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Abstract: This paper proposes the equivalence between fuzzy Proportional-Integral-Derivative (PID)
controllers and conventional PID controllers. A well-designed conventional PID controller, with the
help of the proposed method, can be rapidly transformed to an equivalent fuzzy logic controller (FLC)
by observing and defining the operating ranges of the input/output of the controller. Furthermore,
the knowledge base of the proposed equivalent fuzzy PID controller is represented as a cube fuzzy
associative memory (FAM), instead of a combination of PD-type and PI-type FLCs in most research.
Simulation results show the feasibility of the proposed technique, both in continuous and discrete
time. Since the design techniques of conventional linear PID controllers have matured, they can act
as preliminary expert knowledge for nonlinear FLCs designs. Based on the proposed equivalence
relationship, the designer can further tune the membership functions of fuzzy variables in the
control rules to exhibit the nonlinearity of a FLC and yield more satisfactory system responses in an
efficient way.
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1. Introduction

Proportional-Integral-Derivative (PID) controllers are widely used in industrial process control.
The three-mode controller contains a proportional, an integral, and a derivative term. The popularity
of a PID controller can be attributed to its good performance and functional simplicity, which allows
engineers to operate it in a simple and straightforward manner. For example, the three controller
gains can be chosen independently by an engineer, based on one’s experience or through some simple
selection methods such as the classical tuning rules proposed by Ziegler-Nichols [1]. For simplicity of
the controller design, a PI or PD controller are also popular for practical applications. A PI controller
can add damping to a system and reduce steady-state error, but yields penalized rise time and settling
time. A PD controller also adds damping and reliably predicts and reduces large overshoots, but does
not improve the steady-state error. Thus, for complete design considerations, a PID controller should
be employed to obtain a desirable system response in settling time, steady-state error, and overshoot.

On the other hand, since Lotfi Zadeh rediscovered and promoted fuzziness in 1965, the subsequent
two fuzzy inference techniques proposed by Mamdani [2] and Sugeno [3] have inspired research in
fuzzy logic controllers (FLC). The heuristic fuzzy rules, which reflect the experience of human experts,
can be applied to plants that are difficult to model mathematically. The most common FLCs are
PI-type or PD-type controllers [4–6], which possess the same characteristics as traditional PI or PD
controllers, respectively. Moreover, they exhibit superior applicability compared with traditional PI or
PD controllers [7].
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The FLC commonly outperforms the corresponding PI, PD, or PID controller because a FLC is a
nonlinear controller, while a PI, PD, or PID controller is linear. This raises the equivalence problem
between a fuzzy PID controller and a conventional PID controller. It is well known that the design
of fuzzy rules for a FLC requires expert knowledge, and those who are skilled in conventional PID
controller design are then qualified as the experts. For a well-tuned conventional PID controller, design
work is saved by replacing it with an equivalent linear FLC, then improving the performance over a
conventional PID controller by slightly modifying the fuzzy rules.

Moon [8] revealed that when a PI controller is given, an FLC output is identical to that of the
PI controller by using specified fuzzy logic operations. However, Moon’s design is limited to PI
controllers, and the design procedure is not clear enough. Several studies have investigated fuzzy
PID controller structures, by taking different combinations of the fuzzy PID structural elements [9–11].
This involves a large number of parameters in defining the fuzzy rule base. Manikandan et al. [12]
presented a design for an equivalent fuzzy PID controller from the conventional PID controller, but the
tuning procedure was too complicated and the resulting FLC was not purely linear according to the
control surface view of the study. Therefore, the equivalence problem between different systems is
very crucial to many research fields [13].

The objective of the study is to extend the significant results derived by Moon [8] by examining
the equivalence relationship and design procedure between a traditional PID controller and its
corresponding equivalent FLC. This research proposes an equivalent fuzzy PID controller which
has a simple PID structure design with a 3-dimensional fuzzy rule table, instead of the combination
of different fuzzy PID structural elements or a hybrid controller structure [14]. Moreover, to achieve
optimal control performance for a FLC, some artificial intelligent techniques such as Genetic Algorithm
and Neural Network are efficient approaches [15,16]. This inspires us in the future to propose nonlinear
factors for tuning the membership functions to develop an optimal fuzzy PID controller design with
less parameters.

This study presents the equivalent fuzzy PID controller design (Section 2), followed by the
simulation results of Matlab/Simulink for verifying the proposed design (Section 3). Finally, the
concluding remarks and implementation issues (Section 4) are discussed.

2. The Equivalent Fuzzy PID Controller Design

The fuzzy PID controller design proposed is equivalent to a conventional PID controller, and
is derived from the equivalence equations. First, for a conventional PID controller, the equation for
output u(t) in the time domain is

u(t) = KPe(t) + KI

∫
e(t)dt + KD

de(t)
dt

, (1)

where the controller provides a proportional term, an integration term, and a derivative term. The
output u(t) and the three inputs e(t),

∫
e(t), and

.
e(t) can be thought as fuzzy variables in the FLC

design. It is assumed that the operating ranges for u(t), e(t),
∫

e(t), and
.
e(t) are ORu = [−au, au],

ORe = [−ae, ae], ORi = [−ai, ai], and ORd = [−ad, ad], respectively. Figure 1 shows the membership
functions for graphically defining the four fuzzy variables.

As shown in Figure 1, the m fuzzy sets are equally-spaced and triangular-shaped for each input
fuzzy variable e(t),

∫
e(t), or

.
e(t). On the other hand, the output fuzzy variable u(t) is fuzzified by

3m − 2 singleton membership functions. Let ek, ik, dk, and uk denote the center of fuzzy sets Ek, Ik, Dk,
and Uk, respectively, so that we obtain the following equations

ek =
(2k − m − 1)

m − 1
ae, ik =

(2k − m − 1)
m − 1

ai, dk =
(2k − m − 1)

m − 1
ad, 1 ≤ k ≤ m (2)

uk =
(2k − 3m + 1)

3(m − 1)
au, 1 ≤ k ≤ (3m − 2). (3)
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We further define the distance between uk and uk+1 as

∆u = uk+1 − uk, (4)

which will be used in later equation simplification. Based on the above fuzzy variables definition,
the expression of antecedent (IF) and consequent (THEN) for each fuzzy rule is defined as

IF e(t) is Ei and
∫

e(t) is Ij and
.
e(t) is Dk THEN u(t) is Ul , (5)

where three input fuzzy variables e(t),
∫

e(t), and
.
e(t) are taken into consideration simultaneously.

In the proposed linear fuzzy PID design, the overall fuzzy rules for the three-by-one system can be
represented by the sliced cube fuzzy associative memory (FAM), as shown in Figure 2. Furthermore,
we have the following equation related to Equation (5)

l = i + j + k − 2. (6)
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Subsequently, verification of the proposed design is done by applying the Sugeno-style inference,
the resulting controller output u(t) for controller inputs e(t),

∫
e(t), and

.
e(t) can be calculated by

carrying out an aggregation of the form

u(t) =
∑ ul × (µEi (e(t))× µIj(

∫
e(t))× µDk (

.
e(t)))

∑ (µEi (e(t))× µIj(
∫

e(t))× µDk (
.
e(t)))

, 1 ≤ i, j, k ≤ m, l = i + j + k − 2, (7)

where the product operation rule is used for the fuzzy logic implications and the center of gravity
(COG) is applied for the defuzzification process. It is determined that there is at most, eight rules
to be fired for any controller inputs e(t),

∫
e(t), and

.
e(t). To clarify, consider the crisp input e(t)

corresponding to the membership functions Ei and Ei+1 to the degrees of p and 1 − p, respectively.
Similarly, consider that

∫
e(t) maps the membership functions Ij and Ij+1 to the degrees of q and 1 − q,

respectively. Also, it is assumed that
.
e(t) has degrees of r and 1 − r with respect to the membership

functions Dk and Dk+1. Based on the above assumption, the membership degrees p, q, and r can be
described as

p =
ei+1 − e(t)
ei+1 − ei

, q =
ij+1 −

∫
e(t)

ij+1 − ij
, and r =

dk+1 −
.
e(t)

dk+1 − dk
(8)

The fired eight rules are listed below, and Figure 3 is an illustration for these eight rules.

1. IF e(t) is Ei and
∫

e(t) is Ij and
.
e(t) is Dk THEN u(t) is Ui+j+k−2

2. IF e(t) is Ei and
∫

e(t) is Ij and
.
e(t) is Dk+1 THEN u(t) is Ui+j+k−1

3. IF e(t) is Ei and
∫

e(t) is Ij+1 and
.
e(t) is Dk THEN u(t) is Ui+j+k−1

4. IF e(t) is Ei and
∫

e(t) is Ij+1 and
.
e(t) is Dk+1 THEN u(t) is Ui+j+k

5. IF e(t) is Ei+1 and
∫

e(t) is Ij and
.
e(t) is Dk THEN u(t) is Ui+j+k−1

6. IF e(t) is Ei+1 and
∫

e(t) is Ij and
.
e(t) is Dk+1 THEN u(t) is Ui+j+k

7. IF e(t) is Ei+1 and
∫

e(t) is Ij+1 and
.
e(t) is Dk THEN u(t) is Ui+j+k

8. IF e(t) is Ei+1 and
∫

e(t) is Ij+1 and
.
e(t) is Dk+1 THEN u(t) is Ui+j+k+1
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As shown in Equation (7), the crisp output u(t) can be evaluated as u(t) = num u(t)
den u(t) by taking the

weighted average of the eight rules consequents. Thus, the denominator of u(t) with 8 terms will be
finally reduced to 1, as shown in Equation (9).

den u(t) = pqr + pq(1 − r) + p(1 − q)r + p(1 − q)(1 − r) + (1 − p)qr
+(1 − p)q(1 − r) + (1 − p)(1 − q)r + (1 − p)(1 − q)(1 − r)

= 1
(9)

On the other hand, the nominator part of u(t) with 8 terms is obtained by

num u(t) = pqr ui+j+k−2 + pq(1 − r)ui+j+k−1 + p(1 − q)r ui+j+k−1 + p(1 − q)(1 − r)ui+j+k
+(1 − p)qrui+j+k−1 + (1 − p)q(1 − r)ui+j+k + (1 − p)(1 − q)rui+j+k
+(1 − p)(1 − q)(1 − r)ui+j+k+1

, (10)
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which can also be confirmed in Figure 3. In order to simplify Equation (10), we use a method of
applying Equation (4) and defining ux = ui+j+k. Then Equation (10) can be reduced to

num u(t) = ux + ∆u(1 − p − q − r) = ui+j+k+1−p−q−r

= (2(i+j+k+1−p−q−r)−3m+1)
3(m−1) au

, (11)

where Equation (3) is also applied.
By substituting Equation (2) into Equation (8), we can rewrite the membership degrees p, q,

and r as
p = (2i−m+1)ae−(m−1)e(t)

2ae
, q =

(2j−m+1)ai−(m−1)
∫

e(t)
2ai

,

and r = (2k−m+1)ad−(m−1)
.
e(t)

2ad
.

(12)

With Equation (12) substituted into Equation (11), num u(t) is finally obtained as follows

num u(t) = au
3(m−1) [2i + 2j + 2k − 3m + 3 + (m−1)e(t)

ae
− 2iae

ae
+ (m−1)ae

ae
+

(m−1)
∫

e(t)
ai

− 2jai
ai

+ (m−1)ai
ai

+ (m−1)
.
e(t)

ad
− 2kad

ad
+ (m−1)ad

ad
]

= au
3ae

e(t) + au
3ai

∫
e(t) + au

3ad

.
e(t).

(13)

Thus, the crisp output u(t) of the proposed linear FLC is given by

u(t) =
au

3ae
e(t) +

au

3ai

∫
e(t)dt +

au

3ad

de(t)
dt

, (14)

which implies a linear PID controller with

KP =
au

3ae
, KI =

au

3ai
, and KD =

au

3ad
. (15)

Equation (15) shows that if a FLC design is based on the fuzzy knowledge from Figure 2 and the
defuzzification process in Equation (7), then it will yield a linear PID controller and the resulting PID
parameters have no relation with m, the number of membership functions, but is strongly correlated
to the operating ranges of the control input/output. With the derived important equivalence result,
the designer can obtain a FLC design prototype based on a conventional PID controller design.

In practical application, a FLC will be finished by digital implementation. When considering a
digital PID controllers, the equation for the output u[n] at each sampling time will be

u[n] = KPe[n] + KI Ts∑ e[n] + KD
e[n]− e[n − 1]

Ts
, (16)

where Ts is the sampling time. In the subsequent section, the performance of the FLC implemented in
digital form is verified.

3. Simulation Results

In this section, the proposed equivalence relationship is verified by use of Matlab/Simulink.
A three-order controlled plant is employed with transfer function [17], which is shown below

P(s) =
1.2

0.36s3 + 1.86s2 + 2.5s + 1
. (17)

A conventional PID controller design for P(s) with KP = 1.2, KI = 0.36, and KD = 1, which
was simulated by Simulink is shown in Figure 4, and the PID controller can simultaneously improve
system responses in rise time, settling time, steady-state error, and overshoot. The magnitude of the
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input step signal is set as 5, and the resulting error signal, error integral, error derivative, control signal,
and system output are shown in Figure 5 (red line).
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Subsequently, we built the equivalent FLC based on the above conventional PID controller design
according to the derived equivalence equation. By observing the system responses e(t),

∫
e(t),

.
e(t),

and u(t) with the above conventional PID controller in Figure 5 (red line), the operating ranges ORe,
ORi, ORd, and ORu can be defined in accordance with Equation (15), as the procedure below shows.

1. ORe is set as [−ae, ae] = [−5, 5] , which is the range for e(t).
2. ORu is set as [−au, au] = [−18, 18] to satisfy KP = 1.2.
3. ORi is set as [−ai, ai] = [−16.67, 16.67] to satisfy KI = 0.36.
4. ORd is set as [−ad, ad] = [−6, 6] to satisfy KD = 1.

For this case, it shows good results in defining the operating ranges. Furthermore, this is not
a limitation as there are four parameters ae, au, ai, and ad for adjustment to satisfy the three control
parameters KP, KI , and KD in Equation (15). The Fuzzy Logic Designer in Matlab/Simulink was
applied for the equivalent FLC design and simulation. Figure 6 shows the feedback control structure.
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The “FIS Type” of the FLC design in Figure 6 should be set as “Sugeno”. Based on the above
operating ranges of four fuzzy variables, the corresponding membership functions can be defined
by Figure 1. The parameter m was set as 5, resulting in 5 fuzzy sets, which are equally-spaced and
triangular-shaped, for each input fuzzy variable e(t),

∫
e(t), or

.
e(t). On the other hand, the output

fuzzy variable u(t) is fuzzified by 13 singleton membership functions with singleton values −18, −15,
−12, . . . , −3, 0, 3, . . . , 12, 15, and 18. Figure 7 shows the settings of all the membership functions in
the Matlab environment. The 125 fuzzy rules are defined according to the knowledge base in Figure 2,
and the resulting system input and responses are shown in Figure 5 (green line). However, it is found
that the system responses with a green line cannot be examined, which is due to the overlap of system
responses in the red line. In Figure 5, the green lines (responses by the equivalent FLC) were plotted
prior to the red lines (responses by the PID controller). On the contrary, if we plot system responses by
the PID controller (red line) first, it will turn out that all the red responses are covered by the latter
green responses in the equivalent FLC. This verifies the proposed equivalence relationship between
the PID controller and the equivalent FLC. Figure 8 further shows the linearity of the equivalent fuzzy
PID controller with the control surface view under

∫
e(t) = 0.36.

For the equivalent FLC-controlled system in Figure 6, the Matlab/Simulink finishes the simulation
in a manner of a continuous-time system. Alternatively, for practical applications, a FLC could be
implemented in a discrete form. Therefore, to enhance the applicability of this research, the Sample
and Hold unit and the Zero Order Hold unit, which can be used to model A/D (analog-to-digital) and
D/A (digital-to-analog) converters, are added to make a discretized FLC, as shown in Figure 9. It must
be noted that the Fuzzy Logic Controller in Figures 6 and 9 are identical. So, in Figure 9, the gain (K) in
the “Discrete-Time Integrator” or “Discrete Derivative” does not denote KP or KI , and is set as 1. The
system input and the resulting responses (blue line) are shown in Figure 5, with sampling period Ts



Appl. Sci. 2017, 7, 513 8 of 12

set as 0.1 s. Simulation results show the equivalent FLC implemented in a discrete form have similar
responses compared with the conventional PID controller. If the sampling period Ts is set to a smaller
value, the closer of the two responses will be obtained.Appl. Sci. 2017, 7, 513  9 of 13 

(a) (b) 

(c) (d) 

Figure 7. Membership functions for fuzzy variables (a) ( )e t ; (b) ( )e t ; (c) ( )e t ; (d) ( )u t  in Matlab. 

 
Figure 8. The control surface view of the equivalent fuzzy PID controller ( ( )e t  = 0.36). 

For the equivalent FLC-controlled system in Figure 6, the Matlab/Simulink finishes the simulation 
in a manner of a continuous-time system. Alternatively, for practical applications, a FLC could be 
implemented in a discrete form. Therefore, to enhance the applicability of this research, the Sample 
and Hold unit and the Zero Order Hold unit, which can be used to model A/D (analog-to-digital) and 
D/A (digital-to-analog) converters, are added to make a discretized FLC, as shown in Figure 9. It must 
be noted that the Fuzzy Logic Controller in Figures 6 and 9 are identical. So, in Figure 9, the gain (K) 
in the “Discrete-Time Integrator” or “Discrete Derivative” does not denote PK  or IK , and is set as 1. 
The system input and the resulting responses (blue line) are shown in Figure 5, with sampling period 

Figure 7. Membership functions for fuzzy variables (a) e(t); (b)
∫

e(t); (c)
.
e(t); (d) u(t) in Matlab.

Appl. Sci. 2017, 7, 513  9 of 13 

(a) (b) 

(c) (d) 

Figure 7. Membership functions for fuzzy variables (a) ( )e t ; (b) ( )e t ; (c) ( )e t ; (d) ( )u t  in Matlab. 

 
Figure 8. The control surface view of the equivalent fuzzy PID controller ( ( )e t  = 0.36). 

For the equivalent FLC-controlled system in Figure 6, the Matlab/Simulink finishes the simulation 
in a manner of a continuous-time system. Alternatively, for practical applications, a FLC could be 
implemented in a discrete form. Therefore, to enhance the applicability of this research, the Sample 
and Hold unit and the Zero Order Hold unit, which can be used to model A/D (analog-to-digital) and 
D/A (digital-to-analog) converters, are added to make a discretized FLC, as shown in Figure 9. It must 
be noted that the Fuzzy Logic Controller in Figures 6 and 9 are identical. So, in Figure 9, the gain (K) 
in the “Discrete-Time Integrator” or “Discrete Derivative” does not denote PK  or IK , and is set as 1. 
The system input and the resulting responses (blue line) are shown in Figure 5, with sampling period 

Figure 8. The control surface view of the equivalent fuzzy PID controller (
∫

e(t) = 0.36).



Appl. Sci. 2017, 7, 513 9 of 12

Appl. Sci. 2017, 7, 513  10 of 13 

sT  set as 0.1 s. Simulation results show the equivalent FLC implemented in a discrete form have 

similar responses compared with the conventional PID controller. If the sampling period sT  is set 
to a smaller value, the closer of the two responses will be obtained. 

 
Figure 9. The equivalent FLC-controlled system in discrete form. 

We slightly adjusted the membership functions (MFs) of the equivalent FLC design in Figure 7. 
It could be found that MFs are no longer equally-spaced, which implies that the FLC has become 
nonlinear, as shown in Figure 10. The 13 singleton values for the output fuzzy variable ( )u t  are −18, 
−16.91, −15.05, −12.44, −9.05, −4.91, 0, 4.91, 9.05, 12.44, 15.05, 16.91, and 18. Figure 11 shows that the 
control surface view is no longer a plane. The resulting error signal, error integral, error derivative, 
control signal, and system output are shown in Figure 12 (blue line), and can be compared with the 
previous PID controller, and the equivalent FLC (red lines for both).  

(a) (b)

(c) (d)

Figure 10. Membership functions adjustment for fuzzy variables (a) ( )e t ; (b) ( )e t ; (c) ( )e t ;  

(d) ( )u t  in Matlab. 

Figure 9. The equivalent FLC-controlled system in discrete form.

We slightly adjusted the membership functions (MFs) of the equivalent FLC design in Figure 7.
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Figure 12. The (a) step input; (b) error signal; (c) error integral; (d) error derivative; (e) control
signal and (f) system output with PID controller, the equivalent FLC, and the equivalent FLC under
MFs adjustment.
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Table 1 summarizes the response performance, including the rise time (Tr), the settling time (Ts),
the percentage overshoot (P.O.), and the steady-state error (Ess), of the three controllers in Figure 12.
Which controller has better performance cannot be determined since the performance criterion is not
defined. But based on this study, a fuzzy PID controller may outperform a conventional PID controller
quickly by fine-tuning the MFs of the fuzzy variables.

Table 1. Response performance of different controllers.

Controller Tr (s) 0.1–0.9 Ts (s) ±5% P.O. (%) Ess

PID, FPID 3.75 5.76 0 0
FPID with adjustment 3.04 4.57 0.56 0

We have found that some learning-based techniques or evolutionary algorithms have been applied
in the optimal FLC design [14–16]. Experienced researchers should agree on the importance of setting
initial values or weights in the learning system, which will greatly influence the learning results and
convergence speed. With the proposed equivalence relationship, one can easily and quickly obtain
a fuzzy PID controller through a conventional PID controller design, then the derived equivalent
FLC can be set as one of the initial designs. This process will result in the optimal FLC design in an
efficient way.

4. Conclusions

This paper proposed and clearly identified the equivalence relationship between a conventional
PID controller and a FLC. The derived equivalence equation is straightforward, so a well-designed
conventional PID controller can be easily transformed to an equivalent FLC by simply defining the
input/output operating ranges and following the Sugeno-style inference. The knowledge base for
the equivalent FLC can be built by a cube FAM, instead of the combination structure of PI-type or
PD-type FLCs. Simulation results demonstrate the effectiveness of the proposed approach, where
system responses with the conventional PID controller or the equivalent FLC are similar. Moreover,
the equivalent FLC implemented in discrete form was also provided and simulated, with comparable
system responses to the original conventional PID controller. Based on the result of this study,
the mature design results of traditional PID controllers can be applied as prior knowledge for an FLC
design. Subsequently, a nonlinear FLC can outperform a traditional linear PID controller by changing
fuzzy rule design or fuzzy membership functions. The proposed equivalent FLC can be set as the
initial design for some learning-based techniques or evolutionary algorithms, which may achieve the
optimal FLC design and considerably improve the convergence speed. Our future work will involve
developing an optimal fuzzy PID controller with a simpler structure and fewer parameters, which will
be designed to be more efficient for practical applications.
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