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Abstract: The aim of this study was to compare algorithms for solving inverse problems generally
encountered in spatial audio signal processing. Tikhonov regularization is typically utilized to
solve overdetermined linear systems in which the regularization parameter is selected by the golden
section search (GSS) algorithm. For underdetermined problems with sparse solutions, several iterative
compressive sampling (CS) methods are suggested as alternatives to traditional convex optimization
(CVX) methods that are computationally expensive. The focal underdetermined system solver
(FOCUSS), the steepest descent (SD) method, Newton’s (NT) method, and the conjugate gradient
(CG) method were developed to solve CS problems more efficiently in this study. These algorithms
were compared in terms of problems, including source localization and separation, noise source
identification, and analysis and synthesis of sound fields, by using a uniform linear array (ULA),
a uniform circular array (UCA), and a random array. The derived results are discussed herein and
guidelines for the application of these algorithms are summarized.

Keywords: inverse problems; Tikhonov regularization; compressive sensing (CS); convex
optimization (CVX); focal underdetermined system solver (FOCUSS); steepest descent (SD); Newton’s
method (NT); conjugate gradient (CG); golden section search (GSS)

1. Introduction

Numerous inverse problems exist in the field of acoustics. For example, nearfield acoustic
holography (NAH) is a noise source identification method that reconstructs a surface field of the source
on the basis of sound pressure measured in the nearfield of the source [1–5]. The deconvolution
approach for the mapping of acoustic sources (DAMAS) is also a method for noise source
identification [6]. Another example is the source signal separation problem, where an individual
source signal is to be extracted from a mixed array of signals [7]. Inverse problems can also be
found in source sound field synthesis (SFS) problems, where the sound field produced by secondary
sources is to be matched with a target field [8,9]. Other examples include sound field control [10,11],
crosstalk cancellation in binaural audio rendering [12], noise reduction in speech enhancement [13],
room response equalization, and dereverberation [14,15]. In linear range acoustics, each of these
problems can be formulated as a linear system (Ax = b). The current study focused on the solutions
of farfield noise source identification problems, sound source localization and separation problems,
and sound field analysis (SFA) and synthesis (SFS) problems. Although inverse solutions of acoustic
problems have long been investigated by researchers, according to our review of the literature, no
conclusive results that give solution strategies and parameter choice guidelines can be found in the
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literature. Furthermore, although audio quality is the chief concern in practical audio reproduction,
most previous research has examined general numerical accuracy and stability. This study explored
these problems from the perspective of reproduced signal quality. Solution strategies were compared
in a unified framework, and guidelines of parameter choice are summarized herein.

In general, inverse problems can be divided into two categories: overdetermined and square
systems, and underdetermined systems. To solve overdetermined systems, least-squares methods,
Tikhonov regularization (TIKR) [16], and truncated singular value decomposition (TSVD) are
commonly used. Traditionally, Morozov’s discrepancy principle, generalized cross-validation (GCV),
and the L-curve method can be used to choose the regularization parameter in the TIKR method [17–20].
However, solution methods that are better suited to audio applications than conventional approaches
are proposed in this work. In particular, golden section search (GSS) [21] is applied to find
optimal regularization parameters. To solve underdetermined problems, compressive sampling
(CS) [22,23] solved by using convex optimization (CVX) [24–26] is a widely used approach that is
known to be computationally expensive. In the present study, computationally efficient iterative
approaches that incorporate sparsity constraints, including the focal underdetermined system solver
(FOCUSS) [27], steepest descent (SD), Newton’s (NT) method, and conjugate gradient (CG), were
developed. These algorithms were compared for several audio application scenarios. The first
scenario was sound source localization and separation using a uniform linear array (ULA) and a
uniform circular array (UCA). To assess the separation quality, perceptual evaluation of audio quality
(PEAQ), perceptual evaluation of speech quality (PESQ), and segmental signal-to-noise ratio (segSNR)
were adopted [13,28]. The second scenario was concerned with analyses and syntheses of sound
fields. Recently, an integrated array system was developed on the basis of a freefield model for
spatial audio recording and reproduction [8,9]. This study extended the previous work to a reverberant
environment; a live room was fitted with reflective walls. For the SFA, a 24-element circular microphone
array was utilized to encode the sound field based on plane-wave decomposition, whereas in the
SFS, a 32-element rectangular loudspeaker array was employed to decode the encoded sound field
using three approaches. The third scenario was sound source localization and separation using a
random array.

2. Inverse Solution Algorithms

In this section, an array model is given, along with its assumptions. Assume that the sound
sources are at the farfield of the microphone array such that sound waves impinging on the array
can be regarded as plane waves. In the following array model, time-harmonic dependence ejωt,
j =
√
−1 and ω as angular frequency, is assumed so that the model is essentially formulated in the

frequency domain. M microphones and N sources are considered. The array pressure vector can be
expressed as [29].

p = As + v, (1)

where p ∈ CM is the sound pressure vector received by the microphone, s ∈ CN is the source
amplitude vector, v is the noise vector, and A ∈ CM×N is the steering matrix associated with the
sources. Therefore, given the pressure measurement p and the steering matrix A, solving the problem
of Equation (1) for the unknown source amplitude vector s is a linear inverse problem. Linear inverse
problems can be divided into three categories: square systems (M = N), overdetermined systems
(M > N), and underdetermined systems (M < N). In the following, solution strategies are presented for
these categories.

2.1. Overdetermined or Square Systems

2.1.1. TSVD and Least-Squares Problems

The most basic approach [16–18] to solve linear inverse problems is the least-squares method in
which the following cost function is minimized:
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J = ‖e‖2
2 = eHe, (2)

where e = p − As denotes the error vector and “‖ · ‖2” denotes the vector 2-norm. If matrix A is of
full-column rank, the least-squares solution can be written as

ŝ = [AHA]
−1

AHp. (3)

More generally, by the TSVD of
A = UΣVH

ŝ = A+p, (4)

where Σ represents a diagonal matrix with singular values at its diagonal entries, U and V represent
unitary matrices, and A+ represents the pseudoinverse of the matrix A defined as

A+ = VΣ+UH , (5)

where Σ+ = diag
[
σ−1

1 , . . . , σ−1
r , 0, . . . , 0

]
∈ CN×M , r = rank(A) [30,31]. Note that the expression

of Equation (4) is sufficiently general that it always provides the minimum-norm least-squares solution,
even when the matrix A is rank-deficient. The square of the residual error becomes

e2
LS = ‖p−Aŝ‖2

2 = ‖(I−AA+)p‖2
2 =

M

∑
i=r+1

∣∣∣uH
i p
∣∣∣2 (6)

with ui being the ith column of U and I being the identity matrix.
In practice, the matrix A can contain small singular values and can be very ill-conditioned,

which leads to numerical instability during the inversion of A. Two common methods to cope with
the ill-posedness of the problem are TSVD and TIKR. Briefly, the TSVD method is simply to discard
small singular values of the matrix A, whereas TIKR involves attempts to minimize the following cost
function [16]:

J = ‖Aŝ− p‖2
2 + β2‖s‖2

2, (7)

where the regularization parameter β weights the residual norm and the solution norm. After some
manipulation, we derive with the following optimal solution:

ŝ =
(

AHA + β2I
)−1

AHp (8)

This result can be rewritten in terms of the TSVD of A as follows:

ŝ = (AHA + β2I)
−1

AHp =
N

∑
i=1

fiσ
−1
i αivi, (9)

where A = USVH =
N
∑

i=1
σiuivH

i , with ui and vi being the ith column partition of the matrices U and V,

αi = uH
i p, where

fi(β) =
σ2

i
σ2

i + β2
=

1

1 + (β/σi)
2 (10)

denotes the filter function.
It can also be shown that the minimum residual vector can be written as

p−Aŝ =
N

∑
i=1

(1− fi)αiui + r⊥ (11)
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where r⊥ = (I−AA+)p =
M
∑

i=M+1
αiui is the residual vector of the components of p orthogonal to

{u1 · · ·un}. The residual norm can be written as

‖p−Ax̂‖2
2 =

n

∑
i=1

(1− fi)
2|αi|2 +

m

∑
i=n+1

|αi|2 =
n

∑
i=1

(1− fi)
2|αi|2 + ‖r⊥‖2

2 (12)

From Equation (9), the solution 2-norm can be written as

‖ŝ‖2
2 =

N

∑
i=1

f 2
i σ−2

i |αi|2 (13)

2.1.2. Choice of Regularization Parameter β

In traditional solution strategies for inverse problems, methods are available for choosing
regularization parameters, such as Morozov’s discrepancy principle, the Generalized Cross-Validation
(GCV) method, and the L-curve method [19,20]. The first two methods have been discussed extensively
in the literature. Therefore, we subsequently focus on only the L-curve method for brevity.

The L-curve method is widely used for choosing regularization parameters in inverse solutions.
In the curve, the solution norm is plotted versus the residual norm by varying the regularization
parameter. From Equations (9) and (11), it is straightforward to find the solution norm

‖ŝ‖2
2 =

N

∑
i=1

f 2
i σ−2

i |αi|2 (14)

and the residual norm

‖p−Aŝ‖2
2 =

N

∑
i=1

(1− fi)
2|αi|2 +

M

∑
i=n+1

|r⊥|2 (15)

Regularization helps to improve robustness against system perturbation and measurement noise.
Insights can be gained by writing the solution error as

s− ŝ = s−A#b = (s−A#p)−A#e =

[
N

∑
i=1

(1− fi)
uH

i p
σi

vi

]
−

N

∑
i=1

fi
uH

i e
σi

vi, (16)

where A# = (AHA + β2I)−1AH , (s−A#p) is the regularization error and A#e is the perturbation error.
Hence, when β→ 0, fi → 1 for very well-conditioned problems with high signal-to-noise ratio

(SNR) measurements, the solution error is dominated by the perturbation error and a few high-order
modes are filtered out. In this case, the solution norm is sensitive to the choice of β. The solution
tends to be undersmoothed and susceptible to measurement noise. Conversely, when β→ ∞, fi → 0
for very ill-conditioned problems with low SNR measurements, the solution error is dominated
by regularization error and numerous high-order modes are filtered out. The solution tends to be
oversmoothed and fine details such as resolution are thus lost. In this case, the residual norm is
sensitive to the choice of β.

The parameter β acts as a weighting factor between the residual norms and the solution
norm. Choosing an appropriate β to strike the balance between these two terms is vital. However,
conventional approaches such as GCV and the L-curve method do not always provide satisfactory
results in this situation. In this paper, a new method is proposed to facilitate the choice of the regular
parameter β for the TIKR method.

Setting the gradient of the cost function of the TIKR method, J = ‖p−As‖2
2 + β2‖s‖2

2, to zero
leads to the normal equation

(AHA + β2I)s = AHp (17)
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Without loss of generality, assume A is of full-column rank. Note that

AHA + β2I = V
[
ΣHΣ + β2I

]
VH = Vdiag

[
(σ2

1 + β2), . . . , (σ2
N + β2)

]
VH

which has an effective condition number
√
(σ2

1 + β2)/(σ2
N + β2). Therefore, if we want the condition

number to be τ after regularization, we must require

τ2 =
σ2

1 + β2

σ2
N + β2

(18)

Let κ be the condition number of A; that is, κ = σ1/σM. In general, for very ill-conditioned
systems, κ � τ � 1, and

β =

√
σ2

1 − τ2σ2
M

τ2 − 1
≈

√
σ2

1 − τ2(σ2
1 /κ2)

τ2 =

√
σ2

1
κ2τ2 (κ

2 − τ2) ≈ σ1

τ
(19)

Therefore, the regularization parameter β can be chosen to be the maximal singular value σ1

of A divided by the regularized condition number τ. For example, one may choose that τ = 100,
which causes 40-dB potential loss of SNR in the inverse solution. Normally, A tends to be ill-conditioned
at low frequencies. Choosing a frequency-independent β may suffice for the worst-case scenario. Thus,
the regularization parameter β is chosen according to the maximal condition number at a selected
low frequency (100 Hz is selected in the following simulation). Next, a coarse search is performed by
varying β in orders of 10. A potential interval in which an optimal β may exist is located by observing
how an objective function, such as Perceptual Evaluation of Speech Quality (PESQ) [29], varies with β.
Finally, a fine-grained search is performed in the potential interval by using the Golden Section Search
(GSS) algorithm [21].

GSS is an optimization technique suited for finding the extremum of a unimodal function. It is a
simple bracketing method that does not require evaluation of the gradient of the cost function. In each
search, a probe point must be selected within the left and right brackets according to the golden ratio.
The golden ratio can be defined as

ϕ =
1 +
√

5
2

= 1.618 , ϕ is the golden ratio

Let f (β) be the objective function (PESQ in our case) for which we wish to find the optimal β

that maximizes f (β). First, f (β) has been evaluated at two points, β1 and β3. The maximizing value is
between β1 and β3. The golden ratio can be used to find β2 and β4. β2 and β4 can be written as

β2 = β3 − (β3 − β1)/ϕ, β4 = β1 + (β3 − β1)/ϕ

If f (β2) is larger than f (β4), a maximum clearly lies in the interval between β1 and β4. Therefore,
the new β3 is equal to β4. If f (β2) is smaller than f (β4), a maximum lies in the interval between β2

and β3. Therefore, the new β1 is equal to β2. Figure 1 shows the Schematic of golden section search.
The process is repeated until the gap between β2 and β4 is small. The iteration process stops when the
beta converges within a prespecified tolerance window (0.0001 in our case). The optimal beta βopt can
be written as

βopt = (β2 + β4)/2

The algorithm is summarized as the following pseudocode:
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β2 = β3 − (β3 − β1)/ϕ

β4 = β1 + (β3 − β1)/ϕ

while |β2 − β4| >ε

i f f (β4) < f (β2)

β3 = β4

else
β1 = β2

end
βopt = (β2 + β4)/2
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Therefore, this study developed a procedure for choosing optimal regularization parameter beta.
The procedure involves four steps as follows:

• Step 1. Select τ according to a condition number threshold.
• Step 2. Select a constant β = σ1/τ as an initial guess. For a frequency-domain design, it may be

necessary to choose a frequency-independent β for the worst-case scenario.
• Step 3. Perform a coarse search by running the simulation forward and backward with 10 s

powers of β. Locate a potential interval in which an optimal β may exist by observing the trend of
an objective function, such as PESQ, with respect to β.

• Step 4. Perform a fine search by using optimization methods such as the GSS algorithm to find
the optimal regularization parameter β.

2.2. Underdetermined Systems

In this section, algorithms are presented for underdetermined problems, where the number of
microphones (M) is lower than the number of potential sources (N). In this case, the solution is generally
not unique unless we impose constraints. Although a pseudoinverse gives a unique minimum-norm
least-squares solution, the resolution of the solution is generally not favorable because the solution
error tends to be evenly distributed among all entries. Instead, we impose sparsity as the constraint
to limit the cardinality (nonzero entries) of the solutions in the study, which suggests that pruning
procedures of some sort must be incorporated into the iteration process.

2.2.1. CVX Algorithms

An underdetermined problem with sparse solutions can be written as the following CS problem:

min
s
‖s‖1 st. ‖As− p‖2 ≤ ε, (20)

where ‖ · ‖1 denotes the vector 1-norm. Numerous methods are available for solving this constrained
optimization problem [22,23]. Suppose that the noise energy is constrained within a threshold ε that
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can be selected with reference to the aforementioned least-squares solution. This problem can be
solved numerically by CVX. Freeware was adopted to conduct CVX in this study [24–26].

2.2.2. Iterative Approaches

In the following, we apply four iterative algorithms to solve underdetermined problems. The first
method is Focal Underdetermined System Solver (FOCUSS) [27], which is an iterative technique well
suited for finding sparse solutions to underdetermined linear systems. The algorithm has two integral
parts: a low-resolution initial estimate of the real signal and the iteration process that refines the initial
solution to the final localized solution. Because the system is underdetermined, the sensors are more
numerous than the sources. In this case, we assume our dictionary contains 36 sources. These sources
are located at 5◦ intervals from the x label. Actually, this case has only three sources. Therefore, if the
result is perfect, our final solution has only three nonzero solutions.

The FOCUSS algorithm can be summarized in three steps,

Wk = [diag(sk−1)] (21)

qk = (AWk)
+p (22)

sk = Wkqk (23)

In Equation (21), [diag(sk−1)] converts the vector sk−1 into a diagonal weight matrix. The TIKR
solution is used as the initial condition. Similar to other fixed-point iteration methods, the algorithms
converge within finite numbers of iterations to the sparse solution with appropriate initial conditions.

The large term in the weighting reduces the 2-norm of q

‖W+sp‖
2
= ‖q‖2 =

n

∑
i=1,ωi 6=0

(
spi

wi
)

2
(24)

The relatively large entries in W reduce the contributions of the corresponding elements of sp to
the cost, and the solution is nonzero in the source direction. The pseudoinverse in Equation (22) can
also be implemented by using the TIKR method. Therefore, it can also be written as

qk = (WH
k−1AHAWk−1 + β2I)

−1
WH

k−1AHp (25)

The FOCUSS-TIKR method is robust to noise because of the regularization parameter β.
The iteration process stops when the solution converges within a prespecified tolerance window
(0.0001 in our case).

2.2.3. Iterative Approaches: Promote Sparsity by Pruning

CVX algorithms can solve CS problems, but these algorithms are known to be very
computationally expensive, which prevents their use in real-time processing. To address this challenge,
several iterative approaches are proposed as follows.

In these iterative techniques, the quadratic residual function

J(s) =
1
2
‖As− p‖2

2 =
1
2

[
sHAHAs− pHAs− sHAHp + pHp

]
(26)

is to be minimized. The key step that executes the “compressive sampling” is a pruning process that
must be incorporated into each iteration to promote sparsity, as illustrated in Figure 2. First, several
main peaks as well as sidelobes may appear in the source diagram. We reset all elements in the source
vector s below a prespecified threshold (smax − D) to zero. D is initially set to a very small value D0;
it is then increased incrementally by ∆D in each iteration, typically by the same ∆D in every step.
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The iterative pruning process is summarized with a flowchart in Figure 3. The stopping
condition is

D > Dmax or ‖∇J(s)‖2
2 ≤ 0.001 (27)

in which∇J(s) is the gradient of the quadratic residual function J(s). Three approaches were employed
in this study to update the solutions in the iterative CS algorithms such that each quadratic residual
function J(s) is minimized.
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Steepest Decent (SD) Method

The SD algorithm is based on the notion that the search direction at each iteration is the negative
gradient of the cost function in Equation (26) for minimization problems. The gradient vector of the
quadratic residual function is given by

w = −∇J(s) = −(AHAs−AHp) = AHr, (28)

where r = p−As is the residual vector.
The new solution s′ is updated as

s′ = s + ∆s = s + µw (29)

where µ is the step size. To determine the optimal step size µ, let the vector g be

g = Aw (30)

It can be shown after some algebraic manipulations that

F(s′) =
1
2
(µ2gHg− 2µgHr + rHr) (31)

From Equation (31), the step size µ to minimize F(s′) along the direction w can be found by
setting the derivative of F(s′) with respect to µ to zero. Consequently, we obtain

µ =
‖w‖2

2

‖g‖2
2

(32)

Newton’s Method

The NT method is also an iterative method gradient search. Recall the gradient of the cost
function is

∇F(s) = v = (AHAs−AHp) = −AH(p−As) = −AHr, (33)

where r is as defined before. Setting this gradient to zero leads to the optimal solution

s′ = (AHA)
−1

AHp = A+p, (34)

where A+ = (AHA)
−1AH . Next, multiplying (AHA)

−1 on both sides of v yields

(AHA)
−1v = (AHA)

−1
(AHAs−AHp) = s− (AHA)

−1AHp = s−A+p
= −(AHA)

−1AHr = −A+r

or
−A+r = s−A+p = s− s′

Hence, the solution can be updated as

s′ = s + A+r (35)

In practical implementation, the pseudoinverse A+ is usually of the form of TIKR, namely
A+ = (AHA + β2I)−1AH , because AHA is singular for underdetermined problems. As a refinement
of the algorithm, a step size µ can be used to rewrite the update equation as

s′ = s + µA+r (36)
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Conjugate Gradient (CG) Method

The CG method is an iterative algorithm well suited for the numerical solution of systems of
linear equations, associated with symmetric and positive-definite matrices. Instead of the negative
gradient used in the SD method, which occasionally causes zigzag convergence, the search direction
of the CG method is a linear combination of the current negative gradient and the previous search
direction. Development of the CG algorithm is based on nested Krylov subspaces. For details, we
refer the interested readers to Ref. [32–34]. For brevity, we only summarize the CG algorithm with the
following pseudocode:

r0 = p−As0

p0 = r0

k = 0
f or

αk =
rT

k rk
pT

k Apk

sk+1 = sk + αkpk
rk+1 = rk − αkApk

βk =
rT

k+1rk+1

rT
k rk

pk+1 = rk+1 + βkpk
k = k + 1

end

To put the system of equations in Equation (1) into a more tractable form, we multiply by AH on
both sides, which leads to the normal equations

AHp = AHAsp (37)

This equation is equivalent to finding the vector s for which the gradient of F(s) equals zero.

∇F(s) = −AH(p−As) = 0 (38)

3. Comparison of Algorithms

This section presents the application of the preceding algorithms to acoustic source localization
and separation problems through numerical simulation. These algorithms were compared for three
example problems, with the aid of a uniform linear array (ULA) and a random array. In addition,
an inverse solution involved in sound field analysis (SFA) and sound field synthesis (SFS) in spatial
audio was investigated. Microphone data are synthetic and generated by the model of Equation (1).

3.1. Uniform Linear Array

In the numerical simulation shown in Figure 4, 10-microphone ULA was utilized to separate
the signals emitted by three sources. The sources were located at the far field such that the plane
wave assumption was valid. The spacing between adjacent microphones was 10 cm. This simulated
underdetermined system contained 36 sources as our dictionary. We separated the signals and
localized the signals in one stage. TIKR, FOCUSS, and CS-CVX algorithms were used to solve these
inverse problems. Figure 5 shows the condition numbers of different frequencies. The problem is
ill-conditioned at low frequencies. Source localization results are shown in Figure 6.
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Figure 6. Source localization results obtained using the focal underdetermined system solver (FOCUSS)
algorithm and a uniform linear array. (a) Tikhonov regularization (TIKR) spectrum (b) TIKR
averaged spectrum (c) FOCUSS spectrum (d) FOCUSS frequency-averaged spectrum. (e) Compressive
sampling-convex optimization (CS-CVX) spectrum (f) CS-CVX frequency-averaged spectrum.

The separation results obtained using TIKR, FOCUSS, and CS-CVX are summarized in Table 1.
PESQ is an objective test measure for speech quality evaluation. It is a full-reference algorithm and
analyzes the speech signal sample-by-sample after a temporal alignment of corresponding excerpts of
reference and test signal. The mean opinion score (MOS) is calculated on the basis of PESQ ranging
from 1 to 5; MOS signifies the difference in speech quality between the clean and the separated signals,
which is affected by separation performance and signal distortion. The segmental SNR (segSNR) is
defined as

SNRseg =
1
N

N

∑
k=1

10 log10


∑

n∈ f ramek

|s(n)|2

∑
n∈ f ramek

|ŝ(n)− s(n)|2

 (39)
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The segSNR correlates with the effect of noise reduction. The FOCUSS-PINV algorithm was
observed to achieve the highest score in PESQ and segSNR (Table 1), although it required more
computation time than TIKR and FOCUSS-TIKR.

Table 1. Separation performance of the Tikhonov regularization (TIKR) and focal underdetermined
system solver (FOCUSS) methods for three sources in the underdetermined system.

Methods TIKR FOCUSS-PINV FOCUSS-TIKR CS-CVX

PESQ
Source 1 2.034 3.966 3.350 3.251
Source 2 1.696 3.146 2.879 2.783
Source 3 1.912 3.818 3.394 3.347

segSNR Source 1 0.554 11.92 11.27 8.817

CPU time (s) 53 810 487 16302

In our previous simulation, we simulated microphones that had no noise; therefore, our
regularization parameter was very close to zero. In the current simulation, our microphones did
have white noise with a magnitude equal to the magnitude of the microphone signals divided by 100.
Therefore, the potential loss of SNR was 40 dB.

The regularization parameter is chosen by the maximal singular σ1 value dividing 100 in
100 Hz. In our case, the maximal singular value was equal to 5.32. Next, a coarse search was
performed by varying β in orders of 10 and using the GSS algorithm to find the optimal regularization
parameter. In this case, the optimal regularization parameter was 0.0174, and the FOCUSS-PINV
of the robustness to the noise was very ineffective because PINV artifacts caused discontinuities
in regularization. CS-CVX was sensitive to the noise, and the segSNR and PESQ achieved lower
scores than FOCUSS-TIKR did, as listed in Tables 2 and 3 (20dB). Therefore, noise was present,
and FOCUSS-TIKR was the best choice in this case. It outperformed PESQ and segSNR.

Table 2. Separation performance of the Tikhonov regularization (TIKR), focal underdetermined system
solver (FOCUSS), and compressive sampling-convex optimization (CS-CVX) methods for three sources
with additive white noises (40dB SNR).

Methods TIKR FOCUSS-PINV FOCUSS-TIKR CS-CVX

PESQ
Source 1 2.135 1.170 2.941 2.412
Source 2 1.810 1.121 2.234 1.321
Source 3 1.723 1.168 2.841 2.241

segSNR Source 1 0.52 −10.00 1.558 0.946

CPU time (s) 58 817 497 16431

Table 3. Separation performance of the TIKR, FOCUSS and CS-CVX methods for three sources with
additive white noises (20dB SNR).

Methods TIKR FOCUSS-PINV FOCUSS-TIKR CS-cvx

PESQ
Source 1 1.512 1.168 2.512 1.436
Source 2 1.401 1.118 2.012 1.712
Source 3 1.489 1.044 2.487 1.324

segSNR Source 1 −0.12 −13.11 0.12 −1.112

CPU time (s) 57 815 494 16421

3.2. Random Array

A simulation was conducted for localization and separation of two point sources located at
(0, 0, −1 m) and (0.8, 0.3, −1 m), both of which were emitting clean speech signals, as illustrated
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in Figure 7. A 30-element random array with aperture dimension 0.48 m × 0.4 m situated at z = 0
was utilized to capture the signals emitted by these two sources. To set up the propagation matrix,
100 (10 × 10) equivalent sources were distributed on the image plane located 1 m away from the array.
Figure 8 shows the condition numbers of different frequencies. The problem is ill-conditioned at
low frequencies.
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Figure 9a–f show the source localization results obtained using six approaches. Two sources were
correctly located on the noise map with varying degrees of resolution by all methods. A conventional
method delay and sum (DAS) method (a) gave the poorest resolution, whereas the CS-CVX method
provided the highest resolution. The SD method (d) and CG method (f) were acceptable but did not
perform quite as well as the CS-CVX method. The NT method (e) yielded accurate source locations
with a slightly increased sidelobe level, but it was the most computationally efficient (Table 2).
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Figure 9. Localization results of two point sources. (a) Delay and sum algorithm, (b) Tikhonov
regularization algorithm, (c) compressive sampling-convex optimization algorithm, (d) steepest descent
algorithm, (e) Newton’s algorithm, and (f) conjugate gradient algorithm.
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Table 4 presents a comparison of the separation results obtained using five methods. CS-CVX
displayed the highest scores for PESQ and segSNR, despite being extremely time-consuming. Iterative
CS approaches were determined to be far more computationally efficient than the CS-CVX method.
The CG method attained the highest PESQ, but the lowest segSNR. This suggests that the favorable
separation performance of the CG method comes at the price of signal distortion. The SD and NT
methods demonstrated acceptable PESQ and high segSNR. Although signals were not perfectly
separated by using these two methods, the incurred distortion was minor. In general, methods present
a trade-off between separation performance and signal distortion. Table 5 shows the separation results
with additive noise (SNR = 28 dB). All the methods were observed to suffer from the interference of
noise; consequently, the values of PESQ and segSNR were notably low. However, all the methods were
determined to be robust to noise. The present study also considered mismatches between equivalent
sources (dictionaries) and real sources. Table 6 shows the separation results of the NT method with
different levels of mismatch. Mismatch means that the real source is not precisely on the deployed
source location (dictionary). Extreme mismatch means the real source is exactly on the center of
four nearest the deployed source location. More descriptions are added to the revised manuscript.
Unless the source was just at the center of the near dictionaries, the separation performance was high
and not influenced by noise.

Table 4. Separation performance of five algorithms for two speech sources.

Methods TIKR CS-CVX SD NT CG

PESQ
Source 1 1.99 3.12 2.39 2.48 2.76
Source 2 2.60 3.31 2.77 2.83 3.13

segSNR Source 1 2.15 7.54 5.08 6.04 0.50
Source 2 2.73 8.24 7.02 7.26 1.53

CPU time (s) 201 31065 377 296 386

Table 5. Separation performance of five algorithms for two speech sources with additive noise.

Methods TIKR CS-CVX SD NT CG

PESQ
Source 1 1.82 2.83 2.22 2.38 2.59
Source 2 2.12 3.20 2.53 2.53 2.88

segSNR Source 1 1.40 2.11 2.03 4.13 −0.50
Source 2 2.30 6.51 2.09 1.72 1.23

CPU time (s) 211 31348 358 290 307

Table 6. Separation performance of Newton’s algorithm for two speech sources with different
mismatch conditions.

Methods without Mismatch with Mismatch Extreme Mismatch

PESQ
Source 1 2.52 2.48 2.14
Source 2 2.81 2.83 1.70

segSNR Source 1 6.90 6.04 −0.40
Source 2 6.33 7.26 0.18

3.3. SFA and SFS

Depending on the sparsity of the sound sources, the SFA stage can be implemented in several
manners [35–38]. For the sparse-source scenario, a two-stage algorithm is utilized; the source bearings
are estimated using the minimum power distortionless response (MPDR) [7] and the associated
amplitudes of plane waves are estimated using the TIKR algorithm. For the nonsparse-source scenario,
a one-stage algorithm based on the CS-CVX algorithm or the FOCUSS algorithm is employed.
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The SFS stage is carried out using a loudspeaker array to reconstruct the sound field with the
source bearing and amplitude obtained in the SFA stage. Pressure matching was employed for the
SFS purpose in this study by sampling a large number of virtual control points in the interior area
surrounded by the loudspeakers. The pressure matching procedure can be described as the following
optimization problem:

min
ss(ω)
‖B(ω)sp(ω)−H(ω)ss(ω)‖, (40)

where sp(ω) =
[

s1(ω) · · · sP(ω)
]T

is the amplitude vector of the Pth primary plane-wave

component, ss(ω) =
[

s1(ω) · · · sL(ω)
]T

denotes the amplitude vector of the input signals to

the L secondary loudspeaker sources, H(ω) ∈ CK×L denotes the room response matrix, and bd =[
e−jkd ·y1 · · · e−jkd ·yK

]T
is the steering vector for the dth primary plane-wave component to the

nth control point, yn, n = 1, . . . , K. B(ω) =
[

b1 · · · bd

]
∈ CK×P is the steering matrix from

the plane-wave components obtained in the preceding SFA stage to the control points. Therefore,
the optimal solution can be written as

ss(ω) = H#(ω)B(ω)sp(ω), (41)

where “#” symbolizes some type of inverse operation on the matrix H(ω). In this study, TIKR was
utilized to calculate the input signal amplitudes to the secondary sources. GSS can be used to find the
optimal regularization parameter.

Experiments were conducted to validate the proposed audio analysis and synthesis system. In the
SFA stage, a 24-element circular microphone array with a radius of 12 cm was utilized to capture and
parameterize the sound field in an anechoic chamber (the recording room), as illustrated in Figure 10.
In the SFS stage, a rectangular, 32-loudspeaker array was employed to reproduce in a live room
(the reproduction room) the sound field previously encoded in the SFA stage. The walls of the room
were lined with acoustically reflective boards (Figure 11).
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Figure 11. Sound field synthesis experimental arrangement in a 3.6 m × 3.6 m × 2 m live room fitted
with reflective walls.

To process microphone output and loudspeaker input signals, multichannel analog-to-digital
converters (M-32 AD) and digital-to-analog converters (M-32 DA) (RME, Haimhausen, Germany) were
used with a sampling frequency of 16 kHz.

An audio codec system involves three inverse problems, namely the SFA stage, room response
modeling, and the SFS stage. The condition numbers are plotted against the frequencies of three
steering matrices in Figure 12a–c. Figure 12c indicates that the ill-posedness encountered in the room
response modeling procedures must be addressed, with the aid of appropriate regularization methods.
Large regularization parameters can increase the robustness of the inverse problem. In this study, we
set the regularization parameter to 10.
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Figure 12. Plots of condition numbers versus frequencies of each steering matrix in three inverse
problems: (a) sound field analysis stage; (b) room response modeling; and (c) sound field
synthesis stage.

In the SFA experiment, loudspeaker sources positioned at the angles θ = 60◦, 240◦ played two
10-s speech clips. After recording the source by CMA, we used three algorithms to extract the source
signals. First, we applied the two-stage MPDR and TIKR algorithms. The MPDR spectrum is plotted
as a function of angle and frequency in Figure 13a. The resulting frequency-averaged and normalized
MPDR spectrum is illustrated in Figure 13b, which peaks at the angles θ = 60◦, 240◦ as desired.
The results show that the source was accurately localized using MPDR. Next, the source signals were
extracted using the TIKR algorithm. We also applied one-stage CS algorithms and one-stage FOCUSS
algorithms, which located sources and separated their amplitudes in a single calculation.
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Figure 13. Localization of one music source signal with sampling rate 16 kHz, located at the angles
60◦, 240◦ in an anechoic chamber. By using a uniform circular array with a radius of 12 cm,
the source direction can be identified by the peak in the angular spectrum. (a) Minimum power
distortionless response (MPDR) spectrum plotted versus angle and frequency. (b) Frequency-averaged
and normalized MPDR spectrum.

The signals extracted using different methods were evaluated by using the MOS of the PESQ test.
Results confirmed that the TIKR performed well in signal separation with satisfactory audio quality.
The results are summarized in Table 7.

Table 7. Mean opinion score of perceptual evaluation of speech quality for source signal separation
at the angles 60◦, 240◦ with speech signals using Tikhonov regularization (TIKR), compressive
sampling-convex optimization (CS-CVX), and focal underdetermined system solver (FOCUSS).

Methods Two-Stage TIKR One-Stagecs-CVX One-Stagefocuss

PESQ
Source 1 2.84 3.11 1.56
Source 2 2.79 2.99 1.61

segSNR Source 1 17.40 20.74 13.54
Source 2 16.59 17.34 12.68

CPU time (s) 8 27,588 275
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One sample coherence function between one loudspeaker and one microphone is shown in
Figure 14, indicating the signal quality to be poor below 200 Hz. Therefore, band-limited processing
was applied for all frequencies up to 200 Hz in the SFS stage. In this frequency range, pressure
matching was used on the basis of the room response model.
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Figure 14. Coherence curve measured from one loudspeaker to one microphone in a live room.
A PULSE analysis platform made from Brüel & Kjær was arranged to measure the coherence curve.
A white noise signal with sampling rate 16 kHz was used as the driving signal of the loudspeaker.

The SFS stage was conducted for three different methods. The coherence between the loudspeaker
and the microphone was poor below 200 Hz; therefore, the signals below 200 Hz were not processed.
Method 1, band-limited processing, was applied from 200 Hz to the spatial aliasing frequency, 952 Hz,
in the SFS stage. In this frequency range, pressure matching was performed on the basis of the room
response model. Below 200 Hz, unprocessed audio signals were fed directly to the loudspeakers.
Above 952 Hz, a simple vector panning [39] approach was adopted. The optimal regularization
parameter β achieving the highest MOS in room response modeling was calculated using GSS [21] as
β = 0.0008634.

In the second method, instead of a vector panning method, we used DAS to process signals above
952 Hz. In the third method, we used pressure matching to obtain signals above 200 Hz. The use
of different regularization parameters in pressure matching results in different levels of localization
performance and audio quality.

Figure 15a,c shows the MPDR spectrum and the normalized MPDR spectrum obtained using
the third method for β = 0.01 and β = 10, respectively. Low values of the regularization parameter β

yielded higher localization performance than high values did. These two signals were compared with
the clean signal through the PESQ test. The results showed that the high β ensured satisfactory voice
quality, whereas the low β impaired voice quality.

The results of three localization methods are presented in Figure 16a–f. The MPDR spectra are
plotted as functions of angle and frequency in Figure 16a,c,f. The resulting frequency-averaged and
normalized MPDR spectra are shown in Figure 16b,d,f.
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4. Conclusions

This study developed algorithms for solving inverse problems generally encountered in spatial
audio signal processing. The TIKR algorithm was shown to solve overdetermined problems. However,
the regularization parameter in the TIKR method was not effectively chosen. This study thus presents
a guideline for choosing the optimal regularization parameter β in the TIKR method. Specifically,
choosing the optimal β involves dividing the maximal singular value at low frequency by the threshold
and then running the simulation forward and backward for powers of 10 of β. Optimization methods
such as GSS can be used by observing the trend of an objective function (such as PESQ). Some trade-offs
must be made between localization performance and voice quality. In general, a high β results in a
small solution norm with high voice quality, whereas a low β yields a small residual norm with high
localization performance.

Inverse problems in noise sound source localization and separation problems can be solved by
1-stage and 2-stage (overdetermined and underdetermined), each of the 1-stage and 2-stage methods
has its advantages and disadvantages. In general, the 1-stage methods provide both localization
and separation results with good performance. The 2-stage methods give slightly better separation
performance than the 1-stage methods. From our experience, PESQ correlates better with separability
and segSNR correlates better with distortion.

For 1-stage (underdetermined) problems, iterative CS algorithms have been developed for solving
acoustic inverse problems, with applications to localization and separation. The results demonstrate
that the CS-CVX method was effective in solving CS problems, despite being computationally
expensive. Iterative CS methods achieved comparable performance to the CS-CVX method for
CS problems, in far less computation time. The FOCUSS-TIKR and CG methods attained high
PESQ, whereas the SD and NT methods attained high segSNR. In general, iterative CS methods
were determined to perform better than the TIKR method. For 1-stage methods, FOCUSS-TIKR
attains the highest MOS value of PESQ for clean signals, while the Newton method performs the best.
Both methods require less CPU time than the CS-CVX.

Inverse solution approaches are also useful in solving SFA and SFS problems. In this study,
three inverse problems were solved for implementing an audio codec system. Because of the ill-posed
yield at low frequencies, particularly in the room response modeling stage, choosing an appropriate
regularization parameter β was crucial. Therefore, this stage required a larger regularization parameter
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than the SFA and SFS stages required. In the analysis stage, the one-stage CS algorithm was determined
to be more computationally expensive than the two-stage TIKR algorithm. In the synthesis stage,
the first method performed well in localization, but did not perform well in reproduced voice
quality. As compared with the third method, the second method reproduced signals with boosted
high-frequency content above 952 Hz with poor localization. The third method had the highest
performance in terms of voice quality and localization performance.
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