(840)kg/m3

	
[23,24]




	
Viscosity

	
[image: there is no content]

	
O(400)Pa·s

	
[25]




	
Surface tension

	
[image: there is no content]

	
O(0.03)N/m

	
[24,25]




	
Relaxation time

	
[image: there is no content]

	
O(0.05)s

	
[25]




	
Particle radius

	
R

	
O(3×10−5)m

	
[25]










For the Newtonian case, the scaled Cauchy stress tensor Equation (3) is:


[image: there is no content]



(18)







Scaling the Cauchy stress tensor of viscoelastic fluids Equation (4) leads to:


[image: there is no content]



(19)




where [image: there is no content]. In this work, we choose [image: there is no content]. The dimensionless description of Equation (6), the evolution of the conformation tensor [image: there is no content] for the Giesekus constitutive equation, is:


Dec▿+c−I+α(c−I)2=0.



(20)







Besides the material parameter [image: there is no content], we find the Deborah number [image: there is no content] in Equation (20), which is the ratio of the time scale of the fluid response to that of the process. For the XPP model, the dimensionless description of Equation (7) is:


Dec▿+2ξexp[νtr(c)/3−1]1−3tr(c)c+3ctr(c)−I=0.



(21)







The dimensionless groups in Equation (21) are the Deborah number De as defined before, the ratio between the relaxation time of the backbone orientation and that of the stretch [image: there is no content] and [image: there is no content], which depends on the number of arms q.



For the readability of this document, we omit the asterisks in the notation of the dimensionless variables.





4. Numerical Method


4.1. Moving Domain


To capture the motion of the moving domain [image: there is no content], the position of the surface [image: there is no content] is predicted from previous time steps using:


[image: there is no content]



(22)




for the first time step and:


[image: there is no content]



(23)




for all subsequent time steps. Herein, [image: there is no content] is the prediction of the surface position for time [image: there is no content], and [image: there is no content] and [image: there is no content] are the surface positions at time [image: there is no content] and [image: there is no content], respectively.



Next, the displacement of the fluid mesh is calculated from the surface displacement using a Laplace equation [26]. For the first time step, the mesh velocity in each node is calculated using a first-order backwards differencing scheme,


[image: there is no content]



(24)




whereas for subsequent time steps, a second-order backwards differencing scheme is used:


[image: there is no content]



(25)




Herein, [image: there is no content] is the mesh velocity at time [image: there is no content], and [image: there is no content], [image: there is no content] and [image: there is no content] are the mesh coordinates at time [image: there is no content], [image: there is no content] and [image: there is no content], respectively.



Subsequently, the governing equations and boundary conditions are discretized on the newly-defined domain [image: there is no content]. The momentum and mass balance are multiplied with the test functions [image: there is no content] and q in the appropriate function spaces:


v,−∇·σ=0,forallv,



(26)






q,∇·u=0,forallq.



(27)







Note that [image: there is no content] defines the inner product on [image: there is no content]. Using partial integration and Gauss’ theorem, we obtain:


(∇v)T,σ=v,σ·nΓ,forallv,



(28)






q,∇·u=0,forallq.



(29)




Herein, [image: there is no content] defines the inner product on [image: there is no content]. The right-hand side of Equation (28) can be filled using Equation (9), which is rewritten using partial integration and Weatherburn’s surface divergence theorem [27],


v,σ·nΓ=−(∇sv)T,γIsΓ+(∇s·n)n,γIs·vΓ+b,γIs·v∂Γ,forallv,



(30)




where [image: there is no content] is the binormal and [image: there is no content] defines the inner product on the boundary of the surface [image: there is no content], i.e., the locations where the surface [image: there is no content] meets the symmetry axis [image: there is no content]. Since the surface tension always acts tangential to the surface, [image: there is no content]. Furthermore, due to the area being zero on [image: there is no content], [image: there is no content]. This leads to the following weak form:


(∇v)T,σ=−(∇sv)T,γIsΓ,forallv,



(31)






q,∇·u=0,forallq.



(32)







Next, we enter the Cauchy stress tensor into the weak formulation of the momentum balance. For the Newtonian fluid, the weak form is discretized according to the Galerkin approach and becomes: find [image: there is no content] and p, such that:


(∇v)T,2μD−∇·v,p=−(∇sv)T,γIsΓ,forallv,



(33)






q,∇·u=0,forallq,



(34)




using appropriate spaces for [image: there is no content], p, [image: there is no content] and q. Herein, [image: there is no content]. For both viscoelastic constitutive models, we employ the DEVSS-Gscheme [28,29,30] for stability. The SUPGmethod [31] and the log-conformation approach [32,33] are used to describe the evolution equation for the conformation tensor. The weak form becomes: find [image: there is no content], p, [image: there is no content] and [image: there is no content], such that:


(∇v)T,2ηsD+θ(∇u−GT)+τ−∇·v,p=−(∇sv)T,γIsΓ,forallv,



(35)






q,∇·u=0,forallq,



(36)






d+τ(u−um)·∇d,DsDt−h(∇u)T,s=0,foralld,



(37)






H,−∇u+GT=0,forallH,



(38)




using appropriate spaces for [image: there is no content], p, [image: there is no content], [image: there is no content], [image: there is no content], q, [image: there is no content] and [image: there is no content]. Herein, [image: there is no content], [image: there is no content] is the DEVSS-G parameter, [image: there is no content] the SUPG parameter, [image: there is no content] the mesh velocity and [image: there is no content] a function as defined in Hulsen et al. [33]. For all simulations, the DEVSS-G parameter is chosen to be [image: there is no content], and the SUPG parameter is [image: there is no content] with h the element size in the direction of the velocity and U the local characteristic velocity. Note that we use an implicit stress formulation, as introduced by D’Avino and Hulsen [34].



Finally, the surface position is corrected using a backward Euler scheme for the first time step:


[image: there is no content]



(39)




and a second-order backwards differencing scheme for all subsequent time steps,


[image: there is no content]



(40)




where the movement of the surface is Lagrange based according to Equation (8).




4.2. Remeshing and Projection


The mesh is generated using Gmsh [35], an open source mesh generator. The deformation of the mesh is measured using the criterion as defined by Hu et al. [36]


[image: there is no content]



(41)






[image: there is no content]



(42)




Herein, [image: there is no content] is the element area, [image: there is no content] is the element aspect ratio, [image: there is no content] is the maximum length of the sides of the element and subscript 0 indicates the initial value. Once the mesh is too deformed due to large deformations of the geometry, i.e., if either [image: there is no content] or [image: there is no content], remeshing is performed using Gmsh while the coordinates of the surface nodes are retained.



After remeshing, the fields [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] on the new mesh are necessary to solve the evolution equation for the conformation tensor. A projection problem is solved to obtain these solutions on the new mesh. We consider the projection of the velocity field [image: there is no content] to illustrate the method: field [image: there is no content] is defined as [image: there is no content] on the old mesh, and similarly, [image: there is no content] on the new mesh. Herein, [image: there is no content] and [image: there is no content] are the shape functions, and [image: there is no content] and [image: there is no content] are the nodal values. To find the nodal values [image: there is no content], the following problem is solved:


[image: there is no content]



(43)









5. Validation


Hopper [6] derived an analytical solution for the time evolution of a creeping viscous incompressible planar flow in a finite region, bounded by a smooth closed curve and driven by surface tension only. One of the geometries gives the exact solution of the coalescence of two equal cylinders. To validate our model, we simulated the two-dimensional equivalent of the axisymmetric problem as described before with [image: there is no content] and [image: there is no content]. We used the Newtonian constitutive equation with [image: there is no content] and [image: there is no content] for the simulations. The results of the contact radius y in time t of the FEM calculations (meshes M1 to M4 in Table 2) are compared to Hopper’s solution and are shown in Figure 2. Note that the dimensionless time and contact radius are scaled using [image: there is no content] instead of R and that Hopper’s dimensionless time is set to [image: there is no content] if the contact radius [image: there is no content]. As a demonstration of the remeshing procedure discussed in Section 4.2, the dynamic evolution of meshes M1 and M4 is shown in Figure 3.


Figure 2. The evolution of the contact radius y in time t of two equal cylinders, obtained by FEM analyses with different surface meshes and by the analytical solution of Hopper [6], with the initial contact radius [image: there is no content] at time [image: there is no content].



[image: Applsci 07 00516 g002]





Figure 3. Dynamic evolution of the sintering process at times t=[0,0.5,1,2,4] for M1 (a) and M4 (b).



[image: Applsci 07 00516 g003]






Table 2. Mesh resolution of different surface meshes used in the convergence study.







	
Mesh

	
[image: there is no content]

	
[image: there is no content]

	
Number of Nodes on the Surface






	
M1

	
1.05

	
0.015

	
59




	
M2

	
0.7

	
0.01

	
67




	
M3

	
0.35

	
0.005

	
119




	
M4

	
0.175

	
0.0025

	
223










The FEM simulations are performed on four different meshes to study mesh convergence, as given in Table 2. The relative [image: there is no content]-error of the contact radius y is determined from 23 measurements in time interval [image: there is no content] (red dots in Figure 2), defined as:


[image: there is no content]



(44)




where [image: there is no content] is the solution of one of the meshes given in Table 2 and [image: there is no content] is the analytical solution. The convergence plot is shown Figure 4. The convergence of the error of the contact radius is third-order, which is as expected from the second-order elements. We will continue using the h-values of the finest mesh M4 in the rest of the work.


Figure 4. Mesh convergence for the contact radius y.



[image: Applsci 07 00516 g004]







6. Results


6.1. Effect of the Initial Geometry


From the governing equations of the Newtonian constitutive behavior follows that the initial geometry and configuration are the only factors that affect the flow. To analyze the influence of different initial contact radii, we define four geometries: [image: there is no content] and yn=[0.125,0.25,0.4,0.5]. Without loss of generality, we set the viscosity [image: there is no content] and the surface tension [image: there is no content]. The results are shown in Figure 5, where the contact radius y is depicted in time t.


Figure 5. The evolution of the contact radius y in time t of two equal spheres with different initial contact radii yn=[0.125,0.25,0.4,0.5], using the Newtonian constitutive equation.



[image: Applsci 07 00516 g005]






Subsequently, we shift the graphs of [image: there is no content], [image: there is no content] and [image: there is no content] in time such that the initial contact radii coincide with the curve of [image: there is no content]. The results are given in Figure 6, in which we see that all lines overlap. This indicates that the shape evolution of the contact radius y is independent of the flow history, if the round off parameter [image: there is no content] [20] is used.


Figure 6. The evolution of the contact radius y in time t of two equal spheres with different initial contact radii yn=[0.125,0.25,0.4,0.5], using the Newtonian constitutive equation. The lines of [image: there is no content], [image: there is no content] and [image: there is no content] are shifted in time such that the initial contact radii coincide with the graph of [image: there is no content].



[image: Applsci 07 00516 g006]






Next, we keep the initial contact radius constant [image: there is no content], and we change the round off parameter Rn=[R×(yn/R)3,(R/2)×(yn/R)3,(R/4)×(yn/R)3]. The results are given in Figure 7, where the contact radius y is depicted in time t. Since all curves coincide, we can conclude that the influence of the round off parameter [image: there is no content] on the shape evolution of the contact radius y is negligible.


Figure 7. The evolution of the contact radius y in time t of two equal spheres with initial contact radius [image: there is no content] and different round off parameters Rn=[R×(yn/R)3,(R/2)×(yn/R)3,(R/4)×(yn/R)3], using the Newtonian constitutive equation.



[image: Applsci 07 00516 g007]






Furthermore, the curvature [image: there is no content] at point (0,y) at the surface of the neck is shown in time t for different round off parameters Rn=[R×(yn/R)3,(R/2)×(yn/R)3,(R/4)×(yn/R)3] in Figure 8. Following Dantzig and Tucker [37], the curvature is calculated from the contour curve [image: there is no content] of surface [image: there is no content], using:


[image: there is no content]



(45)




with [image: there is no content] and [image: there is no content] the two principal radii of curvature:


[image: there is no content]



(46)






[image: there is no content]



(47)




Herein, [image: there is no content] and [image: there is no content]. From the curvature, the Laplace pressure [image: there is no content] can be calculated using [image: there is no content], which is equal to the radial component of the Cauchy stress tensor [image: there is no content] at the surface. From Figure 8, it follows that the curvature [image: there is no content] at point (0,y) increases with respect to the initial geometry until it reaches a maximum value and subsequently decreases. This holds for all different values of the round off parameter Rn=[R×(yn/R)3,(R/2)×(yn/R)3,(R/4)×(yn/R)3]. This behavior is depicted in Figure 9, where the contour line [image: there is no content] of the two particles is shown at times t=[0,0.08,0.2], using [image: there is no content]. Herein, [image: there is no content] is the time at which the curvature [image: there is no content] reaches its maximum value. From this, we can conclude that the choice of the round off parameter [image: there is no content] strongly influences the evolution of curvature and, therefore, the evolution of the local stresses in the material.


Figure 8. The evolution of the curvature [image: there is no content] in time t of two equal spheres with initial contact radius [image: there is no content] and different round off parameter Rn=[R×(yn/R)3,(R/2)×(yn/R)3,(R/4)×(yn/R)3], using the Newtonian constitutive equation.



[image: Applsci 07 00516 g008]





Figure 9. The contour plot of [image: there is no content] at time t=[0,0.08,0.2] with initial contact radius [image: there is no content] and round off parameter [image: there is no content], using the Newtonian constitutive equation (a), and a zoom of the neck region (b).



[image: Applsci 07 00516 g009]







6.2. Effect of the Rheology


Keeping the initial geometry constant, we assess the effect of the rheological model on the flow behavior of the system. We use a geometry of two equal particles [image: there is no content] with initial contact radius [image: there is no content] and round off parameter [image: there is no content]. We set the zero-shear-rate viscosity [image: there is no content], solvent viscosity [image: there is no content] and surface tension [image: there is no content]. First, the Deborah number is changed by varying the relaxation time λ=[0.01,0.1,0.5,1], resulting in Deborah numbers De=[0.01,0.1,0.5,1], respectively. The results are shown in Figure 10, where the contact radius y is depicted in time t, using the Giesekus constitutive model with [image: there is no content].


Figure 10. The evolution of the contact radius y in time t for different Deborah numbers De=[0.01,0.1,0.5,1], using the Giesekus model with [image: there is no content]. The result of the Newtonian behavior is included, as well.



[image: Applsci 07 00516 g010]






With increasing Deborah number, the initial increase in contact radius between [image: there is no content] and [image: there is no content] gets larger. By keeping the viscosity constant and varying the relaxation time, the modulus is changed G=ηp/λ=[100,10,2,1], respectively. Initially, [image: there is no content], and from this, it follows that [image: there is no content] and [image: there is no content] where [image: there is no content] is the Finger tensor. Since [image: there is no content] scales with [image: there is no content], which is kept constant, the Finger tensor [image: there is no content] has to increase for decreasing modulus G. Consequently, the initial deformation increases for increasing Deborah number as shown in Figure 10. The deformation is not completely instantaneous, because [image: there is no content]. From [image: there is no content] onwards, the shape transition gets slower for increasing Deborah number. From simulations, it follows that the same behavior holds for the XPP constitutive model.



In Figure 11, the curvature [image: there is no content] at point (0,y) at the surface of the neck is shown in time t for different Deborah numbers De=[0.01,0.1,0.5,1], using the Giesekus model with [image: there is no content]. As is shown for the Newtonian constitutive behavior, the curvature [image: there is no content] at point (0,y) increases with respect to the initial geometry until it reaches a maximum value and subsequently decreases for all different values of the Deborah number De=[0.01,0.1,0.5,1], as well. The maximum value of the curvature [image: there is no content] and the time t of the maximum depend on the value of the Deborah number De.


Figure 11. The curvature [image: there is no content] at point (0,y) at the surface of the neck in time t for different Deborah numbers De=[0.01,0.1,0.5,1], using the Giesekus model with [image: there is no content]. The result of the Newtonian behavior is included, as well.
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Furthermore, we assess the conformation tensor [image: there is no content], which is a measure for the polymeric strain in the system and plays an important role in the crystallization kinetics of semicrystalline polymers like PA12. The dynamic evolution of the trace of the conformation tensor [image: there is no content], using the Giesekus constitutive model with [image: there is no content] and [image: there is no content], is shown in Figure 12. For visualization, the color bar ranges from three to eight, but the values locally exceed these numbers.


Figure 12. Dynamic evolution of the trace of the conformation tensor [image: there is no content] at t=[0.01,0.5,1,2,5], using the Giesekus model with [image: there is no content] and [image: there is no content]; note that the real values locally exceed the values shown in the color bar (see Figure 13).



[image: Applsci 07 00516 g012]






From Figure 12, it can be seen that elevated polymeric strains are present throughout the contact area between the two particles. This might lead to crystalline structures in large parts of the system and influences the material characteristics of sintered products. The trace of the conformation tensor [image: there is no content] at point (0,y) at the surface of the neck in time t for different Deborah numbers De=[0.01,0.1,0.5,1], using the Giesekus model with [image: there is no content], is shown in Figure 13. The polymeric strain increases with increasing Deborah number and is negligibly small for [image: there is no content].


Figure 13. The trace of the conformation tensor [image: there is no content] at point (0,y) at the surface of the neck in time t for different Deborah numbers De=[0.01,0.1,0.5,1], using the Giesekus model with [image: there is no content].
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Furthermore, decreasing the round off parameter [image: there is no content] leads to an increase in the polymeric strain, as shown in Figure 14 for different Rn=[R×(yn/R)3,(R/2)×(yn/R)3], using the Giesekus model with [image: there is no content] and [image: there is no content]. Looking at a cross-section of the contact area between the two particles, as shown in Figure 15, where the trace of the conformation tensor [image: there is no content] is given versus the coordinate of the contact area [image: there is no content] at time [image: there is no content] for different Rn=[R×(yn/R)3,(R/2)×(yn/R)3], using the Giesekus model with [image: there is no content] and [image: there is no content], we can conclude that the increase in polymeric strain is not just a local effect. The fluctuations in the trace of the conformation tensor [image: there is no content] disappear if a finer mesh is used. Although we possibly underestimate the polymeric strain in the system, we continue using the round off parameter [image: there is no content] in the remaining part of this work.


Figure 14. The trace of the conformation tensor [image: there is no content] at point (0,y) at the surface of the neck in time t for different round off parameters Rn=[R×(yn/R)3,(R/2)×(yn/R)3], using the Giesekus model with [image: there is no content] and [image: there is no content].
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Figure 15. The trace of the conformation tensor [image: there is no content] versus the coordinate of the contact area [image: there is no content] at time [image: there is no content] for different Rn=[R×(yn/R)3,(R/2)×(yn/R)3], using the Giesekus model with [image: there is no content] and [image: there is no content].
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In the Giesekus constitutive model, the anisotropy parameter [image: there is no content] is, besides the Deborah number De, another dimensionless parameter that determines the flow behavior of the system. The maximum values of the trace of the conformation tensor [image: there is no content] for different Deborah numbers De=[0.01,0.1,0.5,1] and anisotropy parameter α=[0.1,0.1875,0.275,0.3625,0.45] are shown in Figure 16. The maximum values of the trace of the conformation tensor [image: there is no content] occur during the start-up of the flow, which is primarily driven by elastic effects. The elastic stresses are determined by the modulus G and the strain. The anisotropy parameter [image: there is no content] determines the non-linear relaxation, and therefore, [image: there is no content] has only a small influence on the stresses during the start-up of the flow.


Figure 16. The maximum value of the trace of the conformation tensor [image: there is no content] for different Deborah numbers De=[0.01,0.1,0.5,1] and anisotropy parameter α=[0.1,0.1875,0.275,0.3625,0.45], using the Giesekus model.
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In Figure 17, the three entries of the trace of the conformation tensor [image: there is no content], [image: there is no content] and [image: there is no content] are shown separately for the highest value of the trace, using the Giesekus model with [image: there is no content] and α=[0.1,0.1875,0.275,0.3625,0.45]. The value of [image: there is no content] is smaller than one, which means that the polymer chains are compressed in the axial direction. Furthermore, [image: there is no content] is the highest value, which means that the polymer chains are stretched the most in the radial direction. The value of [image: there is no content] is in the order of four, which is expected from the value of the tangential component of the Finger tensor [image: there is no content] at point (0,y) at the surface of the neck.


Figure 17. The three entries of the trace of the conformation tensor [image: there is no content], [image: there is no content] and [image: there is no content] for the maximum value of the trace for different α=[0.1,0.1875,0.275,0.3625,0.45], using the Giesekus model with [image: there is no content].
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In the XPP constitutive model, both the ratio between the relaxation time of the backbone orientation and that of the stretch [image: there is no content] and the number of arms q are dimensionless parameters defining the rheological behavior of the system, apart from the Deborah number De. In Figure 18 and Figure 19, the maximum values of the trace of the conformation tensor [image: there is no content] for different Deborah numbers De=[0.01,0.1,0.5,1] are shown for ξ=[1,2,4,6,8,10,12], with [image: there is no content], and q=[2,4,6,8,10,12], with [image: there is no content], respectively. Both the relaxation time ratio [image: there is no content] and the number of arms q influence only the results with the highest Deborah numbers De=[0.5,1]. With increasing ratio [image: there is no content], the relaxation time of the stretch [image: there is no content] decreases with respect to the relaxation time of the backbone orientation [image: there is no content]. Therefore, the polymers are harder to stretch, and the maximum value of the trace of the conformation tensor [image: there is no content] decreases. Increasing the number of arms q leads to an increase in the relaxation time of the stretch [image: there is no content]. Since the polymer chains are easier to stretch, the maximum value of the trace of the conformation tensor [image: there is no content] increases with increasing number of arms q. This effect is visible only for the number of arms [image: there is no content].


Figure 18. The maximum value of the trace of the conformation tensor for different Deborah numbers De=[0.01,0.1,0.5,1] and the ratio between the relaxation time of the backbone orientation and that of the stretch ξ=[1,2,4,6,8,10,12], using the XPP model with [image: there is no content].
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Figure 19. The maximum value of the trace of the conformation tensor for different Deborah number De=[0.01,0.1,0.5,1] and the number of arms q=[2,4,6,8,10,12], using the XPP model with [image: there is no content].



[image: Applsci 07 00516 g019]








7. Conclusions


We developed a numerical model to study the basics of the sintering process of polymer powder for additive manufacturing (SLS). The isothermal flow is solved using the finite element method for fluids following Newtonian, Giesekus and XPP constitutive behavior on an axisymmetric geometry of two spherical particles, initially connected by a neck with a certain radius.



The computational model has been validated with the analytical solution as described by Hopper [6], which gives the time evolution of a creeping viscous incompressible planar flow of a finite region, bounded by a smooth closed surface and driven by surface tension. Furthermore, convergence towards the analytical solution is shown for different surface mesh sizes, where the mesh with the smallest elements gives the best match and is used for all of the following simulations.



For Newtonian fluids, the shape transition depends only on the initial geometry, as can be concluded from the dimensionless description of the problem. From simulations where the radii of the spheres are kept constant and the initial neck radius is changed, we can conclude that the shape evolution of the contact radius is independent of the flow history if the round off parameter [image: there is no content] [20] is used. Changing the round off parameter has no visible effect on the shape evolution of the contact radius, but strongly influences the evolution of the curvature of the surface and local stresses in the system.



Furthermore, we assessed the effect of different dimensionless numbers in both the Giesekus and XPP constitutive model on the shape and conformation tensor. With respect to the shape transition of the system, we found that increasing the Deborah number, i.e., increasing the relaxation time while keeping the viscosity unchanged, leads to a decrease in modulus and subsequently to an increase in initial deformation. Furthermore, the curvature of the surface in the neck region, where the two particles are connected, increases in time until it reaches a maximum value, after which it decreases. This behavior is shown for all different values of the Deborah number, as well as for the Newtonian constitutive model. The conformation tensor, which is a measure for the polymeric strain, plays an important role in the crystallization kinetics of semicrystalline polymers. The dynamic evolution of the trace of the conformation tensor showed that elevated polymeric strains are present throughout the contact area between the two particles, influencing the material characteristics of sintered products. Decreasing the round off parameter [image: there is no content] leads to an increase of polymeric strain. The anisotropy parameter in the Giesekus model shows a negligible effect on the maximum value of the trace of the conformation tensor. The relaxation time ratio and the number of arms in the XPP model influence only the results with higher values of the Deborah number. Decreasing the relaxation time ratio and increasing the number of arms both increase the relaxation time of the stretch, leading to a higher maximum value of the polymeric strain. Note that we possibly underestimated the polymeric strain in the system, since we used the round off parameter [image: there is no content] [20].
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