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Abstract: We provide an analytic propagator for non-Hermitian dimers showing linear gain or
losses in the quantum regime. In particular, we focus on experimentally feasible realizations of
the PT -symmetric dimer and provide their mean photon number and second order two-point
correlation. We study the propagation of vacuum, single photon spatially-separable, and two-photon
spatially-entangled states. We show that each configuration produces a particular signature that might
signal their possible uses as photon switches, semi-classical intensity-tunable sources, or spatially
entangled sources to mention a few possible applications.

Keywords: PT -symmetric dimer; non-Hermitian dimer; quantum linear dimer; optical waveguide
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1. Introduction

Propagation through classical PT -symmetric optical systems has been extensively studied;
cf. Ref. [1] and references therein from the initial description of linear loses in directional couplers
with a more complex non-Hermitian symmetry [2], the quantum-like description of classical planar
waveguides [3], to all the contemporaneous work derived from the seminal introduction of optical
PT -symmetric structures [4]. It is well known that the propagation of electromagnetic field through
a linearly active two-waveguide coupler can be described by the classical PT -symmetric dimer,
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where the effective evanescent coupling between the two single waveguide field modes is given by the
real parameter g and the effective gain and loss by the real positive parameter γ. Such a system can be
realized experimentally by balanced gain and loss in the waveguides, but it is also possible to realize it
with gain-gain, loss-loss, passive-gain [5], and passive-loss [6,7] waveguide, microcavity rings [8,9],
and electric circtuits [10] setups.

In the quantum regime [11–14], the importance of adequately modeling media with linear gain
or loss has been brought forward recently [15,16]. In this regime, linear media induces quantum
fluctuations, such that the ideal PT -symmetric optical dimer dynamics is effectively described by
quantum Langevin equations [15],
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in terms of the effective balanced gain and loss parameter, γ, the effective mode coupling, g, between
the two modes of the optical resonators, described by the annihilation operators â1(z) and â2(z),
and the delta-correlated Langevin forces introduced by the gain and loss media,

〈 f̂ †
1 (z) f̂1(ζ)〉 = 2γδ(z− ζ),

〈 f̂2(z) f̂ †
2 (ζ)〉 = 2γδ(z− ζ), (3)

in that order. These Gaussian fluctuations modify the well-known dynamics produced by the classical
optical PT -symmetric dimer and generate second order correlations in the ideal quantum optical
PT -symmetric dimer [15], Figure 1. Here, we want to discuss the different types of correlations that
might arise from feasible experimental realizations of the quantum PT -symmetric dimer beyond
the balanced gain-loss setup. In the following section, we will introduce the quantum model for
a generalized linear active dimer, a non-Hermitian quantum optical dimer, and provide its propagation
solution. Then, we will discuss the dynamics of spontaneous photon generation as well as photon
bunching and anti-bunching in the different configurations. We will study single-photon propagation
with spatially separable and two-photon propagation with entangled states through the mean photon
number and second order two-point correlations. Finally, we will close with a brief conclusion and
discuss how mean photon propagation and second order spatial correlations might provide insight to
their application in photon switching or as semi(non)-classical light sources.

Figure 1. Schematic showing the renormalized light intensity arising from the spontaneous
generation of photons through two coupled waveguides in the PT -symmetry regime with balanced
gain-loss configuration.

2. Quantum Model and Configurations

In the laboratory, we can think about a more general realization of the effective quantum
PT -symmetric dimer provided by the quantum non-Hermitian dimer,

−i
d
dz

(
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Again, the field annihilation operators in the first and second waveguides are given by the
operators â1(z) and â2(z), in that order. The effective refractive indices of the optical waveguides are
given by the complex numbers n1 and n2, the effective coupling between the optical modes is given
by the real positive parameter g. Finally, the Gaussian fluctuations, due to the active linear media,
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are described by the Langevin forces f̂1(z) and f̂2(z), such that the only nonzero mean values involving
them are their second order correlations [17],

〈 f̂ †
j (z) f̂ j(z′)〉 = 2=(nj)δ(z− z′), for gain media,

〈 f̂ j(z) f̂ †
j (z
′)〉 = 2=(nj)δ(z− z′), for loss media. (5)

It is straightforward to write a formal propagator for this quantum optical system,(
â1(ζ)

â2(ζ)

)
= ein0ζ

(
b̂1(ζ)

b̂2(ζ)

)
, (6)

where we have factorized an average refractive index, n0 = (n1 + n2)/(2g), that introduces a common
phase, <(n0), and a scaling factor due to gain or loss, =(n0). We have also scaled the propagation
variable by the effective coupling of the dimer, ζ = gz. Note that the average refractive index cannot
be zero for experimental realizations. It becomes a pure real number, a phase factor, for passive
materials, and a pure imaginary number, a scaling factor, for identical media with balanced gain and
loss. The second term in the propagator,(

b̂1(ζ)

b̂2(ζ)

)
= eiĤζ

(
b̂1(0)
b̂2(0)

)
+
∫ ζ

0
eiĤ(ζ−t)e−in0t

(
f̂1(t)
f̂2(t)

)
dt, (7)

provides us with the effective dynamics of the system. Here, we need use the scaling property of Dirac
delta, δ(ζ) = δ(z)/|g|, and have defined a complex effective refractive index n = (n1 − n2)/(2g) that
provides us with an auxiliary effective non-Hermitian matrix,

Ĥ =

(
n 1
1 −n

)
. (8)

Note that the case of waveguides with identical real part of their effective refractive indices,
<(n1) = <(n2), yields a purely imaginary effective refractive index that we can rename as n = iγ in
order to recover the standard quantumPT -symmetric dimer [15]. Again, let us stress that the dynamics
introduced by a more realistic model of linearly active media, where configurations beyond balanced
gain-loss are easily obtained, will include a phase and scaling factor proportional to the average
refractive index that are not taken into consideration in the ideal PT -symmetric dimer configuration.

The coupling matrix exponential can be easily calculated following an approach similar to that
used in the classical PT -symmetric dimer [1],

Û(ζ) = eiĤζ ,
= 1̂ cos (Ωζ) + Ĥ ζ sinc (Ωζ) , Ω ∈ C.

(9)

Here, the symbol 1̂ stands for the two by two identity matrix, we have used the cardinal sine
function sinc(x) = sin(x)/x, and the complex dispersion relation is given by the following expression,

Ω =
√

1 + n2. (10)
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Note that this analytic propagator can describe any non-Hermitian dimer and, in the special case
of purely imaginary auxiliary refractive index, n = iγ, we recover the propagator for the standard
classical PT -symmetric dimer [18],

Û(ζ) =


1̂ cos (Ωζ) + i Ĥ ζ sinc (Ωζ) γ < 1,
1̂ + i ζ Ĥ, γ = 1,
1̂ cosh (|Ω|ζ) + i Ĥ ζ sinhc (|Ω|ζ) , γ > 1.

(11)

Experimentally, the effective PT -symmetric dimer can be reached via different configurations:
balanced gain-loss dimer, n1 = nR − inI and n2 = nR + inI , in that order, such that
n0 = nR/g and γ = −nI/g; gain-gain dimer, n1 = nR − inI,1 and n2 = nR − inI,2 such that
n0 = [2nR − i (nI,1 + nI,2)] /(2g) and γ = −(nI,1 − nI,2)/(2g); passive-gain dimer, n1 = nR and
n2 = nR − inI , in that order, such that n0 = (2nR − inI)/(2g) and γ = nI/(2g); passive-loss dimer,
n1 = nR and n2 = nR + inI , in that order, such that n0 = (2nR + inI)/(2g) and γ = −nI/(2g); and
loss-loss dimer, n1 = nR + inI,1 and n2 = nR + inI,2 such that n0 = [2nR + i(nI,1 + nI,2)] /(2g) and
γ = (nI,1 − nI,2)/(2g); for all of these configurations, we have assumed nR, nI , nI,j > 0. The formal
solution presented in this section allows us to explore the propagation properties of all of these
experimentally feasible configurations. Table 1 shows the values of these parameters for the different
configurations delivering an effective PT -symmetric dimer; and we have added the imaginary part
of the effective bias refractive index, β = (nI,1 + nI,2) /(2g) = −=(n0), as it will be useful in the
following sections.

Table 1. A summary of the parameters involved in the different feasible experimental realizations of
the PT -symmetric dimer .

Realization n1 n2 n n0 γ β

Gain-loss nR − inI nR + inI −i nI
g

nR
g − nI

g 0

Gain-gain nR − inI,1 nR − inI,2 i−nI,1+nI,2
2g

nR
g − i nI,1+nI,2

2g
−nI,1+nI,2

2g
nI,1+nI,2

2g

Gain-passive nR − inI nR −i nI
2g

nR
g + i nI

2g − nI
2g

nI
2g

Passive-loss nR nR + inI −i nI
2g

nR
g + i nI

2g − nI
2g − nI

2g

Loss-loss nR + inI,1 nR + inI,2 i nI,1−nI,2
2g

nR
g + i nI,1+nI,2

2g
nI,1−nI,2

2g
−nI,1−nI,2

2g

3. Spontaneous Generation of Photons

The first signature that differentiates a quantum from a classical PT -symmetric dimer is the
spontaneous generation of photons due to the gain medium in presence of vacuum input fields,

n(00)
j (ζ) = 〈0, 0|â†

j (ζ)âj(ζ)|0, 0〉,
= e2βζ〈0, 0|b̂†

j (ζ)b̂j(ζ)|0, 0〉. (12)

In other words, vacuum fluctuations are enough to make the linear active media spontaneously
generate photons [17]; something that is lacking in the classical model. The signatures available
through the spontaneous generation of photos in diverse configurations are provided in the following
for the standard balanced gain-loss dimer,

n(00)
1 (ζ) = −2γ

∫ ζ
0

∣∣Û11 (t)
∣∣2dt,

n(00)
2 (ζ) = −2γ

∫ ζ
0

∣∣Û21 (t)
∣∣2dt,

(13)
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where the (i,j)-th component of the two by two propagation matrix has been written as Ûij(ζ), and it
is important to note that these integrals can be solved analytically but yield expressions too long to
write here. The gain-gain dimer yields the following expressions,

n(00)
1 (ζ) = 2 (β− γ)

∫ ζ
0

∣∣Û11 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û12 (t)
∣∣2e2βtdt,

n(00)
2 (ζ) = 2 (β− γ)

∫ ζ
0

∣∣Û21 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û22 (t)
∣∣2e2βtdt.

(14)

For the gain-passive dimer, we can write the spontaneous generation as:

n(00)
1 (ζ) = −4γ

∫ ζ
0

∣∣Û11 (t)
∣∣2e−2γtdt,

n(00)
2 (ζ) = −4γ

∫ ζ
0

∣∣Û21 (t)
∣∣2e−2γtdt,

(15)

and, obviously, there is not spontaneous generation in the passive-loss and loss-loss dimer,

n(00)
1 (ζ) = n(00)

2 (ζ) = 0. (16)

While the expressions for the spontaneous generation are complicated, it is straightforward to
realize from the analytic expressions that they will present different signatures through propagation in
the dimer.

The signatures from the different configurations can be seen in Figure 2, where we show
an instantaneously renormalized spontaneous generation of photons,

ñ(00)
j (ζ) =

n(00)
j (ζ)

n(00)
1 (ζ) + n(00)

2 (ζ)
, ζ > 0, (17)

and avoid the position ζ = 0 due to the divergence induced by the initial vacuum field.
The rows in Figure 2 present the spontaneous emission in the balanced gain-loss, gain-gain,
gain-passive configurations, from top to bottom, and the columns show results in the PT -symmetric,
Kato exceptional point, and broken symmetry regimes, from left to right. The spontaneous emission
in the ideal PT -symmetric is shown in Figure 2a–c. Note that the oscillations in the PT -symmetric
regime appear earlier in the propagation for the gain-gain, Figure 2d, and gain-passive configurations,
Figure 2g. In the Kato exceptional point, the spontaneous emission is equivalent in the ideal dimer,
Figure 2b, and the gain-passive configurations, Figure 2h, and follows a slightly different initial
distribution in the gain-gain case Figure 2e. Finally, something similar happens in the broken symmetry
regime, the distinction between spontaneous emission in the waveguides for the ideal, Figure 2c,
and gain-passive configurations, Figure 2i, is almost null and follows a slightly different initial
distribution for the gain-gain case, Figure 2f. Note that the spontaneous generation is asymptotically
equal in both waveguides when the dimer is at the Kato exceptional point for any configuration with
linear gain, Figure 2b,e,h. In addition, in the broken symmetry regime, the asymptotic value for the
renormalized spontaneous generation is the same for the different configurations including linear gain,
Figure 2c,f,i, and converges to the same value than the classical PT -symmetric dimer [1,18],

limζ→∞ ñ(00)
1 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)−1
,

limζ→∞ ñ(00)
2 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)
.

(18)
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Figure 2. Instantaneously renormalized spontaneous generation, ñ(00)
j (ζ), along different realizations

of the effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss, second row,
(d–f), shows gain-gain, and third row, (g–i), shows gain-passive configurations in the PT -symmetric
regime, the first column with |γ| = 0.5, the Kato point with |γ| = 1, the second column, and broken
symmetry regime, and the third column with |γ| = 1.2. Values for the first and second waveguides
are shown with a solid blue and a dashed red lines, in that order. Note the oscillatory behavior of the
spontaneous generation inside and its asymptotic behavior outside the PT -symmetric regime.

4. Photon Bunching in Spontaneous Generation

We can also look at the signatures provided by the probability to detect simultaneously one
photon at each of the waveguides output in the different configurations. This can be written in the
following form for the spontaneous generation of photons,〈

0, 0|â†
1 (ζ) â†

2 (ζ) â1 (ζ) â2 (ζ) |0, 0
〉

=
〈
0, 0|â†

1 (ζ) â1 (ζ) |0, 0
〉 〈

0, 0|â†
2 (ζ) â2 (ζ) |0, 0

〉
+

〈
0, 0|â†

1 (ζ) â2 (ζ) |0, 0
〉 〈

0, 0|â†
2 (ζ) â1 (ζ) |0, 0

〉
= n(00)

1 (ζ)n(00)
2 (ζ) +

∣∣∣n(00)
12 (ζ)

∣∣∣2 ,
(19)

where he have used the Gaussian nature of Langevin forces [15] to simplify this probability using the
expressions derived in the last section and defining the following first order two-point correlation,

n(00)
12 (ζ) = 〈0, 0|â†

1(ζ)â2(ζ)|0, 0〉,
= e2βζ〈0, 0|b̂†

1(ζ)b̂2(ζ)|0, 0〉. (20)

Note that the detection probability will always be positive independently of the form taken by
the first order two-point correlation for the different configurations: balanced gain-loss dimer,

n(00)
12 (ζ) = −2γ

∫ ζ

0
Û∗11 (t) Û21 (t) dt, (21)
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gain-gain dimer,

n(00)
12 (ζ) = 2 (β− γ)

∫ ζ

0
Û∗11 (t) Û21 (t)e2βtdt + 2 (β + γ)

∫ ζ

0
Û∗12 (t) Û22 (t)e2βtdt, (22)

gain-passive dimer,

n(00)
12 (ζ) = −4γ

∫ ζ

0
Û∗11 (t) Û21 (t)e−2γtdt, (23)

and, obviously, for the passive-loss and loss-loss dimer,

n(00)
12 (ζ) = 0. (24)

Again, we have to be careful to consider the appropriate parameters γ and β for each configuration
summarized in Table 1.

In order to visualize the information, we can use a quantity similar to Mandel Q-parameter [19],

q(00)(ζ) = g(00)
2 (ζ)− 1,

=
|n(00)

12 (ζ)|2

n(00)
1 (ζ)n(00)

2 (ζ)
, ζ > 0,

(25)

given in terms of the second order two-point correlation function,

g(00)
2 (ζ) = 1 +

|n(00)
12 (ζ)|2

n(00)
1 (ζ)n(00)

2 (ζ)
, ζ > 0, (26)

that provides us with the probability of simultaneously detecting a photon in each waveguide
output. The values of this two-point parameter are always positive, q(00)(ζ) ≥ 0, thus, the different
configurations only show photon bunching. Figure 3 shows the photon bunching signatures obtained
with the different dimer configurations discussed before. The ordering is the same than in Figure 2,
rows show the balanced gain-loss, gain-gain, and gain-passive dimer configurations, in that order,
and columns show the symmetric, exceptional and broken symmetry regimes from left to right.
We can immediately see that the signatures in the PT -symmetric regime, Figure 3a,d,g, present
an oscillatory behavior, while those in the Kato exceptional point, Figure 3b,e,h, and the broken
PT -symmetry regimes, and Figure 3c,f,i, saturate to the unit. The dimer configuration also influences
the photon bunching signature, the balanced gain-loss dimer presents oscillations that do not approach
zero, Figure 3a, while the gain-gain and the gain-passive dimers present oscillations that reach zero,
Figure 3d,g. In addition, the balanced gain-loss dimer saturates in a manner similar to that of the
gain-passive dimer starting from a nonzero value, Figure 3b,h as well as Figure 3c,i, while the gain-gain
dimer starts from zero and saturates faster, Figure 3e,f.

π3 0

0

1

0 ππ0

0

1

0

1

ζ ζ ζ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

)
ζ(

(0
0
)

q
)

ζ(
(0
0
)

q
)

ζ(
(0
0
)

q

1>|γ|1<|γ|<0 = 1|γ|

Figure 3. Cont.
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q
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Figure 3. Photon bunching shown in terms of the q(00)(ζ) parameter for different realizations of the
effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss, second row, (d–f), shows
gain-gain, and third row, (g–i), shows gain-passive configurations in the PT -symmetric regime, the
first column with |γ| = 0.5, the Kato point with |γ| = 1, the second column, and broken symmetry
regime, and the third column with |γ| = 1.2.

5. Photon Propagation

In general, we can study the propagation of any given initial photon state through our dimer,

n(ψ0)
j (ζ) = 〈ψ0|â†

j (ζ)âj(ζ)|ψ0〉,
= e2βζ〈ψ0|b̂†

j (ζ)b̂j(ζ)|ψ0〉,
(27)

and realize that the mean photon number in each waveguide,

n(ψ0)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 〈ψ0| â†

1 (0) â1 (0) |ψ0〉+ e2βζÛ∗11 (ζ) Û12 (ζ) 〈ψ0| â†
1 (0) â2 (0) |ψ0〉

+ e2βζÛ∗12 (ζ) Û11 (ζ) 〈ψ0| â†
2 (0) â1 (0) |ψ0〉+ e2βζ

∣∣Û12 (ζ)
∣∣2 〈ψ0| â†

2 (0) â2 (0) |ψ0〉
+ e2βζ

∫ ζ
0

∫ ζ
0 Û∗11 (ζ − t′) Û11 (ζ − t)ein∗0 t′ e−in0t

〈
ψ0| f̂ †

1 (t′) f̂1 (t) |ψ0

〉
dt′dt

+ e2βζ
∫ ζ

0

∫ ζ
0 Û∗12 (ζ − t′) Û12 (ζ − t)ein∗0 t′ e−in0t

〈
ψ0| f̂ †

2 (t′) f̂2 (t) |ψ0

〉
dt′dt,

n(ψ0)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 〈ψ0| â†

1 (0) â1 (0) |ψ0〉+ e2βζÛ∗21 (ζ) Û22 (ζ) 〈ψ0| â†
1 (0) â2 (0) |ψ0〉

+ e2βζÛ∗22 (ζ) Û21 (ζ) 〈ψ0| â†
2 (0) â1 (0) |ψ0〉+ e2βζ

∣∣Û22 (ζ)
∣∣2 〈ψ0| â†

2 (0) â2 (0) |ψ0〉
+ e2βζ

∫ ζ
0

∫ ζ
0 Û∗21 (ζ − t′) Û21 (ζ − t)ein∗0 t′ e−in0t

〈
ψ0| f̂ †

1 (t′) f̂1 (t) |ψ0

〉
dt′dt

+ e2βζ
∫ ζ

0

∫ ζ
0 Û∗22 (ζ − t′) Û22 (ζ − t)ein∗0 t′ e−in0t

〈
ψ0| f̂ †

2 (t′) f̂2 (t) |ψ0

〉
dt′dt,

(28)

will have a component related to spontaneous generation, those terms with the integrals, and another
to stimulated generation, the rest. As a practical example, let us use as the initial state a single photon
impinging the first waveguide, |ψ0〉 = |10〉. Again, we can calculate the mean photon number in the
balanced gain-loss dimer,

n(10)
1 (ζ) =

∣∣Û11 (ζ)
∣∣2 − 2γ

∫ ζ
0

∣∣Û11 (t)
∣∣2dt,

n(10)
2 (ζ) =

∣∣Û21 (ζ)
∣∣2 − 2γ

∫ ζ
0

∣∣Û21 (t)
∣∣2dt,

(29)
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and realize that the spontaneous generation terms are identical to those in the spontaneous generation
in Equation (13). The same occurs to all the dimer configurations. In the gain-gain dimer,

n(10)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 + 2 (β− γ)

∫ ζ
0

∣∣Û11 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û12 (t)
∣∣2e2βtdt,

n(10)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 + 2 (β− γ)

∫ ζ
0

∣∣Û21 (t)
∣∣2e2βtdt + 2 (β + γ)

∫ ζ
0

∣∣Û22 (t)
∣∣2e2βtdt,

(30)

we recover the spontaneous generation terms from Equation (14). In the gain-passive dimer,

n(10)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 − 4γ

∫ ζ
0

∣∣Û11 (t)
∣∣2e−2γtdt,

n(10)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 − 4γ

∫ ζ
0

∣∣Û21 (t)
∣∣2e−2γtdt,

(31)

we recover those from the spontaneous generation in Equation (15). Finally, in the passive-loss and
loss-loss dimers, the intensity only depends on the initial state and decays due to the nature of the
auxiliary β parameter,

n(10)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2,

n(10)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2.

(32)

In these expressions, it is easier to identify that the spontaneous generation component is identical to
the one in the vacuum propagation case and the stimulated component, in the specific case of single
photon propagation, will be the same than in the classical dimer, as expected.

Figure 4 shows the renormalized mean photon number for the propagation of a single photon in
the first waveguide,

ñ(10)
j (ζ) =

n(10)
j (ζ)

n(10)
1 (ζ) + n(10)

2 (ζ)
. (33)

Note that the initial state is not excluded, as in the spontaneous generation case, because now
there will always be a nonzero probability that the dimer will have a photon propagating through it.
Now, as the renormalized mean photon number will have a spontaneous and stimulated component,
it is possible to see that the strongest differences in the PT -symmetric regime will occur at small
propagation distances, and the oscillation frequency will be larger than in the spontaneous generation
case, Figure 4a,d,g. In the Kato exceptional point, Figure 4b,e,h, and the broken symmetry regime,
Figure 4c,f,i, the same will happen. The strongest deviation from the spontaneous generation signature
will occur for small propagation distances and it will take slightly longer propagation distances to
reach an asymptotic limit identical in value to that of the spontaneous generation,

limζ→∞ ñ(10)
1 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)−1
,

limζ→∞ ñ(10)
2 (ζ) = 1

2γ

(
γ +

√
γ2 − 1

)
.

(34)

Finally, it is possible to follow the renormalized mean photon number for the passive-loss and
loss-loss dimer which will have identical signatures in all regimes, Figure 4j,k,l, and is able to provide
photon localization at any of the waveguides, Figure 4j.
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ñ

1>|γ|1<|γ|<0 = 1|γ|

Figure 4. Instantaneously renormalized mean photon number, ñ(10)
j (ζ), along different realizations

of the effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss, the second row,
(d–f), shows gain-gain, the third row, (g–i), shows gain-passive, and the fourth row, (j–l), shows both
passive-loss and loss-loss configurations in the PT -symmetric regime, the first column with |γ| = 0.5,
the Kato point with |γ| = 1, the second column, and the broken symmetry regime, and the third
column with |γ| = 1.2. Values for the first and second waveguides are shown with a solid blue and
a dashed red lines, in that order.

6. Photon Bunching and Anti-Bunching in Photon Propagation

We can also study the effect of photon propagation on second order two-point correlations as we
did for spontaneous generation. In order to study a different state, we will consider as initial state
a N00N state, |N00N〉 = (|N0〉+ |0N〉) /

√
2, in order to see negative values of the two-point Mandel

parameter at least for the initial state,

q(N00N)(ζ) =
n(N00N)

1212 (ζ)

n(N00N)
1 (ζ)n(N00N)

2 (ζ)
− 1, (35)

where we have defined the following second order two-point correlation function,

n(N00N)
1212 (ζ) = e4βζ

〈
N00N|b̂†

1 (ζ) b̂†
2 (ζ) b̂1 (ζ) b̂2 (ζ) |N00N

〉
, (36)

and we take the mean photon numbers as defined in Equation (27).
For the two-photon N00N state, N = 2, the mean photon numbers at the waveguides are provided

by the following expressions,

n(2002)
1 (ζ) = e2βζ

∣∣Û11 (ζ)
∣∣2 + e2βζ

∣∣Û12 (ζ)
∣∣2 + n(00)

1 (ζ),

n(2002)
2 (ζ) = e2βζ

∣∣Û21 (ζ)
∣∣2 + e2βζ

∣∣Û22 (ζ)
∣∣2 + n(00)

2 (ζ),
(37)
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where the first and second terms corresponds to the stimulated generation, and the third term is related
to the spontaneous generation and can be recovered from Section 3 for each and every configuration.
The general expression for the two-point correlation is summarized in the following,

n(2002)
1212 (ζ) = e4βζ

∣∣Û11Û21 + Û12Û22
∣∣2 + n(00)

1 (ζ)n(00)
2 (ζ) + |n(00)

12 (ζ)|2
+ e2βζ

[
n(00)

1 (ζ)
(∣∣Û21

∣∣2 + ∣∣Û22
∣∣2)+ n(00)

2 (ζ)
(∣∣Û11

∣∣2 + ∣∣Û12
∣∣2)]

+ 2 e2βζ <
[
n(00)

12 (ζ)
(
Û∗21Û11 + Û∗22Û12

)]
.

(38)

For the balanced gain-loss dimer, we use the spontaneous generation terms, n(00)
j (ζ), provided by

Equation (13), and the first order two-point correlation, n(00)
12 (ζ), from Equation (21). In the gain-gain

dimer, the expressions for n(00)
j (ζ) and n(00)

12 (ζ) are given by Equations (14) and (22), in that order.
In the gain-passive dimer, we only need the definitions provided by Equations (15) and (23) for the
spontaneous generation and the first order two-point correlation, respectively. Finally, for passive-loss
and loss-loss dimers, the spontaneous generation is null, n(00)

j (ζ) = n(00)
12 (ζ) = 0, such that

n(2002)
1212 (ζ) = e4βζ

∣∣Û11Û21 + Û12Û22
∣∣2. (39)

Obviously, the adequate parameter β from Table 1 should be used for each configuration.
These expressions become complicated enough that we must rely on a figure-based analysis.

Figure 5 shows the two-point Mandel parameter for the different dimer configurations in the
PT -symmetric, the Kato exceptional point, and broken PT -symmetry regimes. Now, the initial state
shows anti-bunching, a negative value of the two-point Mandel parameter, due to its delocalization
of the two-photon state. For the balanced gain-loss, the initial state propagates and, after a critical
propagation distance, presents bunching in the PT -symmetric, Figure 5a, the Kato exceptional point,
Figure 5b, broken symmetry, Figure 5c, and regimes. The gain-gain and gain-passive dimers show
a similar, more interesting behavior where the propagated state oscillates between an anti-bunched
and bunched state in the PT -symmetric regime, Figure 5d,g, and the transition from an anti-bunched
to a bunched state in the Kato exceptional point, Figure 5e,h, and broken symmetry regimes, Figure 5f,i.
Finally, in both the passive-loss and loss-loss dimers, the probability of losing photons makes the
propagated state anti-bunched in all regimes, Figure 5j–l.
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Figure 5. Photon bunching and anti-bunching shown in terms of the q(2002)(ζ) parameter for different
realizations of the effective PT -symmetric dimer. The first row, (a–c), shows balanced gain-loss,
the second row, (d–f), shows gain-gain, the third row, (g–i), shows gain-passive, and the fourth row,
(j–l), shows both passive-loss and loss-loss configurations in the PT -symmetric regime, the first
column with |γ| = 0.5, the Kato point with |γ| = 1, the second column, and the broken symmetry
regime, the third column with |γ| = 1.2.

7. Conclusions

We have calculated the propagation of photon states through non-Hermitian linear dimers
with Gaussian gain and losses. As a practical example, we studied propagation in the different
experimentally feasible configurations of the PT -symmetric dimer and show that each and every
configuration presents a different signature in the propagation of vacuum, single and two-photon
states. These signatures go beyond the mean photon number at the waveguides, which can be split
into spontaneous and stimulated generation components, and can be found, for example, in the second
order two-point correlation of the photon state propagating through the dimers.

First, let us focus on the mean photon number signatures. They show that the propagation of
vacuum and single photons through dimers in the PT -symmetry regime might provide us with
directional coupler devices controllable by the propagation length. Furthermore, devices that provide
full single photon switching can only be designed using dimers in the passive-loss and loss-loss
configuration. Outside the PT -symmetric regime, the asymptotic stability of the dimers in any given
configuration suggest their use as symmetric intensity sources at the Kato exceptional point and, in the
broken symmetry regime, they might provide asymmetric intensity sources where the intensities ratio
can be controlled by the linear properties of the material.

On the other hand, second order two-point correlation signatures can help us choose
configurations depending on the type of state needed for a particular application. For example,
if spatially separable states are needed, choosing a configuration showing photon bunching comes
naturally. Spatially entangled states are provided by passive-loss and loss-loss configurations where
the initial two-photon state is delocalized in the waveguides.

We want to note that our description of linear media is far from complete. Real world linear
materials saturate; this induces further restrictions on the model that we do not consider in this
manuscript and could provide further avenues of research. Furthermore, the addition of new
interactions, like introducing a two-level system to create more complex hybrid devices [20], requires
a first principle reformulation in order to recover adequate effective models.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute.
PT Parity-Time.
<(α) and =(α) Real and imaginary parts of a complex number α, in that order.
CONACYT Consejo Nacional de Ciencia y Tecnología
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