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Abstract: The theory of quantum optomechanics is reconstructed from first principles by finding a
Lagrangian from light’s equation of motion and then proceeding to the Hamiltonian. The nonlinear
terms, including the quadratic and higher-order interactions, do not vanish under any possible
choice of canonical parameters, and lead to coupling of momentum and field. The existence of
quadratic mechanical parametric interaction is then demonstrated rigorously, which has been so far
assumed phenomenologically in previous studies. Corrections to the quadratic terms are particularly
significant when the mechanical frequency is of the same order or larger than the electromagnetic
frequency. Further discussions on the squeezing as well as relativistic corrections are presented.
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1. Introduction

The general field of quantum optomechanics is based on the standard optomechanical
Hamiltonian, which is expressed as the simple product of photon number n̂ and the position
x̂ operators, having the form HOM = }g0n̂x̂ [1–4] with g0 being the single-photon coupling
rate. This is mostly referred to in a classical paper by Law [5], where the non-relativistic
Hamiltonian is obtained through Lagrangian dynamics of the system. This basic interaction is
behind numerous exciting theoretical and experimental studies, which demonstrate a wide range
of applications. The optomechanical interaction HOM is inherently nonlinear by its nature, which
is quite analogous to the third-order Kerr optical effect in nonlinear optics [6,7]. These for instance
include the optomechanical arrays [8–17], squeezing of phonon states [18–20], Heisenberg’s limited
measurements [21], non-reciprocal optomechanical systems [22–28], sensing [29–31], engineered
dissipation [32], engineered states [33], and non-reciprocal acousto-optical effects in optomechanical
crystals [34–36].

Recent ideas in this field such as microwave-optical conversion [37–40], cavity
electrooptics [41–43], optomechanical induced transparency [44–47], and optomechanical verification
of Bell’s inequality [48] all emerge as closely related duals of quantum optomechanical systems, which
are described within a completely identical framework. Furthermore, quantum chaos which had been
predicted in quantum optomechanics [2,49] and cavity quantum electro-dynamical systems [50–52],
has been recently observed in optomechanics [53,54].

Usually, the analysis in all these above works is ultimately done within the linearized
approximation of ladder operators, thus being limited in accuracy where HOM interaction is
non-existent or vanishingly small. For applications where quadratic or even quartic effects are
primarily pursued, g0 may be designed to be identically zero [55–61], which urges need for accurate
knowledge of higher-order interaction terms. Similar situation also could arise in trapped ultracold
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atomic gases [62], where linear interactions identically vanish. Relevant Physical phenomena in
optomechanics such as four-wave mixing, also is suitably described by higher order interaction
terms [63]. Moreover, significance and prominent role of such nonlinear interactions was observed in
few recent experiments [64,65].

A careful review of the theory of this subject [5], however, reveals that there are a number of
physical approximations in formulation of the problem such as the non-relativistic limit [66,67], which
makes the unified description of relativistic photon momenta and non-relativistic mirror motion
inaccurate. As it is being shown here, a full treatment of the latter will yield higher-order multi-particle
interactions. Such quadratic interactions have been recently used phenomenologically [58] without a
theoretical basis. Similar yet weaker interactions may be also drawn from relativistic corrections [68] as
discussed here. In that sense, the quadratic interactions are shown to receive contributions from both
non-relativistic and relativistic terms, which become quite significant when the mechanical frequency
is comparable or larger than the electromagnetic frequency.

2. Classical Hamiltonian

The basic theory to be discussed is based on two important and basic assumptions. We first
assume that the cavity mode decomposition is valid independent of the mirror motion. Second, the
electric fields vanish at the mirror surface in the frame that the Lagrangian is constructed. These
assumptions seem reasonable in the usual discussions with much lower mechanical frequencies when
the cavity mode change can be treated adiabatically. However, when the end mirror oscillates at a
very high frequency, it dresses the cavity modes so that the mode frequency might become undefined
invalidating the assumption of mode decomposition. At higher frequencies, it has also been known
and demonstrated that the mirror undergoing relativistic motion could produce photons from vacuum,
known as the dynamical Casimir effect [69,70]. This is of course beyond the regime being explored in
this article.

The focus of the first two Sections 2.1 and 2.2 is to assert the claim, and demonstrate what term
is missing and why it happens. As it will be shown and rigorously proven, even for the simplest
case of interaction with a single-optical mode, a new term of the type

.
q2Q2 representing quadratic

momentum
.
q and optical field Q interactions is found, the origin of which is also identified. For the

more general case of multi-mode optical fields, the situation is even much more complex and there are
a few more missing terms to consider. Once the Lagrangian is known, the Hamiltonian is subsequently
constructed in Section 2.3.

2.1. The Equations of Motion

The one-dimensional wave equation for transverse component of the magnetic potential A(x, t)
in the dimensional form is expressed as [5]

c2 Axx(x, t) = Att(x, t), (1)

where x and t are respectively the position and time coordinates, and c is the speed of light in free
space. Suppose the Fourier series relations for the magnetic vector potential are defined as [5]

Qk(t) = 1
c

√
2S

µ0q(t)

q(t)∫
0

A(x, t) sin[κk(t)x]dx,

A(x, t) = c
√

2µ0
Sq(t)

∞
∑

k=1
Qk(t) sin[κk(t)x],

ωk(t) = cπk/q(t) = cκk(t),

(2)

where S is the cross-sectional area, µ0 is the permeability of vacuum. This arrangement ensures that the

definition of canonical variables can be used later, so that
.

Qk
2

simply takes on the dimension of energy.
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One may furthermore define the functions fk =
√

2/q sin(κkx) and gk =
√

2/q cos(κkx), and
hence A(x, t) = s ∑ Qk fk where s = c

√
µ0/S. Here, the inner product is also defined as (a|b) =

∫ q
0 abdx

such that the following relations may be found(
fk
∣∣ f j
)
= δkj,

(
fk
∣∣κjx

∣∣gj
)
= αkj,

(
fk

∣∣∣κj
2x2
∣∣∣gj

)
= βkj. (3)

After straightforward calculations one obtains

αkj = − 1
2 δkj + gkj,

βkj =
(

k2 π2

3 −
1
2

)
δkj + hkj =

k2 π2

3 −
1
2 , k = j,

8 (−1)k+jkj3

(k2−j2)2 , k 6= j.
(4)

Here, the anti-symmetric coefficients gkj and hkj are

gkj = −gjk =

 0, k = j,

2 (−1)k+jkj
j2−k2 , k 6= j,

hkj =

 0, k = j,

8 (−1)k+jkj3

(k2−j2)2 , k 6= j.

(5)

Differentiating fk and gk with respect to t, noting that
.
κk = −

.
qκk/q, gives

.
f k = −

.
q
q

(
1
2 fk + xκkgk

)
,

.
gk = −

.
q
q

(
1
2 gk − xκk fk

)
,

..
f k = −

..
qq− .

q2

q2

(
1
2 fk + xκkgk

)
+

.
q2

q2

(
1
4 fk + 2xκkgk − x2κk

2 fk

)
.

(6)

It is possible now to differentiate A(x, t) with respect to position and time to obtain the relations

c2

s Axx(x, t) = −∑ ωk
2Qk fk,

1
s At(x, t) = ∑

.
Qk fk −

.
q
q ∑ Qk

(
1
2 fk + xκkgk

)
,

1
s Att(x, t) = ∑

..
Qk fk − 2

.
q
q ∑

.
Qk

(
1
2 fk + xκkgk

)
−

..
qq− .

q2

q2 ∑ Qk

(
1
2 fk + xκkgk

)
+

.
q2

q2 ∑ Qk

(
1
4 fk + 2xκkgk − x2κk

2 fk

)
.

(7)

Therefore, the wave equation reads

−∑ ωk
2Qk fk = ∑

..
Qk fk −

.
q
q ∑

.
Qk( fk + 2xκkgk)−

..
q
q ∑ Qk

(
1
2 fk + xκkgk

)
+

.
q2

q2 ∑ Qk
( 3

4 fk + 3xκkgk − x2κk
2 fk
)
.

(8)

Now, the inner product relationships (3) and some further simplification (Appendix A) help us to
obtain the equation of motion as

..
Qk = −ωk

2Qk + rk

.
q2

q2 Qk + 2
.
q
q ∑ gkj

.
Qj +

..
q
q ∑ gkjQj +

.
q2

q2 ∑
(

hkj − 3gkj

)
Qj, (9)

where all summations are nonzero only for j 6= k, and

rk = k2 π2

3
+

1
4

. (10)
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The related equation in Law’s paper [5]

..
Qk = −ωk

2Qk + 2
.
q
q ∑ gkj

.
Qj +

..
q
q ∑ gkjQj +

.
q2

q2 ∑ gkjgl jQl −
.
q2

q2 ∑ gkjQj, (11)

is completely equivalent, but apparently different in presentation. Similarly, one may directly deduce
from the Newton’s equation of motion

m
..
q = − ∂

∂x
V(x) +

S
2µ0

B2(q, t) = − ∂

∂x
V(x) +

1
q ∑(−1)k+jωkωjQkQj. (12)

2.2. Lagrangian

The associated Lagrangian which leads to the above set of Euler equations is given by

L = 1
2 m

.
q2 −V(q) + 1

2 ∑
(

.
Qk

2
−ω2

k Qk
2
)
−

.
q
q ∑ gkjQj

.
Qk

+
.
q2

2q2 ∑
(

hkj − 2gkj + rkδkj

)
QkQj.

(13)

It should be again noticed that hkk = 0 by (5), which together with the antisymmetry of coefficients
gkj from (5), allows further simplification to reach

L =
1
2

m
.
q2 −V(q) +

1
2 ∑

(
.

Qk
2
−ω2

k Qk
2
)
+

.
q2

2q2 ∑ dkjQkQj −
.
q
q ∑ gkjQj

.
Qk, (14)

where dkj =
1
2

(
hkj + hjk

)
+ rkδkj is related to the symmetric part of hkj, given by

dkj = djk =

 rk, k = j,

4
(−1)k+jkj(k2+j2)

(k2−j2)2 , k 6= j.
(15)

This is to be compared with the quite different expression by Law [5] given by

L =
1
2

m
.
q2 −V(q) +

1
2 ∑

(
.

Qk
2
−ω2

k Qk
2
)
+

.
q2

2q2 ∑ glkgl jQkQj −
.
q
q ∑ gkjQj

.
Qk, (16)

which indeed consistently satisfies the Euler’s pair of equations.
Now, it is a matter of speculation whether (9) is equivalent to (11) or not. Firstly, the diagonal

terms are equal if

∑
k

gkjgkj = rj = djj, (17)

which holds true because of the identity

∞

∑
j=1,j 6=k

4k2 j2

(j2 − k2)
2 = k2 π2

3
+

1
4

. (18)

Now, for a single-mode system with only one radiation mode, we may easily notice that (9) and
(11) become readily identical. This becomes more clear by noticing that gkk = hkk = 0, and hence for a
system with only one electromagnetic radiation mode, (9) becomes

..
Q = −ω2Q +

(
rq−2 .

q2
)

Q, with

r = r1. This is while Law’s expression (11) is
..
Q = −ω2Q + q−2 .

q2(
∑ g1jg1j

)
Q. However, (17) requires

that r = ∑ g1jg1j, which confirms the equivalency for single-mode systems.
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As for a multimode system, and by comparing (13) and (16) one would need

∑ gkl gjl = dkj = rkδkj − 2gkj + hkj, (19)

in order to (9) and (11) be identical. This can be put to numerical tests (here done by the author by
coding a simple Mathematica program), and is in fact accurately satisfied. Hence, the single-mode
Lagrangian in the non-relativistic limit can be written in the form

L =
1
2

m
.
q2 −V(q) +

1
2

[
.

Q
2
−ω2(q)Q2

]
+

.
q2

2q2 rQ2. (20)

The last term has been usually ignored so far in the literature, and will result in momentum-field
coupling. In the remainder of the paper, we focus on nonlinear terms arising from this interaction, and
then also add up the relativistic corrections in the end.

2.3. Hamiltonian

The definition of canonical momenta taken here is

Pk =
.

Qk −
.
q
q ∑ AkjQj, p = m

.
q− 1

q ∑ BkjPkQj, (21)

with Akj and Bkj being some transformation coefficients to be determined later. One here may take
advantage of the degree of freedom in choice of Akj and Bkj to get rid of unwanted summation terms
in the Hamiltonian. It has to be here noticed again that the existence of the last term of (20), being
completely new even under the single-mode operation, has nothing to do with the choice of canonical
momenta. That implies the final resulting single-mode (and therefore multi-mode) Hamiltonian will
be inevitably different, incorporating a few new terms. The Hamiltonian may be now derived from the
Lagrangian by iterated use of (21) and through the relationshipH = p

.
q + ∑ Pk

.
Qk −L as

H =

[
m

.
q− 1

q ∑ Bkj

(
.

Qk −
.
q
q ∑ AklQl

)
Qj

]
.
q + ∑

(
.

Qk −
.
q
q ∑ AkjQj

)
.

Qk − L. (22)

Law [5] arbitrates the choice Akj = Bkj = gkj. However, by going further with this choice for a

single-mode optical field, it will be evident that P =
.

Q and p = m
.
q, hence, still resulting in an extra

nonlinear term proportional to p2Q2/q2 in the Hamiltonian, leading to a fourth-order momentum-field
interaction. This will be discussed shortly in the subsection below.

Hence, the Lagrangian L found in the above yields the Hamiltonian below after some algebra

H = 1
2 m

.
q2

+ V(q) + 1
2 ∑
(

.
Qk

2
+ ω2

k Qk
2
)
−

.
q
q ∑
(

Akj + Bkj − gkj

) .
QkQj

+
.
q2

2q2 ∑
(

2 ∑ Bkj Akl − djl

)
QlQj.

(23)

Here is readily evident now by (19), that the last term can be made identically zero, only if
djl = ∑ gkjgkl = 2 ∑ Bkj Akl . This not only cannot be satisfied by Law’s choice Akj = Bkj = gkj,

but also the second summation term nonlinear in
.
q

.
Qk will also survive, further complicating the

Hamiltonian formulation.
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Now, further elimination of
.
q and

.
Qk from (21) gives

H = 1
2m

(
p + 1

q ∑ BkjPkQj

)2
+ V(q) + 1

2 ∑ ω2
k Qk

2

+ 1
2 ∑
[

Pk +
1

mq

(
p + 1

q ∑ BlmPlQm

)
∑ AkjQj

]2

− 1
mq

(
p + 1

q ∑ BkjPkQj

)
∑ Ckj

[
Pk +

1
mq

(
p + 1

q ∑ BkjPkQj

)
∑ AkjQj

]
Qj

+ 1
2m2q2

(
p + 1

q ∑ BkjPkQj

)2
∑ DjlQlQj.

(24)

Here, Ckj = Akj + Bkj − gkj and Djl = 2 ∑ Bkj Akl − djl . Dealing directly with such an intractable
and long expression is without doubt too tough. Instead, we may tweak Law’s choice slightly as
Akj = Bkj =

1
2 gkj, which allows (23) be greatly simplified as

H =
1
2

m
.
q2

+ V(q) +
1
2 ∑

(
.

Qk
2
+ ω2

k Qk
2
)
−

.
q2

4q2 ∑ dkjQkQj. (25)

This can be further eventually expanded and simplified as

H = 1
2m

(
p + 1

2q ∑ gkjPkQj

)2
+ V(q) + 1

2 ∑
(

Pk
2 + ω2

k Qk
2
)

+ 1
4mq

(
p + 1

2q ∑ gkjPkQj

)
∑ gkjPkQj − 1

8m2q2

(
p + 1

2q ∑ gkjPkQj

)2
∑ dkjQkQj.

(26)

The last two terms of this Hamiltonian can be expanded to obtain multiple orders of interactions.
These include higher-order tripartite phonon/two-photon, and quadpartite two-phonon/two-photon
interactions, which does not exist in the Law’s Hamiltonian [5], given by

H =
1

2m

(
p +

1
q ∑ gkjPkQj

)2
+ V(q) +

1
2 ∑

(
Pk

2 + ω2
k Qk

2
)

. (27)

As it appears, (27) is missing two very different types of momentum field interaction as the last
two summation terms of (26). This fact becomes evident in below.

2.4. Single Optical Mode

The interesting difference between these two Hamiltonians becomes quite clear with consideration
of only one optical mode in the cavity. This simplifies our derived Hamiltonian to

H =
1

2m
p2 + V(q) +

1
2

[
P2 +

π2

q2 Q2
]
− r

8m2q2 p2Q2, (28)

where ω(q) = π/q and r ∼= 3.8, while the Law’s Hamiltonian [5] gives rise to the significantly
different form

H =
1

2m
p2 + V(q) +

1
2

[
P2 +

π2

q2 Q2
]

. (29)

As it will be shown below, (28) and (29) agree only to the first order, and hence up to the standard
optomechanical Hamiltonian.

3. Field Quantization

When the obtained Hamiltonian is moved to the realm of quantum mechanics, it is first needed
to define the non-commutation rules [q̂, p̂] = i} and

[
Q̂k, P̂j

]
= i}δkj, with the commutation rules
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[
q̂, Q̂k

]
=
[
Q̂k, p̂

]
=
[
q̂, P̂j

]
=
[
P̂j, p̂

]
= 0. This allows us to introduce the field creation and annihilation

operators according to
Q̂k =

√
}

2ωk(q̂)

(
â†

k + âk
)
=
√

}
ωk(q̂)

Qk,

P̂k = i
√

}ωk(q̂)
2
(
â†

k − âk
)
=
√
}ωk(q̂)Pk,

(30)

where ωk(q̂) = cπk/q̂ is defined according to (2). Also for a mechanical resonant frequency Ω and a
spring restoring potential

V(q̂) =
1
2

mΩ2(q̂− l)2, (31)

the displacement operator may be defined as q̂ = l + x̂, where l is the reference position of mirror, and
hence the phonon ladder operators as

x̂ =

√
}

2mΩ

(
b̂† + b̂

)
=

√
}

mΩ
X, p̂ = i

√
}mΩ

2

(
b̂† − b̂

)
=
√
}mΩP, (32)

with
[
b̂, b̂†

]
= 1 and [X,P] = i.

Now, it is necessary first to symmetrize [67] the classical Hamiltonian prior to insertion of
operators, to ensure correct quantization of parameters. The process of symmetrization is done
according to [71–73]

S{AB} = 1
2
(AB+BA), S{ABC} = 1

3
(AS{BC}+BS{AC}+CS{AB}), (33)

etc. Therefore, after symmetrization the final form of the Hamiltonian is given by

H = 1
2m p̂2 + V(q̂) + 1

2 ∑
(

P̂2
k + ω2

k Q̂2
k
)
+ 1

4mS
{

1
q̂2

(
p̂q̂ + 1

2 ∑ gkj P̂kQ̂j

)
∑ gkj P̂kQ̂j

}
− r

8m2S
{

1
q̂4

(
p̂q̂ + 1

2 ∑ gkj P̂kQ̂j

)2
∑ dkjQ̂kQ̂j

}
.

(34)

For a single-optical mode, (34) greatly simplifies and one gets

H =
1

2m
p̂2 + V(q̂) +

1
2

(
P̂2 +

π2

q̂2 Q̂2
)
− r

8m2S
{

1
q̂2 p̂2

}
Q̂2. (35)

This has to be applied to the last interacting term, which involves

S
{

1
q̂2 p̂2

}
= S

{
p̂2

q̂2

}
. (36)

However, symmetrization of a term which contains n non-commuting terms, results in n! terms,
which for this case sum up to a total of 4! = 24 different expressions. The direct way to get around
this situation is to first make an estimate of which terms are the strongest in the limit of linearized
interaction and ignore the rest. It is possible furthermore to use the approximate replacement

1
q̂n
∼=

1
ln

(
1− n

x̂
l

)
, (37)

to obtain

H =
1

2m
p̂2 + V(q̂) +

1
2

[
P̂2 + ω2

(
1− 2

x̂
l
+

4
l2 x̂2 + · · ·

)
Q̂2
]
− r

8m2l2S
{

p̂2
(

1− 2
x̂
l

)}
Q̂2, (38)
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where further substitutions should be taken as

P̂ ∼=
√
}ω

(
1− 1

2l
x̂ +

3
8l2 x̂2 + · · ·

)
P, Q̂ ∼=

√
}
ω

(
1 +

1
2l

x̂− 1
8l2 x̂2 + · · ·

)
Q. (39)

This can be decomposed to the terms

H = H012 +H3 +H4 +H5 + · · · , H012 =
1
2
}ΩP2 + U(X) +

1
2
}ω
(
P2 +Q2

)
. (40)

Hence, there are several distinct types of nonlinear optomechanical multi-phonon/multi-photon
interactions, which by defining R = r/4 ≈ 0.95 are respectively given by

H3 = − }ω
2l

√
}

mΩX
(
P2 +Q2), H4 = }2

2l2m

[
−R Ω

ωP2Q2 + ω
ΩX2(P2 +Q2)],

H5 = − }
5
2

2m
3
2 l3
√

Ω

{
−2R Ω

ωS
{
P2X

}
Q2 + ω

ΩX3(P2 +Q2)},
(41)

and so on for higher order interactions. Here, the expansion of symmetrized terms, for instance, gives

S
{
P2X

}
=

1
3

(
P2X+XP2 +PXP

)
. (42)

Now, it is noted that since usually ω � Ω, it may observed that the first terms are much weaker
than the second terms. Hence, using the identity P2 +Q2 = 1

2 n̂+ 1
4 where n̂ is photon number operator,

the following is obtained

H3 = − }ω
l

√
}

mΩX
(

n̂ + 1
2

)
= −}αX

(
n̂ + 1

2

)
,

H4 = }2

l2m
ω
ΩX2

(
n̂ + 1

2

)
= +}βX2

(
n̂ + 1

2

)
,

H5 = −ω
Ω

}
5
2

m
3
2 l3
√

Ω
X3
(

n̂ + 1
2

)
= −}γX3

(
n̂ + 1

2

)
,

(43)

where H3 ≡ HOM is the simple optomechanical interaction, and H4 is known as the quadratic
interaction. It has to be emphasized that while H3 ≡ HOM is actually nonlinear in the exact
mathematical sense, it is the quadratic interaction H4 which is mostly referred to as the nonlinear
interaction in the literature [55–57]. Since it is possible to make g0 and therefore H3 identically vanish
by appropriate optomechanical design [55–58] in which the overlap integral of optical and mechanical
modes sums up to zero, hence the quadratic interactions H4 can then find physical significance.

The quadratic interaction has been a subject of growing importance in the recent years in
optomechanical systems [59–61] and beyond [62]. In [59] the photon statistics and blockade under H4

interactions has been studied and analytical expressions were derived. The quantum dissipative master
function has been numerically solved and the corresponding correlation functions were obtained.
Interestingly, quadratic optomechanical interactions can arise at the single-photon level, too, where
rigorous analytical solutions have been devised [60]. Such type of interactions can be also well
described using equivalent nonlinear electrical circuits, where a Josephson junction brings in the
desired nonlinearity of quadratic interactions and terminate a pair of lumped transmission lines [61].
Finally, ultracold atoms also can exhibit interactions of a comparable type which is mathematically
equivalent to the quadratic interaction [62].

The single-photon multi-particle rates are given by

α =
ω

l

√
}

mΩ
≡
√

2g0, β =
}

l2m
ω

Ω
, γ =

ω

Ω
} 3

2

m
3
2 l3
√

Ω
. (44)
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This summarizes the Hamiltonian as

H = H0 +Hint. (45)

in which H0 and Hint are respectively the non-interacting and interacting Hamiltonians

H0 = H012 −
1
2
}
(

αX− βX2 + γX3 + · · ·
)

, Hint = }
(

αX− βX2 + γX3 + · · ·
)

n̂, (46)

when ω � Ω. Now, the dimensionless constant θ is defined as

θ =
1
l

√
}

mΩ
=

xzp

l
, (47)

with xzp being the r.m.s. value of zero-point fluctuations, by which the following is deduced

β = θα� α, γ = θβ = θ2α� β. (48)

This implies that every kind of higher-order interaction is typically θ times weaker than the
interaction of the preceding-order. It should be noted that while such interactions are normally
expected to rapidly vanish with the order increasing, is a well-known fact that certain physical
phenomena such as magnetism in solid 3He cannot be understood without inclusion of four-particle
interaction terms [74,75]. It is worth here to mention that a detailed theory of optomechanics in
superfluid. It has been developed [76], but no expression for the nonlinear terms has been reported.

In general, the interaction of mechanical and optical modes is not strictly one-dimensional,
implying that the overlap integral of normalized modes should also be taken into account. For
instance, odd mechanical modes with even optical modes have zero interaction. In that sense, tuning
the interaction to an odd mode and then shining an even optical mode, or vice versa, makes the
optomechanical interaction identically zero by setting α ≡

√
2g0 = 0. Then the lowest order surviving

interaction would be the H4 term. This method has been used in [55–57] to highlight the quadratic
interaction and make its measurement much easier. It has been shown that these quadratic terms may
be exploited for direct observation of mechanical eigenmode jumps [55,56], as well as two-phonon
cooling and squeezing [57], while the coupling strength β could be increased by three orders of
magnitude [56].

Moreover, the origin of mechanical parametric coupling which has recently been
phenomenologically hypothesized [58] for the associated physical interactions cannot be understood
without the presented analysis, although based on some earlier experimental evidence [77].

It must be added that the condition ω � Ω may be violated in carefully designed superconducting
microwave circuits and also the recently demonstrated molecular optomechanics [78], which signifies
the importance of the P2Q2 term in H4. It is furthermore worthwhile to point out that the regime ω = Ω
can be indeed be accessed and investigated, as it has been shown experimentally for superconducting
circuit optomechanics [79]. The proposal of light propagation in a cylinder with rotating walls [80]
also requires accessing regimes where ω and Ω fall within the same order of magnitude. Alternatively,
in situations where ω � Ω, the scaling will be then given as

θ = R
Ω2xzp

ω2l
, (49)

which shows a significant enhancement in this type of interactions.

3.1. Conditions for Observation of Momentum-Field Quadratic Interactions

In summary, two general criteria should be satisfied in a carefully designed experiment to allow
investigation of momentum-field quadratic interactions:
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• The optomechanical interaction H3 must vanish to allow easier study of quadratic interaction
H4. This is quite possible by design as extensively has been discussed in the above and
literature [55–62].

• The mechanical frequency Ω must be of the same order of magnitude or exceeding the
electromagnetic frequency ω. This is also possible and at least one experiment using
superconducting optomechanics [79] has accessed this regime. Other possibilities are molecular
optomechanics [78] as well as a rotating cylinder [80].

Evidently, such momentum-field quadratic interactions might be more difficult to observe under
normal experimental conditions compared to the regular optomechanical setups. However, progressive
developments in the precision and accuracy of optomechanics experiments, such as what happened
for the case of Laser Interferometric Gravitational Observatory (LIGO) [81], could make it eventually
possible to realize and probe such unexplored domains.

3.2. Linearized Quantization

3.2.1. Optical Field

The standard method to linearize the interaction Hamiltonian can be now used by making
the substitutions â→ a + â where the new â operator from now on stands for the non-classical
perturbations and 〈â〉 is a measure of optical field amplitude. Then ignoring higher-order terms and
retaining only the lowest-order interacting terms, we get

H3 = −}g3

(
b̂† + b̂

)(
eiϕ â† + e−iϕ â

)
, (50)

as well as
H4 = +}g+4

(
b̂† + b̂

)2(
eiϕ â† + e−iϕ â

)
, ω � Ω,

H4 = +}g−4
(

b̂† − b̂
)2(

â† + â
)
, ω � Ω.

(51)

Here, ϕ = ]a and the coupling frequencies are defined as

g3 =
α√
2
|a| ≡ g0|a| ≡ G, g+4 =

β

2
|a| = θG, g−4 = R

Ω2

ω2 g+4 . (52)

3.2.2. Mechanical Field

Following the same method to linearize the mechanical motions, with the replacement b̂→ b + b̂
where the new b̂ operator denotes the perturbations, gives rise to the expressions

H4 = +}G+
4

(
b̂† + b̂

)(
eiϕ â† + e−iϕ â

)
, ω � Ω,

H4 = +}G−4
(

b̂† − b̂
)(

â† + â
)
, ω � Ω,

(53)

where ϑ = ]b is set to zero without loss of generality, G+
4 = 2

∣∣∣b∣∣∣g+4 cos ϑ, and G−4 = 2
∣∣∣b∣∣∣g−4 sin ϑ.

In general, when ω � Ω is violated, one would expect the momentum of mirror be coupled to
the first quadrature of the radiation field. This type of interaction can be compared to the normal
optomechanical interaction (50), in which the position is coupled to the first quadrature of the field.

3.2.3. Squeezing Hamiltonian

When the optical and mechanical frequencies do not differ by orders of magnitude so that neither
ω � Ω nor ω � Ω hold, then the linearized Hamiltonian could be recast as

H4 = }G+
4

(
b̂† + b̂

)(
eiϕ â† + e−iϕ â

)
+ }G−4

(
b̂† − b̂

)(
â† + â

)
, (54)
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This can be written as

H4 = }G
(

âB̂† + â†B̂
)
= }G

(
b̂Â† + b̂†Â

)
, (55)

where
G4 =

√
G+

4 G−4 , Â = â† sin hρ + â cos hρ, B̂ = b̂† cos hρ + b̂ sin hρ,

ρ = tan h−1
(

G+
4 −G−4 eiϕ

G+
4 +G−4 eiϕ

)
.

(56)

It is here to be noticed that B̂ and Â are in the standard form of Bogoliubov squeezing
operator [54,55]. It may be noted that the equation

G−4 = R
Ω2

ω2 G+
4 , (57)

is actually a function of ϑ by definition of G+
4 and G−4 . Simplifying the above gives the expression for

squeeze ratio as

ρ = ln
(

ω√
RΩ

)
− i

ϕ

2
. (58)

This shows that quadratic interactions give rise to squeezed mechanical or optical states unless
ω =

√
RΩ and of course ϕ = 0.

3.2.4. Special Case

As discussed above, the Hamiltonian H3 can be made identically zero [56,57,82,83] to access the
quadratic interaction terms H4 directly. There is an interesting condition on the ratio of optical to
mechanical frequencies, which could be sought here. Let

ω =
√

ηRΩ, (59)

in which η is a constant to be determined later. This allows the H4 to be written as

H4 = 2}β

[
− 1

η
P2Q2 +X2

(
P2 +Q2

)]
= }β

[
1

2η

(
b̂† − b̂

)2(
â† + â

)2
+
(

b̂† + b̂
)2(

â† â + ââ†
)]

. (60)

Further expansion of results in (Appendix B)

H4,int = 2}β|a|
[(

1 +
1

2η

)(
b̂†2

+ b̂2
)
+

(
1− 1

2η

)
m̂
]
×
(

â† + â
)

. (61)

Then, for the choice of η = 1
2 , that is ω ∼= 0.69Ω, one may reach the desired interaction quadratic

Hamiltonian, linearized in the electromagnetic operators

H4,int = }2J
(

b̂†2
+ b̂2

)(
â† + â

)
, (62)

where the interaction rate is J = λ = 2β|a|. When expanded in its four terms and after the replacement
ĉ = 1

2 b̂2 (Appendix C), one may immediately recognize the Hamiltonian of the type

H4,int = }J
(

ĉâ† + ĉ† â
)
+ }λ

(
ĉ† â† + ĉâ

)
. (63)
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The first parenthesis represents the Hopping or Beam-Splitter term, while the second is normally
referred to as the dissipation. Interestingly, the above could have been further linearized in mechanical
operators to obtain

H4,int = i}J
(

e−iϑ b̂† + eiϑ b̂
)(

â† − â
)
= i}J

(
eiϑ b̂â† − e−iϑ b̂† â

)
+ i}J

(
e−iϑ b̂† â† − eiϑ b̂â

)
. (64)

where J = 2J
∣∣∣b∣∣∣. This latter form, may find application in non-reciprocal optomechanics [84].

4. Relativistic Considerations

As a final remark, the approximate nature of the Lagranian formulation by Law [5] has not been
left unnoticed. It could be attributed first to the non-relativistic description of mirror’s motion which
ultimately ignores higher-order interactions, and then to the relativistic nature of radiation friction
force and the associated Doppler shift [66]. As a result, in a subsequent paper by Cheung and Law [67],
it has been made clear that the non-relativistic optomechanical Hamiltonian is correct only to the
first-order in

.
q.

The nature of the relativistic corrections can be quite different, as follows:

• relativistic Doppler shift [66], which causes corrections in
.
q/c,

• relativistic correction in radiation pressure term [67], the lowest-order of which being proportional
to

.
q/c,

• length contraction [68], due to the moving mirror boundary, resulting again in corrections as
.
q/c.

Not surprisingly, all these relativistic terms vanish in the limit of infinite light speed c. These
altogether could be taken into account in a fully relativistic formulation of the Lagrangian and equations
of motions for the mirror and optical field [85], which has been recently carried out in an extensive
research by Castaños and Weder [68].

As shown in Appendix D, the total relativistic correction terms added to the Hamiltonian takes
the form

∆H = −}
(

b̂† − b̂
)2

∑
k

wkj

(
â†

k + âk

)(
â†

j + âj

)
. (65)

For the single-mode cavity, w = χ0π}dΩ/4mcl2, to be compared with β = }ω/mΩl2 in (48).
Hence, the relativistic correction to the quadratic Hamiltonian H4 is

− w
β

= −χ0πdΩ2

4cω
. (66)

Again, it is seen that when ω � Ω is violated, the relativistic corrections might be quite significant.
In any case, there is no relativistic correction to H3.

5. Conclusions and Future Work

The derivation of the optomechanical Hamiltonian has been carefully examined from the modal
expansions, equations of motion, all the way to the Lagrangian, and ultimately the Hamiltonian and
relativistic considerations. A set of correction terms added to the nonlinear terms has been identified,
which do not eliminate under any choice of canonical momenta. With the careful system design which
allows g0 = 0, these type of interactions are particularly interesting and now being actively pursued. It
was shown that under these conditions one may expect coupling of mechanical momentum to the field
position. Other sorts of interactions emerge under various conditions. In general, when the optical
frequency is not much larger than the mechanical frequency, novel nonlinear interactions may appear.

A future work of the author [86] discusses a semi-analytical method based on the Langevin
equations, which will enable easier study of quadratic interactions in quantum mechanical systems.
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This modified method of Langevin equations could in principle greatly simplify the study of quadratic
and higher-order interactions, which would otherwise need either a full numerical solution using the
master equation approach or full expansion unto the infinite set of orthogonal basis number kets.
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Appendix A. Equations of Motion

In this section, we present the step-by-step details of the derivation of (9) from the previous
equations, as it constitutes the most critical part of this article.

Starting from (8), one has first to rename the dummy index from k to j, multiply both sides by fk,
and then take the inner product. This will yield the expression

−∑ ωj
2Qj
(

fk
∣∣ f j
)
= ∑

..
Qj
(

fk
∣∣ f j
)
−

.
q
q ∑

.
Qj
[(

fk
∣∣ f j
)
+ 2
(

fk
∣∣κjx

∣∣gj
)]

−
..
q
q ∑ Qj

[
1
2
(

fk
∣∣ f j
)
+
(

fk
∣∣κjx

∣∣gj
)]

+
.
q2

q2 ∑ Qj
[ 3

4
(

fk
∣∣ f j
)
+ 3
(

fk
∣∣κjx

∣∣gj
)
−
(

fk
∣∣κj

2x2
∣∣gj
)]

.
(A1)

Using (3), we trivially get

−∑ ωj
2Qjδkj = ∑

..
Qjδkj −

.
q
q ∑

.
Qj

[
δkj + 2αkj

]
−

..
q
q ∑ Qj

[
1
2 δkj + αkj

]
+

.
q2

q2 ∑ Qj

[
3
4 δkj + 3αkj − βkj

]
,

(A2)

which after rearrangement takes the form

..
Qk = −ωk

2Qk +

.
q
q

.
Qk +

..
q

2q
Qk −

3
.
q2

4q2 Qk + 2
.
q
q ∑ αkj

.
Qj +

..
q
q ∑ αkjQj −

.
q2

q2 ∑
(

3αkj − βkj

)
Qj. (A3)

We may furthermore use αkj = − 1
2 δkj + gkj and βkj =

(
1
3 k2π2 − 1

2

)
δkj + hkj from (4) to simplify

and rewrite (A3) as

..
Qk = −ωk

2Qk −
3

.
q2

4q2 Qk +
3

.
q2

2q2 Qk +
.
q2

q2

(
k2π2

3 −
1
2

)
Qk + 2

.
q
q ∑ gkj

.
Qj +

..
q
q ∑ gkjQj −

.
q2

q2 ∑
(

3gkj − hkj

)
Qj, (A4)

which by plugging in the definition for rk from (10) takes the form

..
Qk = −ωk

2Qk + rk

.
q2

q2 Qk + 2
.
q
q ∑ gkj

.
Qj +

..
q
q ∑ gkjQj +

.
q2

q2 ∑
(

hkj − 3gkj

)
Qj. (A5)

This is exactly Equation (9).

Appendix B. Special Case

Expansion of (60) results in

H4 = }β

[
1

2η

(
b̂† − b̂

)2(
â†2

+ â2
)
+
(

1 + 1
2η

)(
m̂ + 1

2

)(
n̂ + 1

2

)
+
(

b̂†2
+ b̂2

)(
n̂ + 1

2

)]
= }β

[
1

2η

(
b̂†2

+ b̂2
)(

â†2
+ â2

)
+
(

1 + 1
2η

)(
m̂ + 1

2

)(
n̂ + 1

2

)
+
(

b̂†2
+ b̂2

)(
n̂ + 1

2

)
− 1

2η

(
m̂ + 1

2

)(
â†2

+ â2
)]

,
(A6)
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where n̂ = â† â and m̂ = b̂† b̂ are respectively photon and photon number operators. Retaining only the
interacting terms, gives the expression

H4,int = }β

[
1

2η

(
b̂†2

+ b̂2
)(

â†2
+ â2

)
+

(
1 +

1
2η

)
m̂n̂ +

(
b̂†2

+ b̂2
)

n̂− 1
η

m̂
(

â†2
+ â2

)]
. (A7)

In the limit ω � Ω with η → ∞ , H4 as in (53) is recovered. With linearization of the
electromagnetic field operators, and removing the non-interacting terms the following is found

H4,int = 2}β
[

1
2η

(
b̂†2

+ b̂2
)(

a∗ â† + aâ
)
+
(

1 + 1
2η

)
m̂
(
aâ† + a∗ â

)
+
(

b̂†2
+ b̂2

)(
aâ† + a∗ â

)
− 1

η m̂
(
a∗ â† + aâ

)]
, (A8)

By continuing the work on the linearized quadratic interaction one obtains the expression

H4,int = 2}β|a|
[

1
2η

(
b̂†2

+ b̂2
)(

e−iϕ â† + e−iϕ â
)
+
(

1 + 1
2η

)
m̂
(
e−iϕ â† + e−iϕ â

)
+
(

b̂†2
+ b̂2

)(
e−iϕ â† + e−iϕ â

)
− 1

η m̂
(
e−iϕ â† + e−iϕ â

)]
,

(A9)

which for ϕ = 0 simplifies to

H4,int = 2}β|a|
[(

1 +
1

2η

)(
b̂†2

+ b̂2
)
+

(
1− 1

2η

)
m̂
]
×
(

â† + â
)

. (A10)

Appendix C. Squared Annihilator

The operator ĉ has clearly a simple solution for its eigenkets, which is the same as coherent states
such as |z〉 where ĉ|z〉 = 1

2 z2|z〉. Hence, the eigenvalue is simply the complex number 1
2 z2. Meanwhile,

one has

|z〉 = e−
1
2 |z|

2 ∞

∑
m=0

zm
√

m!
|m〉. (A11)

It is furthermore easy to check that
[
ĉ, ĉ†] = m̂ + 1

2 = b̂† b̂ + 1
2 [86]. When, the mean phonon

number is 〈m̂〉 = 1
2 , then

〈[
ĉ, ĉ†]〉 = 1, which is quite similar to the commutator

[
b̂, b̂†

]
= 1.

Appendix D. Relativistic Correction

The relativistic Lagrangian density for a light field with normal incidence to a fully reflective and
non-compressible moving mirror, correct to the first-order in

.
q and

..
q, reads [68]

∂L
∂V

=
1
2
(E·D−H·B) + Γ2ε0

2
χ|E·ẑ− cBB·ŷ|2, (A12)

where E = −ẑ ∂
∂t A, B = ∇× (Aẑ) = −ŷ ∂

∂x A, D = ε0E, and B = µ0H. Furthermore,

B =
v
c
=

.
q
c
=

p
mc

, Γ =
1√

1− B2
, (A13)

and χ is a dimensionless shape function independent of v, being zero outside mirror and relative
susceptibility of the mirror’s dielectric χ0 inside, and ε0 is the permittivity of vacuum. By expanding
in the powers of B, this Lagrangian gives the first- and second-order corrections to the quadratic
Hamiltonian density as

∂

∂V
∆H =

∂

∂V
∆H(1) +

∂

∂V
∆H(2) = − ∂

∂B
∂L
∂V

∣∣∣∣
B=0

B− 1
2

∂2

∂B2
∂L
∂V

∣∣∣∣
B=0

B2. (A14)
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Hence, one may obtain

∆H(1) = −ε0S

q∫
0

∂

∂B

1
2

(
1√

1− B2

)2

χ|At + cBAx|2
∣∣∣∣∣∣

B=0

Bdx, (A15)

which further simplifies as

∆H(1) = −ε0Sc

q∫
0

χAt AxBdx. (A16)

It is appropriate to assume the approximation of conducting interface [87–89] for the mirror, such
as the thickness is let to approach zero, while it susceptibility increases proportionally. In that limit,
one may set

χ(x, t) ≈ χ0dδ[x− q(t)], (A17)

where d is the mirror’s thickness. This is similar to the assumption of the locality of interaction by
Gardiner & Zoller [90], too. Hence, one gets

∆H(1) ≈ −ε0Vcχ0 At(q, t)Ax(q, t)B, (A18)

with V = Sd is the cavity volume. Now, one has from (2), Ax(q, t) = sπ
√

2/q3 ∑ kQk, At(q, t) =

− .
qAx(q, t), and thus

∆H(1) ≈ 2π2dχ0

.
q2

q3 ∑ kjQkQj (A19)

It is quite remarkable that (A19) is purely relativistic, and vanish in the limit of infinite c, as
shown below. Here, the dependence on t is hidden for convenience. This term translates after
symmetrization into

∆H(1) = −2}
(

b̂† − b̂
)2

∑
k

wkj

(
â†

k + âk

)(
â†

j + âj

)
, (A20)

where wkj =
√

jkχ0π}dΩ/4mcl2 are the coupling rates. Now, the quadratic correction ∆H(2) is
given by

∆H(2) = −1
2

ε0S

q∫
0

∂2

∂B2

1
2

(
1√

1− B2

)2

χ|At + cBAx|2
dx

∣∣∣∣∣∣
B=0

B2. (A21)

Simplifying and using the conducting interface approximation gives

∆H(2) = − 1
2 Sε0

q∫
0

χ
[

At
2 + c2 Ax

2
]
B2dx ≈ − 1

2 Vε0χ0

[ .
q2

+ c2
]

Ax
2(q, t)B2 ≈ −π2dχ0

.
q2

q3 ∑ kjQkQj. (A22)

This one after insertion of operators gives ∆H(2) = − 1
2 ∆H(1) and thus the total relativistic

correction is found as

∆H(1) + ∆H(2) = −}
(

b̂† − b̂
)2

∑
k

wkj

(
â†

k + âk

)(
â†

j + âj

)
. (A23)
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