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Abstract: Critical infrastructures (CI) are the cornerstone of modern society, and they are connected
with each other through material, energy, or information. The robustness of interdependent CI
systems under attack has been a hot topic in recent years, but previous studies mainly focused
on malicious attacks or random failure. To analyze the impact of some natural disasters whose
destructive force is mainly related to distance with respect to interdependent CI systems, we present
a new localized attack mode considering destructive force decays with distance, and carry out
simulations on several interdependent networks constructed by artificial and real world networks.
Furthermore, this article analyzes the influence of coupling strength and coupling pattern on the
robustness of interdependent system. The results show that dependency links between networks
decrease the robustness of interdependence networks, but the robustness under failure probability
degradation is not vulnerable like that under malicious attack or random failure. In addition,
the coupling preference has little effect on the robustness of interdependent networks under the new
localized attack strategy; when the average degree of subnetworks is large, the same conclusion can
be obtained for the coupling strength.
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1. Introduction

Nowadays, critical networked infrastructures, such as power grids, water supply networks,
transportation networks, and the Internet, play an increasingly important role in modern society.
These infrastructures are not isolated, but interact with each other through connections, such as
material, energy, and information [1–3]. Those connections keep interdependent systems functional, but
increase the vulnerability of systems under operational errors, aging, and even intentional disruption.
Considering the significant loss caused by infrastructure failure, it is of great practical significance
to study the robustness of interdependent networks, and this issue has become a hot topic in recent
years. After Buldyrev et al. [4] proposed fully coupled interdependent networks in 2010, many scholars
have conducted research on this issue. The common research paradigm is to construct interdependent
networks under different coupling patterns based on different subnetworks, then analyze the influence
of different features on the robustness of interdependent networks under different attack strategies.
There are two kinds of subnetworks usually used, namely, artificial networks, such as Watts-Strogatz
(WS), Erdős-Rényi (ER), Random Regular (RR), Barabási-Albert (BA), and lattice networks [5–8],
and realistic infrastructure networks, such as power grids, water supply networks, the Internet [9], etc.

According to the emphasis, the existing research can be divided into two aspects: one is to study
the influence of the topology of subnetworks; the other is to analyze the influence of the dependency
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links between subnetworks on the robustness of interdependent networks. The topology of subnetworks,
such as the degree of distribution [4,8], clustering coefficient [10–12], and assortative [13], is an important
factor affecting the robustness of interdependent networks, and most recent works are carried out from
this perspective. Moreover, these studies are often carried out in the context of different attack strategies
and coupling preference [8,14–18]. Attack strategy is the method of selecting attack nodes, such as
random attack (RA), targeted attack (TA) [16,19], and localized attack (LA) [20–24]. Coupling preference
refers to the pattern that the coupling links are established between subnetworks [25,26], including
assortative, disassortative, and random coupling, based on node degree or betweenness. The other
factor affecting the robustness of interdependent networks is the dependency link, including coupling
strength, link strength, and the direction of the link. First, interdependent networks can be divided into
fully and partially-interdependent according to coupling strength, which means the partition of nodes
with dependency links. This coupling strength leads to a change from a first-order to a second-order
percolation transition at a critical threshold [27–29]. Next, strong and weak coupling can be identified
according to the strength of the dependency link, or, for example, the probability of node failure after
losing its dependency link, as there is a rich phase transition of interdependent networks when the
strength of the dependency link changes [30]. Finally, the direction of the dependency link distinguishes
directed and undirected interdependent networks [31,32]. A directed interdependent system has poorer
robustness performance than an undirected system, the main reason being that there are more possibilities
for the existence of longer dependency chains in directed interdependent systems than undirected ones.

Additionally, there are many other studies on this issue. Except the failure caused by a lack of
a dependency link mentioned above, the failure caused by the excessive load of nodes or edges is also
considered in the research of interdependent networks [17,33]. Similar to topology, studies based on
load failure are often carried out considering networks, coupling preference, and attack strategies.
Very recently, some researchers have studied the properties of interdependent networks from the
point of view of recovery [34–36], propagation [37,38], and fuzzy information attack [39]. Moreover,
the robustness of network of networks (NON), which is an extension of two-layer interdependent
networks, has been examined. In particular, Gao and Dong et al. [40–45] systematically studied the
percolation process of chain-like, star-like, and tree-like NON by analytical and numerical methods.

Although there are many studies on interdependent networks, most of them are based on random
failure or malicious destruction, while very few articles focus on localized attacks, which are used to
simulate the effect of natural disasters, such as earthquakes, on critical infrastructures [23]. In previous
studies, all nodes in an attack area (or ratio of affected nodes, expressed with p) of a localized attack
will fail, but the fact is not always like that. For example, the impact of earthquakes may be very large,
but infrastructure nodes in the scope will not necessarily fail, and the failure probability of nodes
should decrease with the distance from epicenter. Based on this consideration, this paper studies the
robustness of interdependent networks under a new localized attack strategy, providing a reference
for the design of a more robust critical infrastructure system.

The rest of this paper is organized as follows: The second section introduces cascading failures
of interdependent networks, and the concept of a failure probability degradation model of localized
attack. In the third part of the paper, simulation and analysis is conducted on four kinds of isolated
networks and corresponding interdependent networks under the new localized attack, in addition,
we analyze the effect of coupling preference and strength on new attack strategies. The last part
summarizes the whole text and looks forward to the future work.

2. Models

2.1. Cascading Failures of Interdependent Networks

For simplicity and without loss of generality, we apply the model proposed by Buldyrev in this
paper, as shown in Figure 1. In this model, two subnetworks A and B, with the same number of
nodes and average degree, are coupled by random one-to-one dependency links, which means one
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node will fail when its dependency counterpart fails. Assume that only nodes belonging to the giant
component remain functional. We define pA and pB as the probability that the node belongs to the
larger cluster of subnetwork A and B, respectively; ψ′n(φ

′
n) is the fraction of the remaining nodes in

subnetwork A(B); ψn and φn are the giant cluster components; and qA(qB) is the proportion of nodes in
subnetwork A(B) dependent on subnetwork B(A). At step 1, a fraction p of nodes in subnetwork A are
attacked [27,28], then the general form of the cascading failures can be described as shown in Table 1.
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Figure 1. Cascading failures of interdependent networks [4]. Red and blue nodes represent nodes of
subnetwork A and subnetwork B, respectively. Solid circles denote functional nodes, hollow circles
denote failure nodes. (a) One node in sub network A is chosen to be attacked; (b) the attacked node in A
and its dependency counterpart in B fail, and all of the links of the failure nodes, including connectivity
and dependency links, are removed. Then A breaks into three clusters, and only nodes in cluster a13

remain functional according to the assumption; (c) because of the dependency and larger cluster, cluster
b21, b22, and b23 in B are eliminated; and (d) failure of cluster b23 in turn leads to failure of some nodes
in A, and cascading failures stop because no further failure occurs. Finally, only nodes in cluster a34 and
b24 remain functional in the interdependent networks after only one node in subnetwork A is attacked.

Table 1. Cascading failures of interdependent networks.

Step Subnetwork A Subnetwork B

Remaining Fraction Giant Component Remaining Fraction Giant Component
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(
ψ′1
)
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(
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]

φ1 = φ′1 pB
(
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)
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(
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)]}
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. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
n Ψ′n = (1− p)
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)]}
ψn = ψ′n pA(ψ

′
n) φ′n = 1− qB[1− pA(ψ

′
n)p] φn = φ′n pB(φ

′
n)

In this paper, we use two indices to represent the robustness of interdependent networks. The first
index is of relative size S of the giant components in subnetwork A and B when cascading failures end.
For one-to-one correspondence and fully-coupled interdependent networks we can define S as shown
in Equation (1); larger S indicates better robustness:

S =
GA + GB
NA + NB

=
GA
NA

=
GB
NB

, (1)

The point where the giant component decreases to zero is typically referred to as the critical
threshold pc. It is also commonly used to characterize the robustness of interdependent networks.
A larger threshold means more nodes need to be removed to make the interdependent systems collapse,
and also shows that the robustness of the interdependent network is better.

2.2. Failure Probability Degradation Model of a Localized Attack

A localized attack is often used to simulate the impact of natural disasters on interdependent
systems. In a localized attack scenario, nodes are chosen from a certain area, starting from a root node,
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then its nearest neighbors, then the next nearest neighbors, as shown as Figure 2, until the fraction
of affected nodes reach a certain value, denoted by p. The traditional localized attack (TLA) assumes
that all of these nodes will fail. However, the fact is not like that. It is a basic fact that destructive force
usually decays with distance, and there is a distance threshold, L0, beyond which the probability of
node failure is 0. Additionally, for earthquakes, the closer to the epicenter, the slower the destructive
force increases [46]. Simple and without generality, we assume the failure probability of a node at the
epicenter is 1. Thus, we can define a new failure probability degradation model of a localized attack
(PDLA), as shown as Figure 3, and the failure probability of one node with distance l from the attack
center is as follows:

p(l) =

{
1− l2

(L0+1)2 , 0 ≤ l ≤ L0

0 , l > L0
, l = 0, 1, 2, . . . (2)

where L0 represents the furthest distance from the affecting natural disaster. In this article, the length
of the shortest path between nodes is regarded as distance for simplicity.
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Figure 2. The yellow nodes represent attack center, the red, blue, green and black nodes denote nodes
whose shortest distance to attack center is 1, 2, 3, 4, respectively. (a) Schematic illustration of a localized
attack in partially-coupling interdependent networks; and (b) schematic illustration of a localized
attack in fully-coupling interdependent lattice networks.
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Figure 3. Illustration of the failure probability degradation model of a localized attack. The failure
probability of a node within the area affected by a disaster decreases with its distance from the
attack center.

3. Results and Analysis

To study the robustness of interdependent networks under PDLA, we use four kinds of network
models to create interdependent networks, three of them are artificial networks, namely the WS small
world network, BA scale-free network, and NN nearest-neighbor coupled network. The forth one is
an infrastructure network, the western states power grid of the United States [47]. Then we construct
WS-WS, BA-BA, NN-NN, and power-BA interdependent networks using the methods proposed in [4].
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In order to compare the effect of PDLA, we also show the result of a targeted attack, a random attack,
and a traditional localized attack.

3.1. Artificial Network

In this section, we focus on the robustness of artificial networks under different attack strategies,
especially PDLA. First, we generate two WS networks with a network size of NWS1 = NWS2 = 2000,
with an average degree of <KWS1> = <KWS2> = 6, the rewiring probability pre = 0.2; and generate
BA and NN networks with NBA1 = NBA2 = 2000, <KBA1> = <KBA2> ≈ 6; NNN1 = NNN2 = 2000,
<KNN1> = <KNN2> = 6. Then we can create fully-coupled WS-WS, BA-BA, and NN-NN interdependent
networks. When constructing interdependent networks, two WS or BA subnetworks are randomly
coupled, but interdependent NN-NN networks are vulnerable under random coupling due to their
special spatial distribution [7]. Therefore, the spatial location is considered when constructing
interdependent NN-NN networks, as shown as Figure 2b. Finally, the robustness of interdependent
networks is analyzed by numerical simulation under four attack strategies, namely TA, RA, TLA, and
PDLA. Here TA means targeted attack on high degree nodes, RA denotes random attack on nodes
during simulation.

Figure 4 shows the robustness of isolated WS, BA, and NN networks and interdependent WS-WS,
BA-BA, NN-NN networks under four attack strategies. Critical thresholds pc of interdependent networks
are listed in Table 2. From the results of Figure 4 and Table 2, we can draw the following conclusions.
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100 independent realizations. One realization means a simulation using four attack strategies on one
isolated network (or interdependent networks) under different p. (a) Isolated WS network; (b) isolated
BA network; (c) isolated NN network; (d) interdependent WS-WS networks; (e) interdependent BA-BA
networks; and (f) interdependent NN-NN networks.

Table 2. pc of interdependent networks under different attack strategies.

Attack Strategy TA RA TLA PDLA

WS-WS 0.5 0.55 0.75 -
BA-BA 0.2 0.75 0.45 -

NN-NN 0.65 0.65 1 - 1

1 The symbol “-” indicates that there is no critical threshold where the network collapses completely.
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3.1.1. The Existence of Dependency Links Makes Interdependent WS-WS and BA-BA Systems More
Vulnerable, but Makes No Difference on Interdependent NN-NN Networks Coupled Based on Strict
Spatial Position

Compared the results of isolated networks in Figure 4a,b with the results of interdependent
networks in Figure 4d,e, we can see that, no matter under what type of attack strategies, the robustness
of interdependent networks is worse than the isolated network. An example is that the robustness of
interdependent WS-WS and BA-BA networks under TA shows a first-order phase transition, while the
isolated network shows a second-order. In addition, the isolated WS network has a strong robustness
under PDLA as shown in Figure 4a. When it comes to interdependent networks, the robustness of
WS-WS is vulnerable. However, as shown in Figure 4c,f, interdependent NN-NN networks show
the same failure process as isolated NN network, which is consistent with [7]. The reason for this
phenomenon is that coupling strictly-considered space restrictions in interdependent NN-NN networks
is equivalent to increasing the degree of each node by 1, making NN-NN essentially an NN network
with average degree <K> = 7.

3.1.2. The Robustness of Network under PDLA Is Better Than That under TA, RA, or TLA

From Figure 4, we can see that networks, including isolated and coupled ones, are vulnerable
under targeted attack, random attack, or traditional localized attack. The results under TLA and RA
(Figure 4b) are consistent with [21,23], which show that the “localized attack has stronger attack power
than random attack”. However, these two papers do not consider the attenuation of destructive force,
so the failure range under localized attack is larger than the actual situation.

Actually, as shown in Figure 4, the robustness of a network under localized attack with failure
probability degradation is relatively strong. For isolated networks, such as WS and BA networks, all
nodes are affected by attack (the scale of the attacked area p = 1), there are still about 30% of nodes
(SWS ≈ 0.33, SBA ≈ 0.28) that are functional after cascading failures stop, and the remaining functional
nodes in an NN network are fewer, about 12.5%. Additionally, from Table 2 we can see that there is no
critical threshold of interdependent networks under PDLA. In addition, it can be seen from Figure 4d,e
that the failure process of interdependent networks under the targeted attack exhibits a first-order
phase transition, while under PDLA, the process is second-order.

3.1.3. Degree Distribution Is an Important Factor Affecting Network Robustness

For WS networks, both isolated and coupled, the order of attack strategies according the
destruction on networks is TA > RA > TLA > PDLA; but for BA networks, the order is TA > TLA > RA
> PDLA; for NN networks, the order is TA = RA > TLA > PDLA. Obviously, the robustness under TA
is the worst, and robustness under PDLA is the best. The differences only exist in the robustness under
RA and TLA. The difference between WS and BA networks is due to the degree distribution: the degree
distribution of the WS network is relatively uniform; this makes it possible for WS networks to break
into more clusters under random attack, which means the interdependent WS-WS network is more
vulnerable under RA than TLA. However, the degree distribution of the BA network is a power law
distribution, which is to say, there are a few hub-nodes in this kind of network. In the TLA scenario,
the probability of hub-nodes being attacked increases faster than that in the RA scenario with the
expansion of the attack area, resulting in BA networks being more vulnerable under TLA than RA.
This is consistent with the conclusion of [21] that “there is a higher probability that higher degree nodes
will be within the attacked hole, which accelerates the fragmentation of the BA network”. Note that
both the isolated NN network and interdependent NN-NN network show the same failure process
under TA and RA. This is because the degree of all nodes in the NN network is the same, so the failure
possibility of them is identical under targeted attack and random attack.
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3.2. Infrastructure Network

To analyze the robustness of interdependent infrastructure networks when facing disasters,
such as earthquakes, the robustness of an interdependent cyber-physical network, consisting of
an infrastructure network, the western states power grid network of the United States, as shown in
Figure 5a, and its control network, are analyzed under PDLA in this section. The node number of
the power grid network Npower = 4941, the edge number is 6594, the average degree <Kpower> ≈ 2.67,
the clustering coefficient C = 0.107, and the average shortest path length APL = 18.989. Figure 4 shows
the illustration and degree of distribution of the power grid network. Due to the lack of computer
control network data, we use a BA scale-free network instead [15,48], with NBA = 4941 and <KBA> ≈ 4,
to construct power-BA interdependent networks.
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(b) cascading failures of power-BA averaged over 100 realizations; (c) cascading failures of the power
grid under one realization; and (d) cascading failures of power-BA under one realization.
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Table 3. Critical threshold pc of power-BA under different attack strategies.

Attack Strategy TA RA TLA PDLA

power grid 0.2 ≈0.6 ≈1 1
power-BA 0.04 0.18 0.3 0.42

Firstly, because the degree of distribution and clustering coefficient of the power grid show small
world characteristics, the order of attack strategies according to the damage of the power grid is the
same as that of the WS network, TA > RA > TLA > PDLA, as shown in Figure 6a. The robustness of the
power grid under TA is poor, very similar to the BA network, because of the existence of several hub
nodes. Moreover, Figure 5a shows that the power grid has several clusters connected by many nodes
arranged in lines. With the expansion of the attack range, once the connecting nodes are attacked, the
power grid will break into several independent clusters and many nodes will fail, leading to a poor
robustness of the power grid under RA.

Secondly, compared with the results of WS-WS and BA-BA in Figure 4c,f, the robustness of the
interdependent power-BA networks in Figure 6b show the same, but more severe, decreasing trend
with the increase of the attack area. In the scenario of a targeted attack, the entire interdependent
networks will completely collapse with a critical threshold pc around 0.04. Even in the PDLA scenario,
the critical threshold pc is 0.42, much less than that in WS-WS and BA-BA.

Lastly, from Figure 6c,d we can see that the percolation of the isolated power grid shows
a second-order; however, the percolation of power-BA shows a first-order transition under all four
attack strategies, and the critical threshold pc becomes very small, as listed in Table 3. This shows that,
like the artificial network in Section 3.1, the correlation between the control network and infrastructure
network also increases the risk of interdependent systems under attack.

3.3. Effect of Coupling Preference and Coupling Strength

As mentioned in the introduction, the research on the robustness of interdependent
networks usually takes into account different subnetworks, attack strategies, and coupling modes.
Sections 3.1 and 3.2 have analyzed the robustness of several interdependent networks from the point
of view of attack strategy. To ensure the integrity of the study, this section is carried out from
the perspective of coupling, including the effect of coupling preference and coupling strength on
interdependent networks under PDLA. Moreover, since many real networks show small-world or
scale-free features [49], WS and BA network models are chosen to construct interdependent networks
in this section, and analyze the impact of coupling preference and coupling strength on the robustness
of interdependent networks under PDLA. Specifically, we use the same procedures as in Section 3.1 to
analyze the robustness of fully-coupled WS-WS and BA-BA interdependent networks with assortative
coupling (AC), disassortative coupling (DC), and random coupling (RC). Partially-interdependent
system with random coupling, shown as Figure 2a, is also analyzed.

Figure 7 shows the cascading failures of interdependent networks with different coupling
preferences. Table 4 lists the order of coupling preferences based on the robustness of the interdependent
networks under four attack strategies. The results indicate that, in three kinds of attack strategies, LA,
RA, and TLA, coupling preferences do have an impact on the robustness of interdependent networks.
Such as in the case of targeted attack, both interdependent WS-WS and BA-BA networks show the best
robustness under disassortative coupling; when facing a random attack, the robustness under assortative
coupling is the best, while the robustness under disassortative coupling is the worst. Especially in
BA-BA networks, the difference among different coupling preference is much more obvious, as shown
in Figure 7b. However, in the PDLA scenario, the robustness of interdependent networks with different
coupling preferences is very similar. This suggests coupling preference is not the main factor that
affects the robustness of interdependent networks under PDLA, which is different from the other three
attack strategies.
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Figure 7. Cascading failures of interdependent networks with different coupling preference. The results of
TA, RA, and TLA are also plotted for comparison. Every point is averaged over 100 independent realizations.
(a) Robustness of WS-WS interdependent networks with NWS1 = NWS2 = 2000, <KWS1> = <KWS2> = 6,
and rewiring probability pre = 0.2; and (b) robustness of interdependent BA-BA networks with
NBA1 = NBA2 = 2000, <KBA1> = <KBA2> ≈ 6.

Table 4. Order of coupling preference based on the robustness of interdependent networks.

Attack Strategy TA RA TLA PDLA

WS-WS RC < AC < DC DC ≈ RC < AC RC < DC ≈ AC RC ≈ DC ≈ AC
BA-BA AC < RC < DC DC < RC < AC AC < RC < DC RC ≈ DC ≈ AC

Moreover, Figure 8 shows the cascading failures of interdependent networks under different
coupling strengths under PDLA. In each subgraph, we plot the failure curves with specific node sizes
and average degree. Through the comparison of Figure 8a,b and Figure 8d,e, we see that node size of
the subnetwork has little effect on the robustness, and there is a negative correlation between coupling
strength and robustness: the stronger the coupling strength is, the worse the robustness is.
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Each point is averaged over 100 independent realizations. The relative size of giant component is
defined here as S = GA/NA. (a) WS-WS with NWS1 = NWS2 = 1000, <KWS1> = <KWS2> = 4; (b) WS-WS
with NWS1 = NWS2 = 2000, <KWS1> = <KWS2> = 4; (c) WS-WS with NWS1 = NWS2 = 2000, <KWS1> =
<KWS2> = 6; (d) BA-BA with NBA1 = NBA2 = 1000, <KBA1> = <KBA2> ≈ 4; (e) BA-BA with NBA1 = NBA2

= 2000, <KBA1> = <KBA2> ≈ 4; and (f) BA-BA with NBA1 = NBA2 = 2000, <KBA1> = <KBA2> ≈ 6.
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In addition, by comparing Figure 8b,c and Figure 8e,f, we find that when the average degree of
the subnetwork increases from four to six, the robustness of interdependent networks under different
coupling strengths is very similar. It is suggested that the robustness of interdependent networks with
different coupling strengths under PDLA is related to the average degree of the subnetworks. When
the average degree is small, larger coupling strength makes interdependent networks more vulnerable;
but when the average degree is large, the coupling strength has little effect on the robustness of
interdependent networks. This is an interesting phenomenon worth further research.

4. Conclusions

To conclude, we embrace a failure possibility degradation model in the cascading failures of
interdependent networks under localized attack. By comparing the robustness of several kinds
of interdependent networks under this attack strategy with a targeted attack, random attack,
and traditional localized attack, some conclusions are drawn which can provide references for the
construction of more robust interdependent CI systems.

In the case of PDLA, the presence of a dependency link increases the risk of interdependent
network collapse and leads to a poor robustness of interdependent networks than isolated network.
For interdependent systems, the more nodes with a dependency link, the worse the robustness of
the interdependent network. However, compared with other types of attack strategies, the impact
of PDLA is relatively small, which shows that robustness of interdependent infrastructures under
natural disaster is not as fragile as that under deliberate attack. Moreover, coupling preference does
not significantly affect the robustness of the interdependent network, which is very different from
TA, RA, and TLA. Beyond that, when the average degree of subnetworks is small, coupling strength
has an effect on the robustness of interdependent networks, but when the average degree increases,
this effect will gradually weaken.

Although some conclusions have been obtained, the research of this paper still has some
shortcomings: First of all, when constructing the interdependent networks, we do not consider
the geographical factor in order to facilitate the simulation, which can better reflect the impact of
a localized attack. Secondly, there may be many forms of failure probability degradation of a localized
attack, and only one possible form is analyzed in this article. Finally, during the analysis of coupling
preference, this paper use strict assortative or disassortative coupling, which rarely appear in the real
world, so designing a coupling method that is more practical still needs to be explored.
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