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Abstract: The interest in random fiber lasers (RFLs), first demonstrated one decade ago, is still
growing and their basic characteristics have been studied by several authors. RFLs are open
systems that present instabilities in the intensity fluctuations due to the energy exchange among their
non-orthogonal quasi-modes. In this work, we present a review of the recent investigations on the
output characteristics of a continuous-wave erbium-doped RFL, with an emphasis on the statistical
behavior of the emitted intensity fluctuations. A progression from the Gaussian to Lévy and back to
the Gaussian statistical regime was observed by increasing the excitation laser power from below to
above the RFL threshold. By analyzing the RFL output intensity fluctuations, the probability density
function of emission intensities was determined, and its correspondence with the experimental
results was identified, enabling a clear demonstration of the analogy between the RFL phenomenon
and the spin-glass phase transition in disordered magnetic systems. A replica-symmetry-breaking
phase above the RFL threshold was characterized and the glassy behavior of the emitted light was
established. We also discuss perspectives for future investigations on RFL systems.
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1. Introduction

Proposals for the operation of random lasers (RLs) were made five decades ago by Ambartsumyan
and co-workers [1,2], who visualized the possibility of a new kind of laser that does not require the use
of optical cavities. Initially, they reported on the operation of a laser in which one of the cavity mirrors
was replaced by a piece of paper that scattered the light in such way that a fraction of the backscattered
light was enough to provide feedback for the laser operation. Following the original work, the same
group published a series of papers studying the line-narrowing [3], frequency stability [4], and the
statistical emission properties [5] of lasers with the so-called nonresonant feedback.

Apparently, the initial motivation for these studies was the observation of laser emission from
interstellar media [6], and the interest of the group on this subject continued in the subsequent
years [7–9].

For about fifteen years, the majority of research on this theme was pursued by groups that
concentrated their effort on the operation of RLs based on microcrystals doped by rare-earth ions [10].
However, the first efficient RL system built in a laboratory environment was reported in 1994 by
Lawandy and co-workers [11], who demonstrated the operation of an RL based on dye molecules
dissolved in alcohol with suspended titanium dioxide particles. That report was followed by a great
number of papers from different authors that investigated other physical systems for efficient RL
operation. A large variety of materials have been tested in the past years, and recent publications
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on RLs describe, for example, experiments with dyes dissolved in transparent liquids, gels or liquid
crystals with suspended micro or nanoparticles as light scatterers [12–17], powders of semiconductor
quantum dots [18,19], dielectric nanocrystals doped with rare-earth ions [20,21], polymers and
organic membranes doped by luminescent molecules [22–27], semiconductor and metallic nanowires
structures [28–31], and even atomic vapors that present interesting analogies with astrophysical
lasers [32].

There is a large literature on RLs motivated by the interest in a deeper understanding of the
fundamental properties of RLs [33–36], as well as reports on their possible application in sensing [37],
optofluidics [38,39], and imaging [40], among other fields [41]. Moreover, although from a fundamental
point of view there are many reports focusing on the basic characteristics of RLs and their operation,
the analogies between RLs and other complex systems have only recently been investigated by
experiments. For example, in the work by Ghofraniha and co-authors [42], the analogy between RLs
and the spin-glass phenomenon typical of highly-disordered magnetic systems was demonstrated for
the first time.

In the present work, we review the recent advances on the characteristics of random fiber lasers,
which have large potential for applications in various areas, as mentioned below. The article is
organized as follows. In Section 2, we describe the Materials and Methods used. In Section 3,
the experiments with erbium-doped fibers to characterize the RL behavior and the analysis of the
intensity fluctuations are presented, along with the theoretical framework to understand the system
behavior. Finally, in Section 4, a summary of the article contents and a discussion on perspectives for
future work are presented.

2. Materials and Methods

2.1. Random Fiber Lasers

Random fiber lasers (RFLs) are akin to RLs, being the one-dimensional (1D) or quasi-1D version
of the 2D or 3D RLs. They bear the same nonconventional remarkable characteristic: the optical
feedback is provided by a scattering medium, rather than by fixed mirrors or fiber Bragg gratings
(FBGs), as in conventional fiber lasers. Similarly to conventional fiber lasers, a gain medium is excited
by an appropriate optical pump source.

The first demonstrated RFL, by de Mattos and co-workers in 2007 [43], can be seen as a quasi-1D
extension of the colloidal-based RL reported by Lawandy and co-workers in 1994 [11]. In [43],
the hollow core of a photonic crystal fiber was filled with a colloid al consisting of Rhodamine 6 G
and 250 nm rutile (TiO2) particles suspended in ethylene glicol. By transversely pumping with
nanosecond pulses from the second harmonic of a Nd:YAG laser, directional emission was generated
axially, and the feedback was due to the TiO2 scatterers. Shortly after the report of ref. [43], Lizárraga
and co-authors [44] and Gagné and Kashyap [45] demonstrated the operation of a continuous-wave
(CW) pumped erbium-based RFL (Er-RFL), with random FBGs providing the scattering mechanism.
We anticipate that this special type of RFL will be exploited as the photonic platform for all of the work
described here, and will be detailed later.

A new breakthrough in the research of RFL systems occurred in 2010, when Turitsyn and
co-workers [46] first reported on the operation of an RFL system which exploits Rayleigh scattering
as the optical feedback mechanism in rather long (~83 km) conventional single-mode optical fibers.
In this pioneer work, the gain mechanism was the stimulated Raman scattering excited in the fiber.

We observe that following this work, the interest in RFL systems and applications has fantastically
grown, as reviewed in refs. [47,48]. Indeed, by further exploiting the Rayleigh scattering due to
refractive index fluctuations as the mechanism for the multiple light scattering, a myriad of novel types
of RFL systems have been demonstrated using a stimulated Raman or Brillouin scattering process.

As most of the works between 2007 and 2014 have been reviewed in refs. [47,48], including
polymer-based optical fibers or plasmonically-enhanced RFLs, we highlight here the diversity of
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works reported over the years 2015 and 2016 (see [49–66] and references therein). As examples,
we mention that a Q-switched operation has been reported using Brillouin scattering [56], with
pulses as short as 42 ns at 100 kHz being demonstrated. Regarding the fiber length, since the first
observation of RFL made using conventional fibers with 83 km [46], RFLs with fiber lengths as short
as 120 m have been reported [58], also providing 200 W of output power. Other recent features of RFLs
include tunability using graphene-based devices [56] or high-order Raman scattering [57], second
harmonic generation [59], polarized emission from disordered polymer optical fibers [60], and photonic
turbulence [67].

2.2. Fiber Bragg Grating-Based Random Fiber Lasers

As mentioned above, FBG-based RFLs were first introduced in 2009 [44,45]. Currently, the FBG
fabrication methods, characterization, and management constitute a well-developed field, and further
information on this subject is deferred to ref. [68].

Typically, a writing setup based, for instance, on CW UV radiation or femtosecond sources at
800 nm, is employed to inscribe an FBG into a conventional or core-doped optical fiber. The case of
interest here exploits an active core single-mode fiber, using trivalent erbium ions, Er3+, which can be
excited at 980 nm or 1480 nm, and emits in the 1540–1560 nm spectral region. Instead of inscribing the
FBGs in an evenly spaced way, thus leading to conventional resonators, the erbium-based FBGs are
randomly spaced and play the role of random scatterers, leading to RFL emission. Generally, the fiber
is placed on a movable stage which is randomly displaced, thus providing the randomness in the
FBG writing process. Several tens to hundreds of gratings can be inscribed along several tens of cm of
fiber length.

In the next section, we will describe the fabrication and characterization of the Er-RFL system with
a specially-designed FBG [45]. We comment that this system has been lately used as an experimental
platform to study complex photonic phenomena, such as the observation of unconventional Lévy-like
statistics of output intensity values and the demonstration of the nontrivial replica-symmetry-breaking
regime, which marks the signature of the phase transition from a photonic paramagnetic to a photonic
spin-glass phase.

3. Results

3.1. Characterization of the FBG-Based Er-RFL Explored as a Statistical-Physics Experimental Platform

As reported by Gagné and Kashyap [45], a unique FBG was produced by writing an exceptionally
high number of gratings (>>1000) over a 30 cm length fiber. A polarization-maintaining erbium-doped
fiber from CorActive (peak absorption 28 dB/m at 1530 nm, NA 0.25, mode field diameter 5.7 µm) was
employed, in which the randomly distributed phase errors grating was written, instead of a random
array of gratings as in [44]. It was realized in [45] that during the movement of the translation stage,
the friction between the fiber and the mount introduced irregularities in the grating spectrum that
could be controlled by managing the air flow from the vacuum. Such irregularities were perceived as
small phase errors, randomly but continuously distributed along the grating profile being inscribed.
Thanks to this procedure, a high number of modes were observed, which is very important for several
applications, as we will see later.

The Er-RFL described in [45] had a very low threshold of 3 mW, with a throughput efficiency of
~4.5% for 100 mW pump power. The number of emitted modes was dependent on the pump power
and fiber length (20 or 30 cm fiber lengths were characterized in [45]), and a single or few modes were
observed, limited by the system measurement resolution [69].

For the experiments described here, the 30 cm long fiber was employed with the experimental
setup shown in Figure 1, reproduced from ref. [68]. The pump source was a semiconductor laser
operating in the CW regime at 1480 nm, delivering 150 mW output power at the fiber pigtail.
The Er-RFL output was split, through a 1480 nm/1550 nm wavelength-division multiplexer (WDM),
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with a split ratio of 10/90 for 1480 nm and 1550 nm, respectively, to a power meter and a spectrometer.
The employed fiber splices were lossy, if compared to the original work [45], leading to a higher
threshold. The spectrometer (SpectraPro 300i, Acton Research, Acton, MA, USA), coupled to a
liquid-N2 cooled InGaAs CCD camera, had a nominal resolution of 0.1 nm.

Figure 1. Experimental setup for the erbium-based random fiber laser (Er-RFL) system. (1) Fiber
pigtailed semiconductor laser operating in the continuous-wave (CW) regime. (2) Fiber connector.
(3) Er-doped RFL. (4) Wavelength-division multiplexer (WDM) 1480–1550. (5) Power meter to measure
the output power Pout at 1480 nm. (6) RFL emission out to the spectrometer. (7) Spectrometer.
(8) Liquid-N2 cooled InGaAs CCD camera. (Reproduced with permission from ref. [68]).

Figure 2a shows the Er-RFL output spectrum for intensities below and above the RFL threshold,
while Figure 2b shows the linewidth narrowing (left y-axis) and emitted Er-RFL intensity (right y-axis)
as a function of the pump power P normalized to the threshold power Pth. The threshold power was
Pth = 16.30 ± 0.05 mW [68], which is higher than in the original work of ref. [45] due to the lossy
components employed. However, this fact did not affect the experimental studies, and the output was
typically around 1–2 mW.

Figure 2. (a) Emitted spectrum of Er-RFL before (red) and after (blue) the laser threshold; (b) Emitted
intensity (squares) and FWHM (triangles) of the Er-RFL system as a function of the normalized input
power. The measured threshold power was Pth = 16.30 ± 0.05 mW. The dotted lines are a guide to the
eyes. (Reproduced with permission from ref. [68]).

Besides the routine characterization illustrated in Figure 2, two other analyzes were performed in
order to show that the laser is multimode, i.e., with many longitudinal modes, and that the intensity
fluctuations do not depend on the pump laser fluctuations.

First, in order to demonstrate the multimode characteristic of the Er-RFL, we employed the
technique of speckle contrast [69], following the work of refs. [40,70,71]. To generate the speckle,
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a scattering medium with dried TiO2 (250 nm) nanoparticles in water solution on a microscope slide
along with a Kohler illumination system was used. Different CCD cameras were employed for the
data acquisition, depending upon the source wavelength in the visible or near-infrared. The relation
between the speckle contrast C and the number m of longitudinal modes of the source is given by [71]
C = σ/〈I〉 = 1/

√
m, where σ and 〈I〉 are the standard deviation and the average intensity determined

from the speckle, respectively. Figure 3 shows the obtained results for different light sources.
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To confirm the experimental results for the Er-RFL system, we initially characterized a well-known
colloidal-based RL consisting of Rhodamine 6 G and TiO2 nanoparticles. The pump source was the
second-harmonic of a pulsed Nd:YAG laser (Ultra, BigSky Laser, Paris, France), operating at 5 Hz
and delivering pulses of ~7 ns. Figure 3a shows the speckle image from the pump source, which is a
highly coherent source (basically a single mode), and Figure 3b shows the equivalent image from the
colloidal RL. Just as in the work of refs. [40,70], the speckle-free RL emission is corroborated, and the
calculated values of the parameters C and m for the RL are 0.058 and 297, respectively, which are very
much distinct from the respective values obtained for the pump laser. Additionally, the speckle images
from Figure 3a,b are strikingly different, as already reported [40].

The same behavior is reproduced for the Er-RFL system, in which the pump laser at 1480 nm
presents m = 2 longitudinal modes (Figure 3e), whereas the Er-RFL displays the presence of m = 204
longitudinal modes (Figure 3f). For completeness, the pump semiconductor laser at 980 nm was also
employed, giving similar results, i.e., a 980 nm pump laser was a quasi-single mode (m = 3, Figure 3c),
whereas the Er-RFL system showed m = 236 longitudinal modes, as illustrated in Figure 3d. Actually,
being a multimode system is a fundamental requirement for the observation of the spin-glass type of
behavior in RLs, as discussed below.

On the other hand, we also remark that the fluctuations of the pump source (less than 5%) were
not correlated with the RFL fluctuations, as similarly demonstrated in [42,72]. This important point is
corroborated by the results displayed in Figure 4a,b, showing, respectively, the spectral variance of the
Er-RFL system and the normalized standard deviation of both the pump laser and Er-RFL. It is thus
clear from Figure 4b that the pump laser fluctuations do not affect the Er-RFL fluctuations, particularly
because the pump laser was kept working all the time well above the threshold, so that the kind of
new physics observed around the threshold in the Er-RFL would not be detected, even if present.
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Figure 4. (a) Variance of the emitted intensity as a function of the normalized input power P/Pth;
(b) Standard deviation of the maximum intensity (normalized by its average value) of the CW
semiconductor pump laser (as function of the output power Pout; squares) and the Er-RFL system (as
function of the normalized input power P/Pth; diamonds). (Reproduced with permission from ref. [68]).

3.2. Theoretical Framework

A great advance in the theoretical understanding of the combined effect of amplification,
nonlinearity, and disorder in RL systems was put forward in a series of articles [73–82] published
within the last decade. In this subsection, we review the physical mechanisms and some analytical
developments underlying the richness of photonic behaviors displayed in the phase diagram of RL
systems, as a function of the input excitation power and disorder strength. In fact, in refs. [73–80],
a variety of interesting photonic phases emerge, which keep close analogies with some characteristic
behaviors of magnetic systems, such as spin glass, paramagnetism, and ferromagnetism.

Moreover, such richness is also present in the diversity of statistical regimes observed in the
output intensity emitted by RL systems. Interestingly, as we shall see below, the same theoretical
starting point that gives rise to the variety of photonic behaviors also explains the shifts in the statistical
properties of the distribution of intensity values. In fact, as discussed in the following, the increasing
of the excitation power promotes a sequence of changes in the distribution of intensity values, from a
Gaussian regime below the RL threshold to a Lévy-type behavior around the RL transition, and back
to a second Gaussian regime well above the threshold. The theoretical basis [81,82] for these statistical
aspects of RL emission is also reviewed below.

We start by reviewing the theoretical background [73–80] underlying the diverse photonic
behaviors displayed by RLs. In a photonic system with intrinsic disorder, arising either from the
inherent optical random noise or from the presence of randomly-located light scatterers (e.g., micro or
nanoparticles [12–17], or dielectric nanocrystals doped with rare-earth ions [20,21]), the amplitudes ak
of the electromagnetic modes generally present stochastic dynamics. The Langevin approach is thus a
suitable theoretical framework to describe such dynamics through the following set of equations,

dak
dt

= − ∂H
∂a∗k

+ Fk, (1)

where Fk represents a Gaussian (white) uncorrelated optical noise term, and in the slow-amplitude
regime of the modes, the general complex-valued functional H is given by [73–80] (closely following
the notation of [78]):

H = ∑
{k1k2}′

g(2)k1k2
ak1 a∗k2

+
1
2 ∑
{k1k2k3k4}′

g(4)k1k2k3k4
ak1 a∗k2

ak3 a∗k4
(2)

The symbol {. . .}′ implies the frequency-matching conditions |ωk1 −ωk2 | < γ and
|ωk1 −ωk2 + ωk3 −ωk4 | < γ in the quadratic and quartic terms, respectively, with γ denoting the
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finite linewidth of the modes. The disordered nature of the scattering medium directly affects both the
quadratic and quartic interactions among the spatially-overlapping modes in Equation (2). Indeed, the
physical origin of the quadratic coupling g(2)k1k2

lies in the spatially inhomogeneous refractive index,
as well as in the nonuniform distribution of the gain and effective damping contribution due to the
cavity leakage. In systems with null or weak leakage, in which the off-diagonal contribution in g(2)k1k2

is
negligible, the coefficient rates of amplification (γk) and radiation loss (αk) are related to the real part
of the diagonal coupling through g(2)R

kk = Re{g(2)kk } = αk − γk. On the other hand, the quartic coupling

g(4)k1k2k3k4
is associated with the modulation of the nonlinear χ(3)-susceptibility with a random spatial

profile [73–80].
The spatial disorder in the scattering medium generally makes the explicit calculation of the

quadratic and quartic couplings in Equation (2) rather difficult. Consequently, in [73–80], these
couplings were considered as quenched Gaussian variables, with probability distributions independent
of the mode combinations {k1k2}′ and {k1k2k3k4}′, respectively. In addition, in the mean-field
approach of refs. [73–80], the above frequency-matching constraints were relaxed, implying that
all modes interact unrestrictedly. In the case in which the total optical intensity, I = ∑k ck|ak|2, is a
constant, with time-independent prefactors ck, the real part HR of the Functional (2) is shown in [78,80]
to become analogous to the Hamiltonian of the magnetic p-spin model with a spherical constraint [83].
Indeed, the p-spin Hamiltonian also presents a sum of quadratic (p = 2) and quartic (p = 4) interaction
terms, just as in Equation (2), with the couplings drawn from Gaussian distributions [83]. Moreover,
in the p-spin model, the sum of the squared spin variables is a constant (spherical constraint), as also
happens to the total optical intensity I in the photonic system. This photonic-to-magnetic analogy is
indeed relevant, since it allows identifying the amplitudes of the modes with the spin variables, and
the excitation (pump) energy in the photonic system with the inverse temperature in the magnetic one.
In this sense, we comment below that the typical magnetic phases exhibited by the disordered p-spin
model can also find an analogous counterpart in the phase diagram of an RL system.

Once the disordered Hamiltonian HR, given by the real part of Equation (2), has been built in
terms of mode amplitudes that are spin analogues, a repertoire of statistical-physics-based analytical
techniques to treat disordered magnetic systems becomes immediately available to the photonic
system. In particular, the so-called replica trick [84] can be readily applied to HR. This approach
essentially consists of considering identical copies (i.e., replicas) of the system in order to compute
the powers Zn of the partition function, while calculating the free energy from the limit expression
ln Z = limn→0(Zn − 1)/n. At the end, the phase diagram of the RL system is obtained as a function
of the input pumping rate and disorder strength [77–79]. Remarkably, the physical equivalence (or
symmetry) among these replicas can be broken in some circumstances, as discussed below.

Following this photonic-to-magnetic analogy, the photonic phases identified in the RL system
maintain some resemblance to the magnetic behaviors of the p-spin model. Indeed, we next describe
the main properties of the four photonic regimes obtained in the phase diagram of refs. [77–79], namely:
incoherent wave, mode-locking laser, phase-locking wave, and spin-glass RL behavior.

In the incoherent-wave regime, which occurs for low input powers and any disorder strength,
the modes oscillate incoherently in an uncorrelated way. In this case, the system operates in a regime
with amplified spontaneous emission. According to the analogy above, this phase is similar to the
paramagnetic behavior in spin systems at high temperatures and for any degree of disorder, in which
the uncorrelated spin directions are random and present fast dynamics. Moreover, just as in the
paramagnetic phase, the incoherent-wave solution preserves the symmetry among the photonic
replicas (see also below).

The mode-locking laser behavior presents modes oscillating coherently with the same phase,
at high input powers, without disorder or for low degrees of disorder. It corresponds to the
ferromagnetic phase in spin systems at low temperatures, either without disorder, in which all spins
align parallel, or in the presence of low disorder, as in the case of the random bond ferromagnet, with a
few clusters of disordered spins in a predominantly ferromagnetic background.
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Remarkably, the regime described as the phase-locking wave has no perfect analogous counterpart
in disordered spin modes. In the pumping rate versus disorder strength diagram, it occupies an
intermediate region between the incoherent-wave and spin-glass RL phases. In this regime, the mode
phases are only partially locked.

Finally, in the RL regime, obtained for input powers above the threshold and in the presence
of strong disorder, the synchronous oscillation of the modes is frustrated (in contrast with the
mode-locking laser behavior), and they acquire phase coherence and nontrivial correlations (differently
from the incoherent-wave regime). In this case, the analogue magnetic phase is the spin-glass regime
observed in highly disordered magnetic systems at low temperatures, in which the spins point at
random directions, while being strongly correlated in time and with rather slow (frozen) dynamics.
In the photonic, as well as in the magnetic spin-glass phase, the replicas undergo a nontrivial breaking
of symmetry, which is explained as follows.

The concept of replica symmetry breaking (RSB) was introduced by G. Parisi in 1979 in the context
of the theory of disordered magnetic systems [84]. In this framework, for sufficiently low temperatures
and strong disorder (e.g., in the spin couplings or locations), the free energy landscape breaks into a
large number of local minima in the configuration space. Due to the frustrated magnetic interactions
in the disordered Hamiltonian, the spins fail to align in a spatially regular configuration, as in the
ferromagnetic state. Instead, spins “freeze” along random directions, with rather slow dynamics, in a
spin-glass state. As a given spin configuration can be trapped for a long time in a local free energy
minimum, metastability and irreversibility effects arise in the spin-glass phase, e.g., magnetic hysteresis.
Consequently, identical systems, with the same distribution of spin interactions and prepared under
identical conditions (i.e., replicas of the spin system), can reach rather distinct states that lead to
different measures of observable quantities and nontrivial correlation patterns. In this case, the system
replicas are no longer physically equivalent (or symmetric), and an RSB scenario emerges. Later on,
the scope of the concept of RSB was much extended to reach other complex systems [84], including
neural networks and structural glasses.

In order to identify a regime with RSB, it becomes necessary to calculate a correlation function
that gives a measure of the overlap between two given replicas [84]. In the case of magnetic systems,
the replica overlap parameter is a spin-spin correlation function defined by the product of a certain
spin occupying the same position in two distinct replicas. In the sequence, the sum of all spins is
performed. By considering each pair of replicas, a distribution P(q) of values of such an overlap
parameter q is thus obtained. If this distribution is centered around zero, the replicas are considered
symmetric, a scenario that is observed in the paramagnetic phase in spin systems. However, if the
distribution peaks at non-zero values of the replica overlap parameter, then the symmetry of replicas
is broken, and an RSB spin-glass phase can emerge. Therefore, in this sense, a parameter qmax can be
defined to indicate the locus of the maximum of the distribution P(q), which is considered as the Parisi
order parameter [84]. The value of qmax thus signalizes a replica-symmetric paramagnetic or an RSB
spin-glass phase, respectively, if the maximum of P(q) occurs exclusively at qmax = 0 (no RSB) or also at
values |qmax| 6= 0 (RSB).

In the photonic context, an analogue correlation function between modes can also be suitably
defined [42,79] (see details below). Its distribution of values determines, in a similar way, the presence
or absence of the photonic RSB spin-glass phase.

On the experimental side, the very first evidence of photonic RSB glassy behavior in an
RL system arose in the 2D functionalized T5OCx oligomer amorphous solid-state material [42].
Subsequent demonstrations appeared in 3D functionalized TiO2 particle-based dye-colloidal [85]
and neodymium-doped YBO3 solid-state [82] RLs. Here, we highlight that the RSB spin-glass phase
has also been characterized in the above-mentioned Er-RFL system [68,69]. The emergence of such
behavior in Er-RFL is actually justified since this system also presents the disorder and nonlinear
ingredients necessary to induce the RSB glassy RL phase, as discussed above in the context of the
effective photonic Hamiltonian (2).
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We now turn to the discussion on the statistical regimes of output intensities emitted by
RL systems.

We first review some analytical developments regarding the distribution of intensity values.
Noteworthy, the set of Langevin equations, given by Equation (1), also provides the underlying
theoretical basis for such analysis. Indeed, by writing Ik = ck|ak|2, a manipulation of Equation (1)
yields [82]:

1
ck2

dIk2

dt
= −2Re

 ∑
{k1}′

g(2)k1k2
ak1 a∗k2

+
1
2 ∑
{k1k3k4}′

[g(4)k1k2k3k4
+ g(4)k1k4k3k2

]ak1 a∗k2
ak3 a∗k4

+ a∗k2
Fk2

 (3)

The restricted sum in the quartic coupling generally involves three classes of mode:
combinations [73,86]: ωk1 = ωk2 and ωk3 = ωk4 , ωk1 = ωk4 and ωk2 = ωk3 , and the remaining
possibilities satisfying the frequency-matching conditions, which have been usually disregarded [73,86].
We consider the diagonal contribution in the quadratic coupling to dominate over the off-diagonal part.
By expressing the optical white noise as the sum of additive and multiplicative statistically independent
stochastic processes [87], so that Fk(t) = F(0)

k (t) + ak(t)F(1)
k (t), and considering slow-amplitude

modes ak(t) (if compared to the rapidly evolving phase dynamics), we obtain the Fokker-Planck
equation [81,82,87] for the probability density function (PDF) of the output intensity,

∂P
∂t

= − ∂

∂Ik
[(−dk Ik − bk I2

k + 2QIk)P] + 2Q
∂2

∂I2
k
(I2

k P) (4)

where the parameter Q controls the magnitude of the multiplicative fluctuations through:
[F(1)R

k (t)F(1)R
m (t′)] = 2Qδk,mδ(t− t′), bk = g(4)R

kkkk /ck, and

dk = ∑
n 6=k

[g(4)R
kknn + g(4)R

knnk + g(4)R
nkkn + g(4)R

nnkk]In/cn − 2(γk − αk) (5)

The steady-state solution of Equation (4) is [81,82,87]:

P(Ik) = Ak I−µk
k exp (−bk Ik/2Q) (6)

with Ik > 0, Ak as the normalization constant, and µk = 1 + dk/2Q. This PDF presents a power-law
decay combined with exponential attenuation. Its second moment can be very large, though still finite,
depending on the value of µk, mainly if bk/2Q � 1. Indeed, the experimental results obtained for
the Er-RFL (see below) indicate [68] that the distribution of output intensities displays much larger
variance and much stronger fluctuations close to the threshold, if compared with those below and
above the threshold. In this sense, as argued below, the PDF of intensities is most properly described
by the Lévy α-stable distribution [88] for long time measurements performed in CW pumped RLs,
such as the Er-RFL system [68], or during an extensive number of shots in the case of pulsed RLs [89].

As we now turn the focus to the physical discussion on the PDF of intensity values, Equation (6),
we initially observe that the analysis is strictly connected with the central limit theorem (CLT) and
generalized CLT of statistics. These theorems determine the attraction of the PDF of the sum of a
large number of random variables to one of the possible asymptotic stable distributions, namely the
Gaussian or the Lévy α-stable family [88]. In the present photonic context, if the stochastic values
assumed by the intensity I are identically distributed and uncorrelated over the long sequence of output
spectra (or even if they present finite-time correlations), and if the second moment of the PDF P(I) is
finite, then the CLT assures [88] that the intensity fluctuations are driven by the Brownian (Gaussian,
normal) dynamics. On the other hand, if the second moment of P(I) diverges, the generalized CLT
states [88] that the fluctuations are asymptotically governed by the Lévy statistics. The continuous
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family of Lévy α-stable distribution is described [88] by the Fourier transform of the characteristic
function defined in k-space,

P(k) = exp{−|ck|α[1− iβsgn(k)Φ] + ikν}. (7)

The Lévy index α
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(0,2] is the most important parameter, since it drives the magnitude of the
intensity fluctuations. Indeed, whereas strong fluctuations with relevant deviations from the Gaussian
behavior are associated with values in the range 0 < α < 2, the Gaussian statistics with relatively
weak fluctuations and the result of the CLT are recovered for the boundary value α = 2. Therefore,
Equation (7) can suitably describe both Gaussian and Lévy statistical regimes, depending only on
the value of the single parameter α. In other words, the parameter α, which can be experimentally
determined from the direct analysis of the PDF P(I), effectively works as an indicator of the statistical
regime (Gaussian or Lévy) of intensity fluctuations. The other independent parameters describe the
asymmetry or skewness of the distribution (β
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Though the Lévy PDF, given by the Fourier transform of Equation (7), displays closed analytical
form only for a few values of α (e.g., the Cauchy distribution arises for α = 1 and β = 0), its large-I
asymptotic behavior is power-law tailed, P(I) ~I−µ, with exponent µ = 1 + α. Conversely, it is also
true that random variables with power-law distribution are governed by the Lévy PDF with α = µ − 1
if 1 < µ < 3 (diverging second moment), and by the α = 2 Gaussian statistics if µ ≥ 3 (finite second
moment) [88]. Therefore, if the PDF of intensities presents asymptotic power-law behavior, then the
power-law exponent µ also indicates the type of statistical regime (Gaussian or Lévy) of the output
intensity values.

At this point, some words of caution are necessary in order to properly interpret the
actual experimental data of the Er-RFL system under the statistical framework of the CLT and
generalized CLT.

We initially remark that in the present case of intensity fluctuations, as well as in any case
of realistic stochastic phenomena, a PDF with a diverging second moment actually represents an
unphysical possibility. Nevertheless, it has been demonstrated [90] that a truncated power-law PDF,
with a large but finite second moment, behaves rather similarly to the Lévy PDF to a considerable
extent, defining the so-called Lévy-type (or Lévy-like) statistical behavior. In this case, the crossover to
the Gaussian dynamics, predicted by the CLT, is only attained in a very long term [90,91]. In this sense,
theoretically justified truncation schemes have been suitably implemented, for example, by restricting
the values of the random variable to a finite range [90,91], with P(I) = 0 for I > Icutoff, or by tempering
the power law with an exponential attenuation [81,82,89], P(I) ~exp(−ηI)/Iµ, in a form similar to
Equation (6). Therefore, the experimental reports of Lévy PDFs of intensities with index 0 < α < 2
should be properly interpreted as representative of this extensive Lévy-like statistical regime of
intensity measurements.

Lastly, in addition to the description above of the truncated power-law with exponential
attenuation, which was based on the Langevin dynamics of the amplitudes of the normal modes, we
also comment that a PDF of output intensities emitted by RL systems with power-law form, P(I) ~I−µ,
has been derived in [92]. In contrast with the above developments, in this case, the theoretical approach
took into account the statistics of the photon trajectories subjected to multiple scatterings within the
sample [92]. The power-law exponent was found to be µ = 1 + `g/<l>, where `g and <l> denote,
respectively, the gain length of the active medium and the average length of the photon paths.

3.3. Lévy Statistics and Glassy Behavior in Er-RFL

In this subsection, we focus on the statistical analysis of the experimental data of the
Er-RFL system.
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We start by analyzing the intensity spectra. Figure 5a–c display 5000 spectra for each input power,
from which the intensity fluctuations can be appreciated in the regimes below (Figure 5a), around
(Figure 5b) and above (Figure 5c) the RL threshold [68]. According to the discussion in Section 3.2, the
strong intensity fluctuations observed near the threshold suggest that the PDF of the output intensities
can be described by the family of Lévy α-stable distributions, including the Lévy statistical regime if
0 < α < 2 and the Gaussian limit if α = 2.

Figure 5d–f portrays the distributions P(I) obtained from the data of Figure 5a–c, as well as the
respective best fits to Equation (7) by applying the quantile-based method [93,94]. Best-fit values of
the parameters are summarized in Table 1. The values of α are consistent with the Gaussian profiles
(α = 2.0) shown in Figure 5d,f, respectively, below and above the threshold, and also with the Lévy-like
PDF (α = 1.3) around the threshold, observed in Figure 5e. The unit value of β, indicating the maximum
skewness of the distribution, in all cases reflects the asymmetry related to the positiveness of the
intensity. Furthermore, the values of the location parameter ν in the Gaussian regimes, ν = 0.858 for
P/Pth = 0.6 and ν = 0.682 for P/Pth = 1.8, agree with the mean values, respectively, observed in Figure 5d,f.
Indeed, the actual Gaussian distributions, which are equivalent to the α = 2 Lévy PDFs in Figure 5d,f,
present the mean ν and standard deviation

√
2c, as theoretically predicted [88]. Interestingly, when

comparing the Gaussian regimes below and above the threshold, we notice a considerable broadening
of the PDF P(I) at P/Pth = 1.8, leading to a wider spread of intensities (Figure 5f). This result is associated
with the larger second moment of the distribution and more intense fluctuations observed above the
threshold. Those fluctuations still remain, however, much weaker than the ones measured in the
crossover region.
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regimes. Indeed, as P/Pth increases, the statistics of the output intensities progressively shift from the 
prelasing Gaussian (α = 2) to the Lévy (0 < α < 2) behavior around the threshold, and to the subsequent 
Gaussian (α = 2) regime deep in the RL phase. Noticeably, this sequence also resembles the statistical 
behavior of the output intensity of 3D bulk RLs [82,89,93,95,96]. We also notice that, as pointed in ref. 
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Figure 5. (a–c) 5000 intensity spectra of the Er-RFL system for each input power (a) below; (b) around;
and (c) above the RL threshold; (d–f) Probability density functions (PDFs) P(I) of maximum intensities
obtained from the data shown in (a–c). The best fits using Equation (7) are depicted in dotted lines and
portrait Gaussian profiles (d) below and (f) above the threshold (α = 2.0); and (e) a Lévy distribution
(α = 1.3) around the threshold. (Reproduced with permission from ref. [68]).

Table 1. Summary of best fit parameters to Equation (7) for the intensity distributions of Figure 5d–f [68].

Input Excitation Power α β c ν

P/Pth = 0.6 1.9 1.0 0.021 0.858
P/Pth = 1.2 1.3 1.0 0.061 −0.193
P/Pth = 1.8 2.0 1.0 0.091 0.682
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The main result confirming the Lévy behavior of the output intensities of the Er-RFL system is
shown in Figure 6. With a basis on ref. [68], we first notice that the variation of the Lévy index α as
a function of the normalized input power clearly points to the presence of three distinct statistical
regimes. Indeed, as P/Pth increases, the statistics of the output intensities progressively shift from
the prelasing Gaussian (α = 2) to the Lévy (0 < α < 2) behavior around the threshold, and to the
subsequent Gaussian (α = 2) regime deep in the RL phase. Noticeably, this sequence also resembles
the statistical behavior of the output intensity of 3D bulk RLs [82,89,93,95,96]. We also notice that,
as pointed in ref. [93], the second Gaussian regime is rather distinct from the first one. Indeed, in the
second Gaussian phase above the RL threshold, the system is in the regime with self-averaging of
the gain [93]. In contrast, in the first Gaussian phase, it is still in the prelasing regime. Moreover, we
also comment that the observed independence on the spatial dimensionality of the Lévy character of
intensity fluctuations finds support in the theoretical analysis based on Langevin equations, previously
discussed in Section 3.2, which is considered to hold, irrespective of the spatial dimension [69,82].

Figure 6. Lévy index α (circles) and FWHM (triangles) as a function of the normalized input pump
power P/Pth. Three statistical regimes of intensity fluctuations are observed: prelasing Gaussian with
amplified spontaneous emission (α = 2), Lévy-type RL (0 < α < 2) around the threshold, and Gaussian
RL (α = 2) well above the threshold. The sharp decrease in α at the first Gaussian-to-Lévy transition
nicely coincides with the abrupt change in FWHM at the RL threshold. (Reproduced with permission
from ref. [68]).

We further notice in Figure 6 that the abrupt decrease in the Lévy index α at the onset of RL
behavior is closely related to the sharp linewidth reduction observed in Figure 2. Therefore, our
results for the Er-RFL system corroborate the suggestion of [93], that the transition from the Gaussian
to the Lévy regime in RLs could be used as a universal identifier of the RL threshold (however,
see also the comment below on the results of ref. [97]). In fact, we also included in Figure 6 the FWHM
measurement, whose drastic change at the RL threshold nicely coincides with the first Gaussian-to-Lévy
statistical transition. For higher values of the input power, after reaching a minimum around the
threshold, the index α smoothly rises back to the Gaussian value α = 2 achieved above the threshold.

We finally discuss the connection of the above findings with the photonic spin-glass behavior
recently reported in the Er-RFL system [68,69].

As mentioned in Section 3.2, the characterization of the photonic RSB glassy phase in the RL
regime requires the calculation of a specific two-point correlation function, which in the present context,
can be defined either among the mode amplitudes, mode phases, or intensity fluctuations. In the latter
case, that can be accessed experimentally, where the replica overlap parameter is defined as [42,79]:

qγβ =

∑
k

∆γ(k)∆β(k)√[
∑
k

∆2
γ(k)

][
∑
k

∆2
β(k)

] , (8)

where γ, β = 1, 2, . . . , Ns denote the replica labels (Ns = 5000 in ref. [68]), the average intensity
at the wavelength indexed by k reads < I >(k) = ∑Ns

γ=1 Iγ(k)/Ns, and the intensity fluctuation is
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∆γ(k) = Iγ(k)−< I >(k). In the photonic context, each output spectrum is considered a replica, i.e.,
a copy of the Er-RFL system under fairly identical experimental conditions. The PDF P(q) represents
the distribution of values q = qγβ of the mode-mode correlations between intensity fluctuations,
Equation (8). In fact, as discussed in the previous subsection, P(q) is analogous to the Parisi order
parameter in the RSB spin-glass theory of disordered magnetic systems [84]. In the present context,
the distribution P(q) signalizes a photonic replica-symmetric paramagnetic prelasing regime if its
maximum occurs exclusively at qmax = 0 (no RSB), or a RSB spin-glass RL phase if the maximum also
assumes values |qmax| 6= 0 (RSB) (see Section 3.2).

Figure 7 shows a remarkable agreement between the onset of the Lévy statistical regime of
intensity fluctuations and the emergence of the RSB glassy RL phase in Er-RFL. Indeed, we observe
that both the Lévy and spin-glass behaviors are simultaneously present around the RL threshold.
Therefore, besides signaling the Gaussian-to-Lévy shift in the statistical characteristics of intensity
fluctuations, which is illustrated by Figure 6, the RL threshold also marks the sharp phase transition
from the qmax
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4. Summary and Discussion

In this work, we described the operation of an RFL based on an erbium-doped fiber imprinted
with randomly-spaced Bragg gratings. By exciting the fiber with a CW diode laser, we investigated
the statistical fluctuations of the output intensity emitted by the erbium ions in the near infrared.
The results allowed us to identify different statistical regimes for excitation powers P below, around,
and above the laser threshold, Pth. In particular, the Lévy statistics were clearly identified for P ≈ Pth,
while the Gaussian statistics were observed for P < Pth and P > Pth. Moreover, we also found that the
probability distribution for the emitted intensity around the laser threshold reveals a glassy phase of
light that is compatible with an RSB analogue of the spin-glass phase transition.
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The studies reported here led to a deeper understanding of the physical processes underlying the
RFL operation, and the results were also consistent with recent findings in 2D and 3D RLs.

As illustrated by the references cited in this work, the research on RFLs is still a hot subject
after ten years since the first demonstration. The low fabrication cost, small fiber length, and simple
operation scheme enable various potential applications of RFLs, for example, in imaging, sensing,
and optofluidics. Further research with a basis on the investigation of the intensity fluctuations in
RFL systems may include the study of their temporal dynamics, as well as the emergency of extreme
events, analogues of rogue waves, and photonic turbulent transitions around the excitation threshold.
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