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Abstract: Bearings are one of the most critical components in many industrial machines. Predicting
remaining useful life (RUL) of bearings has been an important task for condition-based maintenance
of industrial machines. One critical challenge for performing such tasks in the era of the Internet of
Things and Industrial 4.0, is to automatically process massive amounts of data and accurately predict
the RUL of bearings. This paper addresses the limitations of traditional data-driven prognostics, and
presents a new method that integrates a deep belief network and a particle filter for RUL prediction
of hybrid ceramic bearings. Real data collected from hybrid ceramic bearing run-to-failure tests
were used to test and validate the integrated method. The performance of the integrated method
was also compared with deep belief network and particle filter-based approaches. The validation
and comparison results showed that RUL prediction performance using the integrated method
was promising.
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1. Introduction

Mechanical big data has the characteristics of large volume, diversity, and high velocity. The
prediction of remaining useful life (RUL) has been used as an important parameter for condition-based
maintenance decision making [1]. Traditional data-driven prognostic methods have their limitations
for processing mechanical big data. Many prognostic methods are developed based on explicit model
equations [2]. Therefore, they are largely dependent on human expertise and knowledge in model
building and signal processing, and hence are difficult to implement for automatic processing of
massive data. These prognostic methods include recurrent neural networks [3,4], Kalman filters [5–7],
dynamic Bayesian networks [8], k-reliable decentralized prognosis [9], particle filter-based [10–13], and
combined particle filter and neural networks [14]. In addition, some fuzzy systems-based approaches
for prediction have been developed [15]. However, in comparison with fuzzy systems, particle filters
take a probabilistic approach, in that the posterior distribution is modeled by sampling from a set of
distributions, whereas in fuzzy systems the model output is based on the input variables of fuzzy
set membership and an implication of rules. Among all the approaches, particle filters [16] have
emerged in recent years as a comparatively good RUL prediction method and are becoming more
and more widespread, mainly due to their capability of dealing with dynamic systems characterized
with nonlinear and non-Gaussian natures. For example, Yoon and He [17] showed the superior RUL
prediction performance of a particle filter-based approach using the gear data provided by the NASA
Glenn Spiral Bevel Gear Test Facility.
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However, all of the above mentioned methods require either complicated signal processing
techniques to extract features from the sensor data, or knowledge of system dynamics to build the
explicit model equations. This type of requirement involves manual processing and analysis of data
by human experts, and therefore makes these methods unsuitable for automatic data processing and
feature extraction for big data. There also may be situations in which these models are unavailable,
such as in offshore well drilling and wind turbines, or for some bearings in which online measurements
of the damage may not be available, in which the traditional particle filter approach cannot be used [11].
To effectively extract features from massive bearing condition monitoring data and accurately predict
bearing RUL, new effective methods are needed. The recent developments in deep learning have
provided an attractive opportunity to build advanced RUL prediction methods for big data.

Since the introduction of a deep belief network [18], deep belief networks and other deep learning
methods have become widely used for big data processing and analysis. Deep learning is capable of
extracting useful and important features from data to improve the power of prediction [19]. Equipped
with multiple layers of structure, deep learning is also capable of processing massive data and
extracting hidden information. One recent successful story of deep learning is AlphaGo by Google
Deepmind [20]. AlphaGo has demonstrated the power of deep learning for massive data processing
and feature learning by defeating the best human Go player in the world. Deep neural network
architectures have been successfully built in various domains such as image recognition, automatic
speech recognition, and natural language processing [21]. Recently [22,23] applied deep learning
on raw vibration signals and time-domain features for machine fault diagnostics. In addition to
classification problems, deep learning also has promising capability to solve prediction problems.
These prediction problems include predicting car traffic [24], weather [25], wind speed [26], and internet
traffic [27]. A number of deep learning algorithms have been used for solving prediction problems.
These include auto-encoders, restricted Boltzmann machines, deep belief networks, convolutional
neural networks, and more. Deep learning represents an attractive option to process massive data for
RUL prediction. Deutsch and He [28] presented a deep learning-based bearing RUL prediction method
using a deep brief network, and compared RUL prediction performance with a particle filter-based
approach. Their comparison results showed that even though the RUL prediction performance of
the deep learning based approach was comparable with particle filter-based approach, the RUL
prediction accuracy of the deep learning-based approach was slightly lower than that of the particle
filter. Therefore, it was of interest to investigate an integrated method that can use the strength of
deep learning to overcome the limitations of the particle filter. To date, no research on combining
deep learning with particle filter for RUL prediction of hybrid ceramic bearings has been reported in
the literature.

In this paper, a new integrated method that combines a deep belief network with a particle filter
for remaining useful life prediction of hybrid ceramic bearings using vibration signals was presented.
Real vibration data collected from hybrid ceramic bearing run-to-failure tests were used to test and
validate the integrated method. The performance of the integrated method was also compared with a
deep belief network and particle filter-based approaches.

2. Methodology

A deep belief network (DBN), which is a stacked version of a restricted Boltzmann machine
(RBM), and a purely data-driven particle filter were combined in this paper in order to predict the RUL
at L steps ahead into the future. Next, the relevant background of RBM, DBN and the particle filter
was provided. The section concludes with the combined DBN and particle filter-based approach for
RUL prediction.

2.1. The Restricted Boltzmann Machine

An RBM [29] is considered as a type of unsupervised machine learning method. It is a stochastic
artificial neural network that learns a probability distribution over the set of its inputs. A RBM normally
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has two layers: a visible layer and a hidden layer. It can be represented by a bipartite graph that
contains undirected edges from its two layers. Each layer contains a collection of neurons/nodes.
Each neuron/node of the visible layer represents a feature of the input data, while neurons/nodes
of the hidden layer represent the latent variables. A typical RBM structure is shown in Figure 1. The
reason that an RBM is “Restricted” is because there are no connections between each neuron/node
within either the visible or hidden layers. An RBM contains a matrix of weights Wij representing the
connection to visible node vi and hidden node hj. In Figure 1, ai represents the bias term in the visible
layer, and bj in the hidden layer.

Figure 1. A restricted Boltzmann machine.

The weights and biases are computed by maximizing P(v), the probability that the network
assigns to a visible vector v:

P(v) =
1
Z ∑

h
e−E(v,h) (1)

where Z is the normalization constant that can be obtained by summing over all the possible pairs of
visible and hidden vectors:

Z = ∑
v

∑
h

e−E(v,h) (2)

and the energy function of the joint configuration (v, h) is given by:

E(v, h) = −aTv− bTh− vTWh (3)

Theoretically, the problem of maximizing Equation (1) can be solved by taking its partial log
derivative with respect to its parameters W, a, and b:

∂ log(P(v))
∂W, a, b

= ∑
v,h

E(v, h)−∑
h

E(v, h) (4)

Normally Equation (4) can also be written as:

∂ log(P(v))
∂W, a, b

=< vihj >data − < vihj >model (5)
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where < > denotes the expectation. However, the expectation < vihj >model in the maximum log
likelihood function cannot be easily computed, and is thus estimated using contrastive divergence
which leads to the following parameter updating equation [30]:

Wij
k = Wij

k + γ
(
< vi

khj >data− < vi
khj >T

)
= Wij

k + γ
[

P
(

hj = 1
∣∣∣ v)vi − vi

k P
(

hj = 1
∣∣∣ vk)

]
ai

k = ai
k + γ

(
< vi

k >data− < vi
k >T

)
= ai

k + γ
[

P
(

vi = 1
∣∣∣ h)− vi

k
]

bj
k = bj

k + γ
(
< hj >data −< hj

k >T

)
= bj

k + γ
[

P
(

hj = 1
∣∣∣ v)− P

(
hj = 1

∣∣∣ vk)
]

(6)

where T represents a full step of Gibbs sampling, γ represents the learning rate and k represents the k−
step of contrastive divergence. The neuron activation probabilities are given by the following equations:

P(hj = 1| v) = σ(bj +
n

∑
i=1

Wijvi) (7)

P(vi = 1| h) = σ(ai +
m

∑
j=1

Wijhj) (8)

where n represents the number of visible units, m the number of hidden units, and σ is the activation
function. The activation function is typically the logistic function used as a threshold defined as:

σ(x) =
1

1 + e−x (9)

2.2. The Deep Belief Network

A DBN is formed by stacking multiple RBMs on top of each other (see Figure 2) in order to create
high representations of data that can be used for classification, regression (continuous output) tasks as
well as unsupervised learning.

Figure 2. A deep belief network with two hidden layers.

The RBM becomes a building block for forming a deep belief network. The DBN can be trained
in a greedy-layer-wise fashion by stacking RBMs on top of each other [31]. The output of one RBM,
that is the activation values in the hidden layer, simply becomes the input for the next RBM, and the
parameters of the previous RBM do not change. This next RBM is trained by the same process as
illustrated in the previous section. This process allows for creating multiple hidden layers.

In order to use a DBN to predict a continuous output, one can first learn the weights and biases
in the unsupervised stage of learning. Once the optimal parameters (weights and biases) have been
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determined, a supervised fine tuning stage is performed. This is done by creating a final output
layer on the top of the DBN which outputs the predicted RUL value, given a set of vibration features.
This is illustrated in Figure 3. The parameters of the entire network are then updated using the
back-propagation algorithm in the same way as a feedforward neural network (FNN) is trained. In
this way, the DBN pre-trains the network, which serves as an initialization step for the parameters of
the FNN, instead of a random initialization of the weights and biases, which has been shown to add
robustness to deep architectures and decrease the probability of obtaining a poor local minima [32].

Figure 3. A feedforward neural network with d = 3 and a single hidden layer.

The DBN performs unsupervised learning first by training it on a set of signal features in order
to learn a latent representation of the data. After the end of training, an output layer is added on top
of the last layer of the DBN, where it is fully connected to the (last) hidden layer. This output layer
contains one neuron (without an activation function) which represents the continuous prediction.

2.3. Particle Filter

The particle filter is a Monte Carlo approach that can be used to estimate the state of a system
by combining both the state evolution of the system and the observation/measurement parameters
obtained from the state.

In discrete time, a system can be described by the following state space model:

xt = f (xt−1, ωt−1) (10)

zt = h(xt, vt) (11)

From the above equations, xt represents the state of the system (such as the crack depth) at time t,
ωt−1 which is independently and contains identically distributed (iid) noise/variance at time t− 1, f ( )
is a function that maps the transitions between states, zt represents the measurement/observation (can
be thought of as a feature, typically derived from a vibration signal) at time t, vt is the iid noise/variance
associated with each measurement, and h( ) is a function that maps the state with the measurement.

The goal of the particle filter is then to be able to estimate the probability density function (pdf)
of p(xt|z1:t) , that is, to estimate the state at time t, given the measurements up to time t. It is also
assumed that the prior probability of the state P(x0) is unkown.
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In the Bayesian setting, the state estimation is usually computed recursively in two stages; the
prediction and the update. For the prediction step, the P(xt|z1:t−1) is given as:∫

P(xt|xt−1, z1:t−1)P(xt−1|z1:t−1)dxt−1

=
∫

P(xt|xt−1)P(xt−1|z1:t−1)dxt−1
(12)

For the update step, new measurements are collected, which are then used to update the prior
distribution. The posterior distribution can then be written as:

P(xt|z1:t) =
P(xt|z1:t−1)P(zt|xt)∫

P(xt|z1:t−1)P(zt|xt)dxt−1
(13)

Typically, the calculations for Equations (12) and (13) are intractable and the particle filter
sampling approach is used to approximate them. This can be accomplished by using a set of
samples/particles {xt

i, wt
i}N

i=1, where wt
i is the ith weight at time t and N is the user-specified

number of particles generated. The weights can be updated by using the sequential importance
resampling (SIR) algorithm [33], and samples are drawn from the state transition distribution:

xi
t ∼ p(xt

∣∣∣xi
t−1) (14)

wi
t =

p(zt
∣∣xi

t)

∑N
i=1 p(zt

∣∣∣xi
t)

(15)

Finally, the posterior distribution P(xt|z1:t−1) is obtained by resampling from
{

x1
t , x2

t , . . . xN
t
}

where x̂i
t (predicted estimate) is drawn with probability wi

t.

2.4. Combined DBN and Particle Filter-Based Approaches for RUL Prediction

The ultimate objective of the combined DBN and particle filter approach is to estimate the pdf of
P(xt+L|z1:t), where L ε {1, 2, . . . N − t} and N represents the length of the signal. It should be noted
that no new (future) information about the system is provided at the generic time step t, and only
information provided from time steps {0, 1, . . . t}may be used for the prediction.

There are two functions that are of interest in modeling; the state transition distribution
Equation (14) (sometimes referred to as the proposal distribution) and the measurement distribution
Equation (15). Both of these functions can be modeled by the DBN, since neural networks in general
are universal function approximators [34].

In the prediction step, the state transition model can simply be approximated by first
reconstructing the time series of the measurements (zt for t = 1, 2, . . . N) into a matrix, where each
feature (column) represents a lagged order of the time series, and whose output is an L-step ahead into
the future state value, and each row represents an index in time. Formally, the input can be denoted as:

[zt, zt−1, . . . ., zt−d+1], ε Rd (16)

and treat the state xt as the actual RUL of the bearing at time t as the output:

[xt, xt+1, . . . , xN ] (17)

where d represents the embedding dimension, and determines the size of the first visible layer in
the DBN. Thus, the network requires training tuples of the form ([zt, zt−1, . . . , zt−d+1], xt), t =

d− 1, . . . , N. Using this training set, the state transition model is instead actually modeling the pdf
of p(xi

t+L
∣∣zt, zt−1, . . . ., zt−d+1) . The L step ahead prediction, xi

t+L, is simply made by subtracting the
network’s output xt by L. The advantages of treating the state xt (instead of treating it as the crack
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depth for instance) as the actual RUL allow for a simpler model to be developed. One does not need to
utilize another neural network to determine the RUL, given the crack depth, or to recursively compute
the state transition model multiple times until it exceeds such a threshold, which needs to be defined.
By training the network directly on the RUL, the network is minimizing the error of predicting the RUL,
rather than an intermediate value. This results in a network that is more easily trainable and reduces
the potential problem of having the network’s eventual forecast of the state die off (converging to a
single value). The disadvantage of this approach however, is that the parameters of the state transition
model will be updated/relearned less frequently. The measurement zt (often a multi dimensional
vector) can be constructed into a mono-dimensional feature vector by setting the input of the DBN as
zt and then setting the size of the last hidden layer to one. The output of the DBN in its unsupervised
stage of learning is then the reconstructed mono-dimensional feature vector of zt.

Equations (16) and (17) define a method often called the sliding window technique [35]. This
windowing approach is illustrated in Figure 4.

Figure 4. The windowing approach.
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The first plot in Figure 4 is the complete series of a fault feature. The second plot highlights the
first window of size d = 100. The last figure simply shows a zoom-in of the first window. The first
window contains points from t = 0, 1, 2, . . . 98, 99 (first row of features), and the second window
would contain points from t = 1, 2, 3, . . . 99, 100 (second row of features), and so on.

The state transition model and its respective variance in Equation (10) ωt−1 can be modeled by
taking B bootstraps, which randomly samples (with replacement) each row of the training data TD,
|TD| times. The DBN is then trained B times for each bootstrap and the predicted values will be
defined as:

STb(z) = F(z; ST∗b ) (18)

where, z represents the generic testing input vector of the past d measurements [Equation (16)] and
F
(
z; ST∗b

)
represents the DBN-FNN output [Equation (17)] with respect to the bth bootstrap. The mean

and variance are simply then calculated as:

STavg(z) =
1
B

B

∑
b=1

STb(z) (19)

σ̂2
ST(z) = var(STb(z)) (20)

and then samples xi
t can be generated from the following Gaussian distribution:
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(STavg(z), σ̂2
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The measurement distribution can be modeled in a somewhat similar approach to the state

transition distribution. The technique [13] requires a dataset of tuples of (xt, zt)
Ntraining
t=1 where B

bootstraps are sampled from this training data set, and an interpolator ϕ(x) is created. zt is typically a
multi-dimensional vector, which can be reduced to a single mono-dimensional vector for simplicity
and ease of calculation. This can be performed by the DBN in its unsupervised stage of learning, by
setting the last layer of the DBN’s hidden layer to a size of one. A simple FFN can also be used as an
interpolator for computing the following:

ϕavg(x) =
1
B

B

∑
b=1

ϕ(x; T∗b ) (22)

where, T∗b is the bth bootstrap sampled from the dataset. The measurement model in Equation (11) can
be hypothesized as:

z(x) = f (x) + v(x) (23)

From Equation (23), we can subtract ϕavg(x) from both sides such that:

z(x)− ϕavg(x) = [ f (x)− z(x)] + v(x) (24)

The error term z(x)− ϕavg(x) is then a function of [ f (x)− z(x)] and v(x), which we will call the
model error and intrinsic noise respectively. Their variances are then denoted as σ2

m(x) and α2(x)
respectively. The model error variance can be modeled by taking M groups of interpolators from
ϕ
(

x; T∗b
)

of length K networks and computing the average as:

ϕm
com(x) =

1
K

K

∑
i=1

ϕi(x) (25)



Appl. Sci. 2017, 7, 649 9 of 17

The set, Ψ = {ϕm
com(x)}M

m=1 is then resampled with replacement using P bootstraps, denoted as
{Ψp}P

p=1 , where Ψp is the pth bootstrap of Ψ. The estimate of the model error variance can then be
computed as:

σ̂2
m(x) =

1
P

P

∑
p=1

var(Ψp) (26)

The noise variance can be modeled by building up a training set (xt, α̂2
t )

Ntraining
t=1 , where α̂2

t is
defined as:

α̂2
t = max

{(
zt − ϕavg(xt)

)2 − σ̂2
m(xt), 0

}
(27)

A single FNN can then be trained on the aforementioned training set in order to estimate α̂2
t (x)

for an arbitrary x vector. Finally p(zt|xt) can be approximated by:

p(zt|xt) ≈
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The confidence intervals for a generic prediction x̂ can then be obtained with 1-α% confidence by
the following formula [36]:

x̂± t1−(α/2),B−1

√
σ̂2

ST(x)
B− 1

(29)

The training/testing procedure for the integrated DBN and particle filter is then as follows:

Step 1
Let the last 100 rows be equal to the testing set, and set the rest of the data to the training
set.

Step 2

Approximate the state transition model.

a
Reconstruct the time series of the signal features into a matrix with an
embedding dimension of d. This will serve as the input, and the output
will be the mapped state xt, where t = d− 1, . . . , Ntraining − L− 1.

b Create B bootstrapped data sets using the data created in Step 1.

c
Initialize the weights and biases of the FNN by training the DBN on the
input data with all the data except for the last 100 rows. The rest of the
data is the testing set.

d
Train the FNN. Fine tune the weights in a supervised fashion by
minimizing the loss function on the training set and by using the
back-propagation algorithm.

e
Predict the xt+L. This is accomplished by subtracting the network’s
output xt by L, i.e., xt+L = xt − L.

f
Let t = t + 1, and update the training vector with input features
(zt, zt−1, . . . ., zt−d+1).

g Repeat Steps 2e–2f, until all 100 points have been predicted.

Step 3
Estimate the measurement distribution. Create a new dataset of the form (xt, zt)

Ntraining
t=1

Generate B bootstraps from this training dataset and apply Equations (22)–(28) to obtain the
measurement distribution. The DBN can be used for estimates in Equations (22) and (27).

Step 4
Estimate the state. The predicted state x̂t+L can be obtained by sampling
{x1

t+L, x2
t+L, . . . xB

t+L} with probability wi
t [from Equation (15)].

This method allows a complete data-driven approach to be developed in conjunction with a
particle filter for RUL estimation. Equation (10), the proposal distribution is built up using training
tuples of the form ([zt, zt−1, . . . ., zt−d+1], xt). The bootstrapping approach is then used to collect the
statistics for the mean and variance. Equation (11), the measurement model is then modeled by
Equations (22)–(28). Here the DBN can serve two purposes. It can be used to reduce the dimensionality
of the measurement zt and it can also to be used in order to initialize the weights of the neural network.
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3. Validation

In this section, the validation of the integrated bearing RUL prediction method using vibration
data collected from a single hybrid ceramic bearing run-to-failure test is discussed.

3.1. Hybrid Ceramic Bearing Run-to-Failure Test Setup

The hybrid ceramic bearing run-to-failure tests were performed using a bearing test rig in the
laboratory as shown in Figure 5. The bearing test rig consisted of the following main components:
(1) 3-HP AC motor with a maximum speed up to 3600 rpm and variable speed controller; (2) Hydraulic
dynamic loading system with a maximum radial load up to 4400 lbs or 19.64 kN; (3) Integrated loading
and bearing housing. The rig can be used for testing both ball and tapered roller bearings.

Figure 5. The bearing run-to-failure test rig.

An automatic data acquisition system was constructed using a National Instrument CI 4462 board
(NI, Austin, TX, USA) and NI LabVIEW software (LabView 2012, NI, Austin, TX, USA). The automatic
data acquisition system is characterized with the following key features: (1) Maximum sampling
rate up to 102.4 kHz; (2) 4 Input simultaneous anti-aliasing filters; (3) Software-configurable AC/DC
coupling and IEPE conditioning; (4) Vibration analysis functions such as envelope analysis, cepstrum
analysis, and so on for computing necessary condition indicators.

The tested hybrid ceramic ball bearing was a SMR6205C-ZZ/C3 #3 L55/MG2 type bearing by
Boca Bearing Company (Boca Bearings, Boynton Beach, FL, USA). It consisted of stainless steel inner
outer races, and ceramic balls. The bearing was mounted on the test rig. Two accelerometers were
stunt mounted on the bearing housing in the direction perpendicular to the shaft. During the tests, the
rig was run at a speed of 1800 rpm (30 Hz) and was subjected to a radial load of 600 psi. Vibration
data were collected with a sampling rate of 102.4 kHz for two seconds at each sampling point. There
was a 5 min gap between any two sampling points. At the end of the test, the test bearing was
disassembled, checked, and photographed. The bearing data contained a total of 849 data files with a
length of approximately 71 hours. Table 1 describes the run-to-failure test setting. Table 2 provides the
specifications of the tested bearing.

Table 1. The settings of the run-to-failure test.

Test Bearing Name Type of Bearing Load (psi) Input Shaft Speed
(hz)

B2 Hybrid ceramic bearing 600 30
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Table 2. Specifications of the test bearing.

Parameter Specification

Bearing material Stainless steel 440c
Ball material Ceramic SI3N4

Inner diameter (d) 25 mm
Outer diameter (D) 52 mm

Width 15 mm
Enclosure Two shields

Enclosure material Stainless steel
Enclosure type Removable (S)

Retainer material Stainless steel
ABEC/ISO rating ABEC #3/ISOP6

Radial play C3
Lube Klubber L55 grease

RPM grease (×1000 rpm) 19
RPM oil (×1000): 22

Dynamic load (kgf) 1429
Basic load (kgf) 804

Working temperature (◦C) 121
Weight (g) 110.32

The root mean square (RMS) of the vibration signals was computed to represent the degradation
of the bearing over time during the run to failure tests. The RMS at each time interval (denoted as
RMSt) can be calculated as follows:

RMSt =

√
1
n

n

∑
i=1

f 2
ti (30)

where fti represents the ith raw vibration data point at time interval t and n is the length of the signal
at time interval t. The RMS for the bearing data can be seen in Figure 6.

Figure 6. The bearing RMS values.

For the bearing data, the RULt (remaining useful life at time t) was calculated simply by taking
the time index of the maximum recorded RMS value as the point of failure denoted as RMSTend and
subtracting it from each time step:

RULt = RMSTend − t (31)
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The raw vibration signals were preprocessed using the fast Fourier transform (FFT), and the FFT
values were used as the only signal feature input into the integrated DBN-particle filter model to
predict the RUL of the bearing. The FFT, which is an efficient algorithm for computing the discrete
Fourier transform (DFT) at a time interval t, can be calculated as follows:

DFTtn =
N−1

∑
k=0

ftke
−2πikn

N (32)

where ftk is the kth raw vibration signal at time interval t, N is the length of the signal at time interval
t, i =

√
−1, and n = 0,1, . . . , N − 1.

Equation (31) transforms the vibration signals from a time domain to a frequency domain in
which we extracted ten equal bands ranging from 0 to 20 kHz.

3.2. Hybrid Ceramic Bearing RUL Prediction Results

A total of 849 time steps were extracted from the bearing data in which all the data up until time
step 792 were used. As seen from Figure 6, a rather large dip in the RMS values occurred from time
steps 720 through 735. Features collected from those points were simply removed from the data and
treated as outliers.

L = 1 and L = 10 were used to predict 5 min and 50 min into the future for the bearing
data, respectively.

The predicted RUL values for the last 100 steps can be seen in Figures 7 and 8 for L = 1 and L = 10,
respectively. The error metrics and hyperparameters of the DBN with L = 1 and L = 10 are provided in
Tables 3 and 4, respectively. Table 4 shows the hyperparameters of the DBN for the state transition
model which were determined using a grid search. Input data was also scaled to be in [0, 1], d = 100
was set as the embedding dimension, B was set as 50, M = 10, K = 5, P = 1000 and 50 particles were
used for both L = 1 and L = 10 predictions.

Figure 7. Plot of bearing R̂ULt values with L = 1.
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Figure 8. Plot of bearing R̂ULt values with L = 10.

Table 3. Root mean squared error (RMSE) and mean absolute percentage error (MAPE) results.

Combined DBN and Particle Filter-Based Approach

L RMSE MAPE α− λ Accuracy (α = 10%)

1 2.04 7.33% 0.80
10 3.52 8.68% 0.61

Particle Filter-Based Approach

L RMSE MAPE α− λ Accuracy (α = 10%)

1 2.53 7.47% 0.71
10 3.65 8.73% 0.53

Table 4. Hyperparameters of the deep belief network (DBN).

L DBN Learning
Rate DBN Epochs Hidden Layer

Structure
FNN Learning

Rate FNN Epochs

1 0.002 74 [146, 53] 0.0017 176
10 0.0023 82 [120, 54] 0.0014 92

In Figures 7 and 8, the green color represents the average predicted RUL values across the
bootstrapped samples. The red error bars represent the 95% bounds. The predicted results show for
both L = 1 and L = 10 that it can accurately predict the true RUL, and as the bearing approaches the
point of failure, the accuracy of the predictions tends to increase.

The confidence bounds for the L = 10 predicts the RUL of the bearing slightly early when compared
to the L = 1 predictions and exhibits a greater variance.

The common error metrics used in Table 3 are the root mean squared error (RMSE), α − λ

metric [37,38], and the mean absolute percentage error (MAPE). The MAPE, RMSE, and α− λ metric
are defined by the following equations:

MAPE =

(
1
n

n

∑
t=1

At − Ft

At

)
∗ 100% (33)
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RMSE =

√
1
n

n

∑
t=1

(At − Ft)
2 (34)

(α− λ)tλ =

{
1 i f (1− α)RUL tλ ≤ R̂UL tλ ≤ (1 + α)RUL tλ

0 otherwise
(35)

In Equations (33) and (34), At denotes the actual value, Ft represents the predicted value, and n
equals the number of points to be predicted. In Equation (35), α represents a user specified bound
level, RUL tλ represents the actual RUL at time tλ, and R̂UL tλ represents the predicted RUL at time
tλ. λ is given as a percentage of RUL for a given equipment (i.e., tλ=50% represents the time index
where half the RUL is left). The reported α− λ in Table 3 represents the average α− λ metric across
the all testing samples. In the α− λ metric, results closer to one indicate better performance. The
loss functions used to train the state transition models for L = 1 and L = 10 were the MSE (RMSE 2)
and the MAPE respectively. Satisfactory hyperparameters for building up Equations (22) and (27) for
both L = 1 and L = 10 were set as [105, 59] for the hidden layer structure using 122 epochs with a
learning rate of 0.00085. The hyperparameters for the reconstructed mono-dimensional measurement
data were set as [142, 87] for the hidden layer structure using a small learning rate of 0.0094 and
212 epochs. The hyperparameters for each built network was done by employing a grid search and
evaluating candidate hyperparameters on the MSE using a 10 fold cross validation on the training set.
Cross validation is a widely used method to avoid overftting when selecting hyperparameters [39].
The chosen hyperparameters were obtained by those that minimized the MSE during cross validation.
For all of these networks, the activation function was set as the rectified linear unit (ReLU) function.
It solves the vanishing gradient problem that other non-linear activation functions can cause [40]. The
ReLU activation function for the input x of a neuron is defined as:

ReLU(x) = max{0, x} (36)

Since the particle filter is the most competitive RUL prediction method for bearings, for a
comparison purpose, the RMSE and MAPE of the RUL predictions obtained by the particle filter-based
approach are also provided in Table 3. In comparison with the results obtained using the particle
filter-based approach, the RMSE and MAPE values of the integrated approach were slightly lower
and the α− λ metric values were higher. Note that since in [28], it was reported that using the same
bearing data, the particle filter gave a better RUL prediction accuracy than a DBN based approach did,
we consider the integrated method presented here as better than the DBN-based approach used on
the same dataset. The comparison results showed the promising performance of combining the deep
learning based approach with particle filter for hybrid ceramic bearing RUL prediction.

Given that the integrated approach did not require explicit model equations like the particle
filter-based approach and is scalable for big data applications, the RUL prediction performance
achieved by the integrated approach has shown great potential for bearing RUL prediction with
big data.

4. Conclusions

Predicting the remaining useful life of bearings has been an important task for condition-based
maintenance of industrial machines, as bearings are one of the most critical components in these
machines. To meet the challenge of automatically processing massive data and accurately predicting
RUL of the bearings in the era of the Internet of Things and Industrial 4.0, this paper addressed the
limitations of traditional data-driven prognostics by presenting a new method that integrates a deep
belief network and a particle filter for RUL prediction of hybrid ceramic bearings. Real vibration
data collected from hybrid ceramic bearing run-to-failure tests were used to test and validate the
integrated method. The performance of the integrated method was also compared with DBN and
particle filter-based approaches. In comparison with the RUL prediction results obtained using the
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particle filter-based method, the prediction accuracy measured by RMSE and MAPE of the integrated
method is slightly lower. Also, based on the previous comparison between DBN and the particle
filter methods for the same dataset reported in [28], the RUL prediction performance of the integrated
method is considered better than the DBN method. The validation and comparison results showed the
promising RUL prediction performance of the integrated method.

Since the integrated approach was a purely data-driven approach, future work should focus on
increasing user confidence in the method. This may be accomplished by combining the integrated
approach with other techniques such as employing the use of fuzzy similarity [41]. This would require
a large database of run to fail trajectories that can be compared based on their similarity with the
observed data. This large database should not only increase the accuracy of the integrated approach,
but also further validate it. Additional work may also include the processing of the raw vibration
signals at each sampling interval by a DBN into a single dimension signal feature that can be used
for prognostics.
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