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Abstract: Recovering depth information of objects from two-dimensional images is one of the very
important and basic problems in the field of computer vision. In view of the shortcomings of
existing methods of depth estimation, a novel approach based on SIFT (the Scale Invariant Feature
Transform) is presented in this paper. The approach can estimate the depths of objects in two images
which are captured by an un-calibrated ordinary monocular camera. In this approach, above all,
the first image is captured. All of the camera parameters remain unchanged, and the second image
is acquired after moving the camera a distance d along the optical axis. Then image segmentation
and SIFT feature extraction are implemented on the two images separately, and objects in the images
are matched. Lastly, an object’s depth can be computed by the lengths of a pair of straight line
segments. In order to ensure that the most appropriate pair of straight line segments are chosen,
and also reduce computation, convex hull theory and knowledge of triangle similarity are employed.
The experimental results show our approach is effective and practical.
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1. Introduction

Acquiring depth information from two-dimensional images is one of the fundamental problems
in machine vision, and it can be applied to many fields such as the restoration of 3D scenes, planning
of robot walking route, etc. In particular, the depths of interesting objects in images are very useful;
for instance, the distances from obstacles in the road, frontal vehicles, and traffic lights must be known
when an unmanned vehicle is running on the road. The depth information can also be used for pattern
recognition [1,2].

At present, the methods of obtaining the depth information of objects in 2D images fall mainly into
two major categories: stereo vision based on binocular (or multi-nocular) [3–5], and stereo vision based
on monocular. At least two camera devices must be provided in the first class of method. Each camera’s
intrinsic parameters and the parameters of the spatial relationship between any two cameras are also
provided. This means that camera calibration is needed in the first class of method. Bumblebee is a
kind of product for stereo vision based on binocular, and a light-field camera can also get the depth
information from its micro-lens array [6–10]. But both of them are expensive.

The second class of method includes Depth From Focus (DFF) and Depth From Defocus (DFD).
In the DFF method [11,12], a lot of images of the same scene with different camera optical parameters
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are taken. Then, a full focus image is formed by using the pixels which are in focus in the images.
Finally, the depth map can be obtained by analyzing every pixel in the full focus image and the camera
parameters when the pixel is obtained. Only one camera is needed in this method, but its application
is very limited, for a large number of images of the same scene must be taken.

The DFD was first proposed by Pentland [13] in 1987, and was improved by Subbarao [14]
and Rajagopalan [15]. In 2008, defocus was modeled as an anisotropic thermal diffusion process by
Favaro [16] et al., and this improvement has a better result. But two or more images which are taken in
different cameras need to be supplied in the above improved method. Zhou and Sim [17] presented an
original approach that depth map could be estimated from a single defocused image. In this method,
firstly, the defocused image is re-blurred using a known Gaussian kernel. Then the depth information
at the edge in image can be obtained by the ratio between the gradient of the defocused image and
the re-blurred one. Finally, the depth at edge locations is propagated to the entire image by solving
the optimization problem. None of the above approaches based on defocusing could tell the reason
for blurred edges in an image, which can be caused by either blur texture ambiguity or focal plane
ambiguity. And they could not get the absolute depth information unless the camera was calibrated.

The coded aperture method proposed by Zhou [18] et al. could estimate a better depth map,
but the shape of camera aperture must be modified. Kouskouridas [19] et al. used SIFT (the Scale
Invariant Feature Transform) to acquire the absolute depth of the objects in image. In this method,
a database must first be built. The database contains 5 or more images which are taken from different
object distances or angles of view to every object measured. The object distances are acquired by a
laser device and stored in the database. The data in the database will be used to train the algorithm.
It is not able to estimate the depth of an object if the object is not in the database. This means it can
only compute the absolute depth of an object that has been stored in the database. This approach
has a complex operation step and a limited application scope. Fang [20] employed a structure forest
framework to extract the depth information from a single color image. The method can achieve quasi
real-time performance, but the accuracy needs to be improved, especially for indoor scenes.

In this paper, we propose a novel approach to compute the absolute depth of target objects
(it is given beforehand which objects are target objects). It only needs a monocular camera and no
calibrating. Firstly, the image A is captured, and then the image B is captured after moving the camera a
distance d along the optical axis. The camera’s intrinsic parameters are kept constant during the whole
process. Secondly, we get the objects by segmenting the two images. Simultaneously, the SIFT points
are detected in the two images. The image of the same object in the two images should be matched
after completing the SIFT point matching. Finally, the absolute depth of an object can be computed by
using the corresponding lengths of two straight line segments in the two images. The first straight line
segment is composed of two SIFT feature points in image A, and the second one is composed of two
corresponding matching SIFT feature points in image B.

2. The Basic Principles and Algorithm Steps

The basic principles of imaging can be modeled as

1
f
=

1
u
+

1
v

(1)

where f is the focal length. u is object distance (namely depth), and v is the distance between the image
plane and lens.

As show in Figure 1, we assume that the object distance is u and the high of image of object is h1

in the first photograph. In the second one, they are u + d and h2, respectively. Because the camera’s
intrinsic properties are unchanged between the two photographs, the relation of h1 and h2 can be
formulated as

h2 = kh1 (2)
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where k > 0 and k ∈ R, and R is the set of real numbers.Appl. Sci. 2017, 7, 517  3 of 17 

 
Figure 1. Two times imaging of lens. D is the diameter of the camera aperture. V’ is the distance 
between the camera lens and the image plane. S1 and S2 are the same point S on the imaging object 
SL. In the first imaging, the object distance is u, and the imaging object SL is located at S1L1, and the 
S1’ is the focal point of S. In the second imaging, the object distance is u + d, and the imaging object 
SL is located at S2L2, and the S2’ is the focal point of S. 

According to the basic principles of imaging and the knowledge of triangles, the object distance u 
can be computed by the following formulation. 
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Usually, h1 and h2 are the heights of the images of object. In fact, they can be the distance of two 
feature points on an object, too. Therefore, we can compute the depth u if we detect two pairs of 
corresponding feature points of the same object in two images.  

Figure 2 shows the overview of our method of estimating the object depth. It mainly includes 5 
steps as follows: 

Step 1: Holding the camera constant, we take the image A and B when the object distance is u and  
u + d, respectively. 

Step 2: Images of objects (namely sub-regions) are obtained by segmenting the image A and B, 
respectively. Meanwhile, we detect the SIFT feature points in the image A and B, then, match 
the points. 

Step 3: Using the results of segmentation and matching of feature points, we can match the images  
of objects. 

Step 4: A pair of straight line segments are chosen from the image A and B. During the process, the 
theory of the convex hull is used to decrease the computational complexity, and the 
knowledge of the similarity triangle is used to avoid the wrong straight line straight being 
chosen. The lengths of the pair of straight line segments will be used to compute the depth of 
the object. 

Step 5: The depth of the object can be computed by the length of the pair of straight line segments. 

Figure 1. Two times imaging of lens. D is the diameter of the camera aperture. V’ is the distance
between the camera lens and the image plane. S1 and S2 are the same point S on the imaging object SL.
In the first imaging, the object distance is u, and the imaging object SL is located at S1L1, and the S1’ is
the focal point of S. In the second imaging, the object distance is u + d, and the imaging object SL is
located at S2L2, and the S2’ is the focal point of S.

According to the basic principles of imaging and the knowledge of triangles, the object distance u
can be computed by the following formulation.

u =
h2

h1 − h2
d (3)

Usually, h1 and h2 are the heights of the images of object. In fact, they can be the distance of
two feature points on an object, too. Therefore, we can compute the depth u if we detect two pairs of
corresponding feature points of the same object in two images.

Figure 2 shows the overview of our method of estimating the object depth. It mainly includes
5 steps as follows:

Step 1: Holding the camera constant, we take the image A and B when the object distance is u and
u + d, respectively.

Step 2: Images of objects (namely sub-regions) are obtained by segmenting the image A and B,
respectively. Meanwhile, we detect the SIFT feature points in the image A and B, then,
match the points.

Step 3: Using the results of segmentation and matching of feature points, we can match the images
of objects.

Step 4: A pair of straight line segments are chosen from the image A and B. During the process,
the theory of the convex hull is used to decrease the computational complexity, and the
knowledge of the similarity triangle is used to avoid the wrong straight line straight being
chosen. The lengths of the pair of straight line segments will be used to compute the depth
of the object.

Step 5: The depth of the object can be computed by the length of the pair of straight line segments.
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Figure 2. The overview of our depth measurement method. 

3. Matching the Images of Objects 

Matching the images of objects cannot be done unless both the segmentation and detection of 
SIFT feature points has been completed. At present, there are a number of methods of segmentation. 
The LBF (Local Binary Fitting Energy) method [21,22] is employed in this paper, because it has  
a better segmentation result, especially for images with intensity inhomogeneity. The SIFT feature 
points are invariant to image scale and rotation, with robust matching across a substantial range of 
affine distortion, addition of noise, and change in illumination [23,24].  

We assume that the image A is partitioned into m subregions by the LBF image segmentation 
approach. The m subregions are A1, A2, …, Am, and Xi is the SIFT feature points set of the Ai 
subregion. where i = 1, 2, …, m. Similarly, the image B is segmented into n subregions: B1, B2, …, Bn, 
and Yj is the SIFT feature points set of Bj. where j = 1, 2, …, n. Zi is the matching feature points set of 
Xi. Therefore, Zi ⊆ (Y1∪Y2∪…∪Yn). The card(S) means the number of elements in the set S. 
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where Tp is a threshold. The object Ai is matched with Bk if both the Formulas (4) and (5) are satisfied, 
namely, the subregion Ai in image A and the subregion Bk in image B are the images of the same object. 

4. Selecting the Straight Line Segments 

4.1. Theoretical Error Analysis 

We can compute the depth of objects using Formula (3) if the length of the two straight line 
segments is known. In theory, the first straight line segment consists of any two SIFT feature points 
of an object in image A, and the second one consists of the two corresponding matching SIFT feature 
points in image B. There is always a certain error in the matching SIFT points, because the Nearest 
Neighbor Distance method is adopted to match the points. For example, we assume that the 
matching point of the SIFT feature point Pa in image A is theoretically the Pb in image B, but we get 
the matching point Pb’ in fact by the method. The distance between Pb and Pb’ is the error. Although, 
the error is very little, even no more than one pixel, the accuracy of estimating depth of object is 
dependent on it.  

We assume the length of the straight line segment which consists of two SIFT feature points on 
an object in image A is L1, and the length of the matching line segment is L2 in image B, theoretically. 
But we obtain the length is L2’ in fact for there are matching point errors. The difference between L2 
and L2’ is Δ = L2’ − L2, and the relation of two length is L2 = kL1. We assume that U is ground truth of 
depth of object, and U’ is the computed depth of object by the Formula (3), and we have 

Figure 2. The overview of our depth measurement method.

3. Matching the Images of Objects

Matching the images of objects cannot be done unless both the segmentation and detection of
SIFT feature points has been completed. At present, there are a number of methods of segmentation.
The LBF (Local Binary Fitting Energy) method [21,22] is employed in this paper, because it has a better
segmentation result, especially for images with intensity inhomogeneity. The SIFT feature points
are invariant to image scale and rotation, with robust matching across a substantial range of affine
distortion, addition of noise, and change in illumination [23,24].

We assume that the image A is partitioned into m subregions by the LBF image segmentation
approach. The m subregions are A1, A2, . . . , Am, and Xi is the SIFT feature points set of the Ai subregion.
where i = 1, 2, . . . , m. Similarly, the image B is segmented into n subregions: B1, B2, . . . , Bn, and Yj
is the SIFT feature points set of Bj. where j = 1, 2, . . . , n. Zi is the matching feature points set of Xi.
Therefore, Zi ⊆ (Y1∪Y2∪ . . . ∪Yn). The card(S) means the number of elements in the set S.

Yk = argmax
Yj

(card(Zi ∩Yj)) (4)

card(Yk)

card(Xi)
> Tp (5)

where Tp is a threshold. The object Ai is matched with Bk if both the Formulas (4) and (5) are satisfied,
namely, the subregion Ai in image A and the subregion Bk in image B are the images of the same object.

4. Selecting the Straight Line Segments

4.1. Theoretical Error Analysis

We can compute the depth of objects using Formula (3) if the length of the two straight line
segments is known. In theory, the first straight line segment consists of any two SIFT feature points
of an object in image A, and the second one consists of the two corresponding matching SIFT feature
points in image B. There is always a certain error in the matching SIFT points, because the Nearest
Neighbor Distance method is adopted to match the points. For example, we assume that the matching
point of the SIFT feature point Pa in image A is theoretically the Pb in image B, but we get the matching
point Pb

′ in fact by the method. The distance between Pb and Pb
′ is the error. Although, the error is

very little, even no more than one pixel, the accuracy of estimating depth of object is dependent on it.



Appl. Sci. 2017, 7, 517 5 of 17

We assume the length of the straight line segment which consists of two SIFT feature points on
an object in image A is L1, and the length of the matching line segment is L2 in image B, theoretically.
But we obtain the length is L2

′ in fact for there are matching point errors. The difference between L2

and L2
′ is ∆ = L2

′ − L2, and the relation of two length is L2 = kL1. We assume that U is ground truth of
depth of object, and U′ is the computed depth of object by the Formula (3), and we have

U =
L2

L1 − L2
d (6)

U′ =
L′2

L1 − L′2
d =

L2 + ∆
L1 − L2 − ∆

d (7)

e =
∣∣∣∣U′ −U

U

∣∣∣∣ =
∣∣∣∣∣ ∆

1−k

L1 − ∆
1−k

∣∣∣∣∣1
k
=

∣∣∣∣ J
L1 − J

∣∣∣∣1
k

(8)

where e is percentage error of depth measurement, J = ∆
1−k .

Normally, the ∆ is very little, no more than several pixels, even a single pixel, because ∆ is
produced by the matching error of SIFT feature points. We assume |∆| ≤ 3 pixels, and 0.75 ≤ k ≤ 0.9,
then 0 ≤ |J| ≤ 30. The Figure 3 shows the relations of e to k and ∆. Figure 3a shows the error curve
when ∆ ≤ 0. Figure 3b shows the error curve when ∆ > 0. The range of e values was so large that the
curve is hard to see when the L1 more than 50 in Figure 3b, therefore, it was divided into two parts,
as Figure 3c,d. From Figure 3 and Formula (8), we know: (1) that e increases rapidly when L1 → J;
and (2) that L1 is longer, and e is lower, when the value of L1 is higher than a certain value (e.g., 50)
and the variable ∆ and k are unchanged. Hence we should select the longest straight line segment to
compute the depth of object to minimize the error.
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Normally, the ∆ is very little, no more than several pixels, even a single pixel, because ∆ is 
produced by the matching error of SIFT feature points. We assume |∆| ≤ 3 pixels, and 0.75 ≤ k ≤ 0.9, 
then 0 ≤ |J| ≤ 30. The Figure 3 shows the relations of e to k and ∆. Figure 3a shows the error curve 
when ∆ ≤ 0. Figure 3b shows the error curve when ∆ > 0. The range of e values was so large that the 
curve is hard to see when the L1 more than 50 in Figure 3b, therefore, it was divided into two parts, 
as Figure 3c,d. From Figure 3 and Formula (8), we know: (1) that e increases rapidly when L1 → J; 
and (2) that L1 is longer, and e is lower, when the value of L1 is higher than a certain value (e.g., 50) 
and the variable ∆ and k are unchanged. Hence we should select the longest straight line segment to 
compute the depth of object to minimize the error. 
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parts, namely the red part and the blue part. They are showed in (c) and (d), respectively; (c) Error 
curve when L1 ∈  [0,50] and ∆ > 0, namely this is the red part of figure (b); (d) Error curve when  
L1 ∈  [50,500] and ∆ > 0, namely this is the blue part of figure (b). 

It is also proved by the experimental method that when the L1 is longer, the error is smaller.  
In the experiment, we select the longest straight line segment, the shortest one, the middle length 
one, and a random one to compute the depth of object, respectively. 103 pairs of images (resolution: 
1280 × 1024 pixels) were used, and the depth of 309 objects in the images were to be measured. Table 1 
shows the experimental results of the above 4 classes of straight line segment selected to measure 
depth. For every class of straight line segment, different objects have different lengths, so value 
range of the length of every class line segment is shown in Table 1. It indicates that we should select 
the longest straight line segment to compute the depth of object. 

Table 1. Relation of depth measurement error to the 4 classes straight line segment (length unit: pixel). 

Method 
The Method of the 

Longest Line 
The Method of 

the Shortest Line 
The Method of 

the Middle Line  
The Method of 

the Random Line 
Length of the shortest line  50.19 0.15 21.29 2.31 
Length of the longest line 481.61 22.81 362.41 377.35 

Average length 205.71 3.01 91.25 95.59 
Average error of measurement  4.89% 535.66% 20.57% 173.82% 

Different objects have different lengths of the longest straight line segment, which consists of 
the 2 SIFT points on the object. We counted the longest ones on the 309 objects and obtained the 
piecewise relations of depth measurement error to the length of straight line segment, as shown in 
Figure 4. It illustrates that the longer the straight line segment, the smaller the error; but the change 
in percentage error is very small when the length is greater than a certain number (e.g., 200).  
The experiment result coincides with the theoretical analysis of percentage error (Figure 3).  

Figure 3. Relation of depth measurement error to the length of straight line segment L1. (a) Error curve
when ∆ ≤ 0; (b) Error curve when ∆ > 0. In order to clearer, this graph is separated into two parts,
namely the red part and the blue part. They are showed in (c) and (d), respectively; (c) Error curve
when L1 ∈ [0,50] and ∆ > 0, namely this is the red part of figure (b); (d) Error curve when L1 ∈ [50,500]
and ∆ > 0, namely this is the blue part of figure (b).

It is also proved by the experimental method that when the L1 is longer, the error is smaller.
In the experiment, we select the longest straight line segment, the shortest one, the middle length
one, and a random one to compute the depth of object, respectively. 103 pairs of images (resolution:
1280 × 1024 pixels) were used, and the depth of 309 objects in the images were to be measured. Table 1
shows the experimental results of the above 4 classes of straight line segment selected to measure
depth. For every class of straight line segment, different objects have different lengths, so value range
of the length of every class line segment is shown in Table 1. It indicates that we should select the
longest straight line segment to compute the depth of object.

Table 1. Relation of depth measurement error to the 4 classes straight line segment (length unit: pixel).

Method The Method of the
Longest Line

The Method of the
Shortest Line

The Method of the
Middle Line

The Method of the
Random Line

Length of the shortest line 50.19 0.15 21.29 2.31
Length of the longest line 481.61 22.81 362.41 377.35

Average length 205.71 3.01 91.25 95.59
Average error of measurement 4.89% 535.66% 20.57% 173.82%

Different objects have different lengths of the longest straight line segment, which consists of the
2 SIFT points on the object. We counted the longest ones on the 309 objects and obtained the piecewise
relations of depth measurement error to the length of straight line segment, as shown in Figure 4.
It illustrates that the longer the straight line segment, the smaller the error; but the change in percentage
error is very small when the length is greater than a certain number (e.g., 200). The experiment result
coincides with the theoretical analysis of percentage error (Figure 3).
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the value of depth measurement would be widely inaccurate. Hence, we should select the longest 
straight line segment whose two endpoints will be matched correctly to the corresponding SIFT 
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polygons consisting of the SIFT matching points on the image A and image B to tell whether the 
matching point is wrong or not. In our experiment the polygon is a triangle. In other words, if the 
triangle ∆ABC that consists of 3 SIFT feature points in image A is similar to the corresponding one 
∆A’B’C’ in image B, then there are no wrong matching points in the three vertices. Otherwise, there 
is one wrong matching point at least. 

Figure 4. Experimental results of the relation of the depth measurement average percent error to the
length of the straight line segment.

4.2. Decrease Time Complexity

In a 2-D plane, n points can form C(n,2) straight line segments. The time complexity is O(n2) if
we compare a line segment length with others one by one to select the longest one. The amount of
computation will increase sharply when the value of n is very large. Therefore, we must design an
algorithm to cut down the computing time and find the longest line segment rapidly. The convex hull
theory is employed to solve this problem.

If we assume that CH is a convex hull of a given points set Q, CH is defined as the unique minimal
convex set containing Q. It implies all of the points in set Q must be in or on the boundary of convex
hull CH. Therefore, If there are n points in the Q, then we can get C(n,2) straight line segments which
consist of all the points. The two endpoints of the longest one must be on CH.

Convex hull of points set Q can be obtained by Graham scan. The time complexity of the method
is O(nlgn). We assume that there are n points in the set Q, and m points among n belong to the convex
hull of set Q. Thus we can find the longest straight line segment from the C(m,2) straight line segments
instead of C(n,2) ones. In general, m� n when n is a large number. It means we can decrease the
computational complexity of seeking the longest straight line segment by using the convex hull.

4.3. Algorithm for Selecting a Pair of Straight Line Segments

As similarity measurement is employed to match SIFT feature points [23,24], the wrong matching
points are sometimes chosen, although it is very rare. Even if only one of the endpoints of the pair of
straight line segment that were used to compute the depth of object is wrongly matched, the value of
depth measurement would be widely inaccurate. Hence, we should select the longest straight line
segment whose two endpoints will be matched correctly to the corresponding SIFT feature points in
image B.

Because images A and B are captured when the object distance is u and u + d, respectively, under
the condition of keeping the camera’s intrinsic properties unchanged, we can use similarity of polygons
consisting of the SIFT matching points on the image A and image B to tell whether the matching point
is wrong or not. In our experiment the polygon is a triangle. In other words, if the triangle ∆ABC that
consists of 3 SIFT feature points in image A is similar to the corresponding one ∆A’B’C’ in image B,
then there are no wrong matching points in the three vertices. Otherwise, there is one wrong matching
point at least.
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The differences between every corresponding angle of the two triangles are employed to
decide whether the two triangles are similar, and we call the maximal angle difference is Angmax.
If Angmax < Ta, then the two triangles are similar. Where the Ta is a threshold.

The similarity of the triangle, one of whose sides is the longest line segment, should be determined;
only in this way can we avoid the incorrect endpoints and minimize the error of depth measurement
at the same time. It is impossible to determine which one or more vertices of triangle is/are the
wrong matching point(s) when the triangle ∆ABC is not similar to ∆A’B’C’. Therefore, an algorithm for
selecting a pair of straight line segments which are used to compute the depth is proposed. The main
idea in the algorithm is as follows: we assume that the number of the triangles, one of whose sides is
the longest straight line segment L, is n1 in image A. Obviously, there are n1 corresponding triangles
in image B, but only n2 pairs of triangles are similar. The L can be used to compute depth of object if
n2/n1 > Ts, where Ts is a threshold. Otherwise, we should decide whether the next longest straight
line segment is the one that we are seeking by the above method. The algorithm of selecting a pair of
straight line segments is shown in the Algorithm 1.

Algorithm 1. The algorithm for selecting a pair of straight line segments.

Input: A sub-region in image A and its matched one in image B of the same object; The points set Q
consists of the SIFT feature points of the object in image A, and in image B, the points set Q’
consists of the matched points of Q.

Output: A pair of straight line segments used to compute depth of object.

Step1: Assume i = 1.
Step2: Compute to obtain the points set P, and the P is the convex hull of Q.
Step3: Compute to obtain the length of all of the straight line segments which are composed of any 2

points in P, and put them in their length order, from the longest to the shortest.
Step4: Count n1 and n2, where n1 is the number of triangles, one of whose side is the i-th longest line

segment in image A, and n2 is the number of the corresponding and similar triangles in image B.
Step5: If n2/n1 > Ts, go to step6; else, i = i + 1, and go to Step4.
Step6: The i-th longest straight line segment in image A and the corresponding one in image B are the pair

of straight line segments, which will be used to compute the depth of object.

Method 1 is used to compute the depth after the wrong matching points have been deleted by the
above algorithm. Method 2 is used to compute the depth by the longest straight line segment directly.
The measurement errors of the two kinds of methods are showed in Table 2. There are 3 objects whose
depth should be computed in the given images, and it is shown in Section 5.2. We called the 3 objects
obj1, obj2, obj3, respectively. In method 2, the error percentage of depth measurement of obj2 is 22.91%,
because 1 or 2 points of the two endpoints of the longest straight line segment are matched wrong. It is
a very big error. But, in method 1, the error is decreased sharply, because the 3rd-longest straight line
segment was used to compute the depth of object by the above algorithm. Although its length is not
the longest, it is the best choice to compute the depth information.

Table 2. Measure result comparison of the two kinds of methods (unit: distance—mm; length of line
segment—pixel; angle—degree. D = 600 mm, Ta = 3◦).

Object GT 1
Method 1 Method 2

Angmax i-th 2 L1 L2 MD 3 EP 4 Lmax1 Lmax2 MD 3 EP 4

obj1 3565.38 0.35 1 269.00 229.34 3470.07 2.67% 269.00 229.34 3470.07 2.67%
obj2 3389.00 2.62 3 141.41 121.31 3620.50 6.83% 190.09 154.59 2612.66 22.91%
obj3 3758.01 0.55 1 302.35 257.87 3477.98 7.45% 302.35 257.87 3477.98 7.45%

1 GT is the ground truth of the depth of object; 2 the i-th means that the i-th longest straight line segment was used
to compute the depth of object; 3 MD is measured depth; 4 EP is error percentage.
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5. Experiments

5.1. Images Acquirement

To estimate the depth of objects in image, we must acquire two images (image A and image B).
Figure 5 shows the process. Firstly, image A is acquired at the place where the distance between the
object and the camera is u. Next, while the camera’s intrinsic properties remain unchanged, the camera
is moved along the optical axis to the place where the object distance is u + d, and the image B
is acquired. To obtain the actual distance of the objects, the objects to be measured were sitting at
specified locations. In Figure 5a, the values of x1, x2, y1, y2, d and u can be obtained by using manual
measurement; then, we can depend on the values, geometry and size of the objects to compute the
actual depth of objects. For example, in Figure 5a, the object obj1 is a cylinder. Assume its diameter
is D, then the actual depth of obj1 is ((u + y2 + D/4)2 + x1

2)1/2. Similarly, the actual depth of obj2 and
obj3 are u and ((u + y1 + y2)2 + x2

2)1/2, respectively.
Ordinarily, it is very difficult for the camera to move rigorously along the optical axis. In practical

operation, the camera can be installed on a horizontal guide rail or platform on which a straight line
has been drawn, with the camera then being moved along the guide rail or the straight line on the
platform. This makes the moving direction approximately coincident with the optical axis. In our
experiments, the camera is put on a horizontal platform which consists of several identical lab benches
and moved along a straight line which had been drawn on the platform beforehand. The scene is
showed in Figure 5b.
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Figure 5. (a) is the schematic diagram of the process acquiring the two images; (b) is the real scene
which was used to capture the image A and B.

5.2. Experiment Procedure

To test and verify that our approach for depth measurement is effective, we acquire the images
and follow the method steps to carry out experiments. Figure 6 illustrates the procedure for our
approach. There are original images, the depth image of objects and some significant interim result
images, etc., in Figure 6.
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Figure 6. The experimental procedure. (a) The original image A was acquired at the place where
the object distance is u; (b) the original image B was acquired at the place where the object distance
is u + d; (c) and (d) are the segment results of the image (a) and (b), respectively. In order to make
the sub-regions clear, we label the different sub-regions with different colors; (e) SIFT feature points
detected and matched. The true-color image A and B are converted to grayscale; then, detect the SIFT
feature points in them, and match the points. The locations with a pink star “*” are the locations of SIFT
feature points; (f) matching the objects by taking advantage of the SIFT feature points and the segment
results. Then we get the convex hull of the set of SIFT feature points of each object to be measured
by Graham scan. Lastly, the pair of straight line segments are chosen by the algorithm described in
Section 4.3. They are labeled by drawing a sign “3” on it; (g) the depths of objects are expressed by the
gray-scale. The gray value of pixel is lower, the value of depth is lower, too; (h) this image shows the
spatial relationship of the objects. Namely, there are the different distances between camera and the
different measured objects. It is convenient for us to compare with image (g).
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From Figure 6f, we can see that a whole image of measured objects is not necessary to measure the
depth of object, because the depth can be computed by the lengths of a pair of straight line segments.
And the pair of straight line segments can usually be obtained by a part of the image of the object.
Consequently, our method is robust to occlusion or partial loss of image of object.

5.3. Our Approach Compared with Others’

We compare our experiment results with Bumblebee’s, Zhou’s [17] and Fang’s [20], as shown in
Figure 7. There are three scenes, and different target objects measured are contained in each scene.
Figure 7a,b contains images A and B, which are captured at different object distance by a common
camera. The spatial relationships of the objects measured are shown in Figure 7c. The images are all
taken from a top down view. They are convenient for us to estimate roughly whether a target object is
near or far from the camera.

Figure 7d–g shows the depth images as measured by Zhou’s method [17], Bumblebee device,
Fang’s method [20] and our method, respectively. In Figure 7d, Zhou gets dense depth maps, but they
are relative depth information instead of absolute depth. Only depth of partial scenes are measured in
Figure 7e,g, but they are absolute depth; namely they are object’s distance values, which are represented
by different pixel values. Both the gray pixels in Figure 7e and the white pixels in Figure 7g indicate
that the depth information of the place could not be measured. In Figure 7e–g, the different color or
gray pixels mean different depth values.

There is some obviously incorrect depth information in Figure 7d. For example, in every image,
the gray levels of the two objects which are indicated by red arrows are similar. It means that their
depths as measured by Zhou’s method are similar, but, in fact, the disparity of the depth values is very
big. The reason for this error is that Zhou’s method can only measure the defocus degree, and can’t
judge the focal plane in front of or behind the imaging plane. Furthermore, the depth of the object
which is indicated by blue arrows should be the same as its surroundings. But the results of the
measurement are not consistent with the ground truth, because the texture of the image affects the
construction accuracy of dense depth maps, which are obtained by applying matting Laplacian to
perform sparse depth map interpolation [17].

We can also see that there are several obvious errors of depth measurement in Figure 7e, as the
white arrows indicate. In fact, the depth values of the two places are very different, but the depth
values measured by Bumblebee device are similar. So the colors of the two places are very similar
in the images. In addition, the outlines of the objects in the depth images are different from the real
objects. This was caused by error of measurement.

Figure 7f is the result of depth image by Fang’s method. The method is faster than the
state-of-the-art method, and it can achieve quasi real-time performance. But the accuracy of depth
information is not good. It is difficult for us to find the outlines of the objects from the depth image,
especially the outlines of the small objects. In addition, the method needs a dataset to train and learn.

Figure 7g is result of depth image by our method. We can see that we can obtain a high accuracy
in absolute depth of the target objects, and the outlines of the objects are clear and accurate in the
depth images by our method. In Figure 7g, the depth of the watering pot head is shown, but the depth
of the watering pot body cannot be measured, because the watering pot was divided into two parts—
the watering pot head and the watering pot body after image segmentation—and not enough SIFT
feature points could be detected on the watering pot body, due to the color of the body being very close
to that of the background. Usually, if no less than 4 SIFT points are detected on an object, and then we
can use them to compute the depth of objects. Therefore, our method works well in most cases.
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object is near or far from the camera, roughly; (d) this row contains the depth images as measured by
the Bumblebee device; (e) this row contains the depth maps that measured by the method of Zhou [17];
(f) this row contains the depth maps that measured by the method of Fang [20]. The source code is
available on GitHub (https://github.com/king9014/rf-depth); (g) this row contains the depth images
that measured by our method.

Experiment images of the other ten scenes are showed in Figure 8. From left to right, each column
is image A, image B, results of our method, results of the method of Zhou, and the rough spatial
relationship of the measured objects, respectively.
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Figure 8. The experiment images of the ten scenes. The column (a) contains the original images A.
The column (b) contains the original images B. The column (c) contains the depth images that were
measured by our method. The column (d) contains the depth images that measured by the method of
Zhou [17]. The column (e) images, which are taken from a top down view, show the spatial relationship
of the measured objects. They are convenient for us to judge if an object is near or far from the
camera, roughly.

In order to determine the degree of accuracy of result of our method, we took 191 group images
for experiments. There are 382 images, for a group includes 2 images. And there are 3 target objects
measured in a group, so 573 depths of objects should be measured. In our implementation, we used
the same parameters for the whole experiment, i.e., Tp = 0.6, Ts = 0.6, Tθ = 3◦. We compared the result
of our method with the result of Kouskouridas et al.’s method [19], as shown in Table 3.

Table 3. Comparison between our method with Kouskouridas et al.’s method [19].

Item Compared Our Method Kouskouridas et al.’s Method

Device required camera camera and laser depth measurement device
Number of images required 2 ≥5 images for every measured object

Is a sample database required? NO YES
Can the depth of object which is not

registered in the database be measured? YES NO

Average error percentage 5.14% 9.89%

In Kouskouridas et al.’s method, SIFT is employed to obtain the depth of objects, too. Firstly,
a database needs to be built, and the measured objects must be registered in the database, or their
depth cannot be measured. The database comprises object distance, a lot of images and their SIFT.
The images of each measured object are taken from different object distances and different angles of
view. A uniform and simple background is required in the images. The object distance is obtained
by a laser device. Then, the data in the database is used for the training of their algorithm. For an
image, the depth of the objects in the image can be computed only when the objects have been stored
in the database. Above all, SIFT feature points should be detected. Then, the center of mass of feature
points set and the average distance dm between it and every feature point should be calculated. Lastly,
the depth of objects can be computed by using dm and some data in the database.
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Table 3 shows advantages of our method include fewer devices, easy operation, no sample
database, and less measurement error.

Figure 9 is the comparison of depth of the objects measured by our method with the ground truth.
The horizontal axis represents the serial number of the measured objects. The vertical axis represents
the depth of the measured objects. The red curve is the depth measured by our method, and the blue
one is the ground truth, and. The maximum error is 16.1%, and the minimum error is 0.01%, and the
average error is 5.14%. Figure 9 indicate that our method is effective.
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6. Discussion

Firstly, image segmentation is employed in our approach. The accuracy of depth information of
measured objects may be influenced by the result of image segmentation. It is not easy to separate
the different types of objects measured from an image with a complex background using the same
parameter. The depth accuracy would be reduced greatly if the result of segmentation is wrong.
Therefore, how to extract the depth information of the target objects with complex background is one
of our next works.

Secondly, our algorithm is time consuming, because image segmentation, SIFT feature point
detection and matching are employed in our algorithm. The configuration of the computer which used
to the experiment is as follows: memory 16 GB, CPU i7-4810MQ, 2.80 GHz, 4 cores. The codes were
run in Matlab 2012b. It took about 139.6 s to extract the depth information from an image (resolution:
1280 × 1024 pixels) by our method. Of these, about 95 s were used for image segmentation, about
43.5 s were used for the SIFT feature point detection and feature point matching, and about 1.1 s were
used for the rest. Therefore, we will focus on how to reduce the computational complexity in our
next research.

Lastly, in our method, the images of the same object in the images A and B were matched by
using SIFT feature points, and a pair of straight line segments, which were used to compute the depth
of objects, were chosen according to the algorithm described in Section 4.3. When the length of the
straight line segment was less than 150 pixels, shorter lengths of straight line segment correspond
to lower accuracy of computed depth. Thus, our method has a low accuracy for very small objects.
In addition, the depth cannot be measured unless there are no less than 4 SIFT feature points being
detected on the target object. Therefore, our next research will focus on how to improve the depth
measurement accuracy of small objects and how to measure the depth of target object whose number
of SIFT feature points is less than 4.
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7. Conclusions

A novel method for depth measurement is proposed in this paper, according to our analysis of
related work by other researchers, and their shortcomings. Firstly, in our method, the required device
is very economical and it is convenient to operate. Only two images of the same scene need to be
provided in our method. The two images are captured by a camera. The camera is a common one
and its price is usually cheap. The camera doesn’t need to be calibrated and no parameter needs to be
adjusted during imaging. Secondly, our method obtains the absolute depth of object instead of the
relative depth; and it is robust to occlusion or partial loss of object, because the depth can be computed
by the lengths of a pair of straight line segments, and the pair of straight line segments can usually be
obtained from a part of the image of the object. Lastly, the superiority of our method has been shown
through comparisons with the methods of references [17,19,20] and the method of Bumblebee. The
effectiveness and practicability of our method is proved by our experimental results.
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