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Abstract: Space borne synthetic aperture radar (SAR) data have become one of the primary sources for
aboveground biomass (AGB) estimation of forests. However, studies have indicated that limitations
occur when a single sensor system is employed, especially in tropical forests. Hence, there is potential
for improving estimates if two or more different sensor systems are used. Studies on integrating
multiple sensor systems for estimation of AGB over Malaysia’s tropical forests are scarce. This study
investigated the use of PALSAR-2 L-band and Sentinel-1A C-band SAR polarizations to estimates the
AGB over 5.25 million ha of the lowland, hill, and upper hill forests in Peninsular Malaysia. Polarized
images, i.e., HH–HV from PALSAR-2 and VV–VH from Sentinel-1A have been utilized to produce
several variables for predictions of the AGB. Simple linear and multiple linear regression analysis
was performed to identify the best predictor. The study concluded that although limitations exist in
the estimates, the combination of all polarizations from both PALSAR-2 and Sentiel-1A SAR data
able to increase the accuracy and reduced the root means square error (RMSE) up to 14 Mg ha−1

compared to the estimation resulted from single polarization. A spatially distributed map of AGB
reported the total AGB within the study area was about 1.82 trillion Mg of the year 2016.

Keywords: aboveground biomass; tropical forest; microwave sensor system

1. Introduction

Aboveground biomass (AGB) includes all vegetation above the ground (i.e., stems, branches,
bark, seeds, flowers, and foliage of live plants) and approximately 50% of its composition is carbon [1].
AGB usually measures in metric tons of dry matter per hectare (e.g., t ha−1 or Mg ha−1) or in metric
tons of carbon per hectare (e.g., t C ha−1 or Mg C ha−1). The United Nations Framework Convention
on Climate Change (UNFCCC) identified it as an Essential Climate Variable (ECV). Therefore, accurate
information on biomass stock in world forests is necessary to reduce uncertainties and to fill the
knowledge gaps of the climate system [2]. Further strong impetus to improve methods for measuring
global biomass comes from the reduction of emissions due to deforestation and forest degradation
(REDD) mechanism, which was introduced in the UNFCCC Committee of the Parties (COP-13) Bali
Action Plan. REDD which is now popular with REDD+ (with additional elements of carbon stock
enhancement and biodiversity conservation) is dedicated to the developing countries around the
world including Malaysia. Its implementation relies fundamentally on systems to assess available
carbon stock and monitor changes due to loss of biomass from deforestation and forest degradation [3],
which are amalgamated in a system called monitoring, reporting, and verification (MRV).

Remote sensing has been recognized as one of the primary spatial inputs for this process [4–6].
Satellite remote sensing technologies are currently widely tested and suggested as a tool in REDD+
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MRV. Along with scientific programs and field tests, there is also a debate as to the overall feasibility
and cost–benefit ratio of remote sensing approaches, depending on the wide range of ecosystem and
land use conditions as well as the range of approaches to carbon credit accounting [7].

In many parts of the world, especially in tropical region, the frequent cloud conditions often
restrain the acquisition of high-quality remotely sensed data by optical sensors. The acquisition of
cloud-free, wall-to-wall optical satellite images in tropical countries is almost impossible [8]. Thus,
SAR data become the only feasible way of acquiring remotely sensed data within a given timeframe
because the SAR systems are independent of cloud coverage, weather, and light conditions. Due to
this unique feature compared with optical sensor data, the SAR data have been used extensively in
many fields, including forest-cover identification and mapping, discrimination of forest from other
land covers, and forest biomass estimation.

Previous studies demonstrated that the L-band polarimetry backscatter tends to saturate at certain
levels of biomass, and hence limits the accuracy of estimates [9–11]. However, the saturation level
varies with the type and structure of the forest. It was demonstrated that the sensitivity of SAR
polarimetry is depending on the structure, density, and tree elements (i.e., trunk/stem, branches, and
leaves) of the forests [12]. Other than these issues, several other inter-related issues can affect the
biomass estimations using remotely sensed data. These issues can be generalized into three major
groups, which are (i) the natural conditions of the forest, (ii) the forest management system being
practiced, and (iii) the technical issues related to the remote sensing system being used [13].

Short wavelength SAR sensors on board several satellites such as the Earth Resources Satellite
(ERS-1), Radarsat, and Environmental Satellite (Envisat) have been used to quantify forest biomass. A
number of studies have been conducted in relatively homogeneous or young forests, but the signal
tends to saturate at low biomass (100–200 Mg ha−1) [14–16]. However, L-band SAR has shown better
potential in retrieving the biomass of forests, including those in the tropics [17–21]. Recently, there
has been rising interest in integrating data from several SAR sensors and SAR with optical sensors to
improve the accuracy of biomass estimates [22,23].

In Malaysia, there are limited studies on the applications of SAR for estimating biomass. Out of
many studies conducted worldwide, very few have been done in Malaysia [11,24,25]. This indicates
that the potential, limitations, and advances of L-band SAR in estimating tropical forest in Malaysia are
not extensively explored. Methods of applying this SAR system are also scarcely exploited. Therefore,
the objective of this study is to explore the synergy of SAR sensors, i.e., PALSAR-2 L-band and
Sentinel-1A C-band for estimation of AGB in inland dry dipterocarp forest in Peninsular Malaysia.
This study highlights and discusses advantages and limitations of this technique.

2. Materials and Methods

2.1. The Study Area

The study area comprised lowland, hill, and upper hill dipterocarp forests, which are categorized
based on land altitude, i.e., <300, 300–750, and 750–1200 m, respectively. These forests are major,
occupying about 5,257,395 ha or about 89% out of the total forested land (i.e., about 5.9 million ha)
in Peninsular Malaysia. These forests occur within the entire Peninsular Malaysia, which has an
extent between 1–7◦ latitude and 99–105◦ longitude. These forests embrace all the well-drained
primary forests of the plains, undulating land, and foothills and hill terrain up to about 750 m
altitude. Trees from the family of Dipterocarpaceae are dominant species, which make the forests
major timber production areas in Peninsular Malaysia. Almost the entire area (i.e., 4.9 million ha) is
categorized as Reserve Forest which is meant for production and protection. About 1.98 million ha
have been allocated for protection forests in the form of national parks, wildlife sanctuaries, and nature
reserves [26]. The most common tree species found in this forest come from the genera such as Shorea,
Hopea, Dipterocarpus, Dryobalanops, Neobalacarpus, Anisoptera, and Vatica. The remaining forested
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land is comprised of peat swamp, mangrove, and montane forests. Figure 1 shows the distribution of
major forest types in Peninsular Malaysia.
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2.2. Satellite Datasets

2.2.1. Satellite Images Acquisition

The satellite datasets that have been used in this study came from two satellites, which are;
(i) Advanced Land Observing Satellite 2 (ALOS-2) that carries Phased Array type L-band Synthetic
Aperture Radar-2 (PALSAR-2) on-board and (ii) Sentinel-1A that carries C-band imaging SAR sensor.
Table 1 summarizes the properties of the data and Figure 2 shows both datasets that have been
processed and used in this study.

ALOS-2 is the successor of the ALOS, but the structure of the new satellite is quite different from its
predecessor. ALOS was launched in January 2006 and brought the Phased Array type L-band Synthetic
Aperture Radar (PALSAR) on-board. After five years of observations, it stopped transmitting in April
2011. ALOS-2 was then launched on 24 May 2014, which carried the PALSAR-2 sensor. PALSAR-2
is currently operating and producing L-band SAR data, that has similar (with some advancements)
characteristics with PALSAR. The data were acquired from Earth Observation Research Center (EORC)
under Japan Aerospace Exploration Agency (JAXA). The data was acquired under the Kyoto and
Carbon (K&C) Initiave, a research agreement between Forest Research Institute Malaysia (FRIM) and
JAXA, whereby FRIM has special permission to access the PALSAR-2 product at all imaging modes
and resolutions. JAXA also provides free access of PALSAR-2 mosaic product at 25-meter resolution
for public which is available at http://www.eorc.jaxa.jp/ALOS/en/PALSAR_fnf/data/index.htm.

http://www.eorc.jaxa.jp/ALOS/en/PALSAR_fnf/data/index.htm
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The SENTINEL-1 mission is the European Radar Observatory for the Copernicus joint initiative
of the European Commission (EC) and the European Space Agency (ESA). The SENTINEL-1 was
launched on 3 April 2014 and its mission operating in four exclusive imaging modes with different
resolution (down to 5 m) and coverage (up to 400 km). It provides dual polarization capability, very
short revisit times, and rapid product delivery. The Sentine-1A data was acquired in Level-1 Ground
Range Detected (GRD) format so that radar cross-section of both distributed and point targets can be
easily derived from the data. The data is available at https://scihub.copernicus.eu/dhus/#/home
and free to download.

Another satellite data that was used in this study was the digital elevation model acquired from
the Shuttle Radar Topography Mission (SRTM). This data was used to classify the forest into specified
elevation categories, according to the type of forests. It was also used for radiometric terrain correction
on both PALSAR-2 and Sentinel-1A images. These data are available at the US Geological Survey's
EROS Data Center for download at http://srtm.usgs.gov/index.html.

Table 1. Summary of satellite images used in this study.

Sensor Wavelength Date of
Acquisition Mode/Polarization No. of

Scene

Ground
Resolution

(m)

Incidence
Angle (◦)

PALSAR-2 C-band
(5.405 GHz)

Between
March and
June 2016

Fine Beam Dual
(FBD)/HH, HV 52 6 29.1–46.0

Sentinel-1A L-band
(1.270 GHz)

November
2016

Interferometric
Wide swath (IW)

VV, VH
8 9 37
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2.2.2. Satellite Image Pre-Processing

PALSAR-2 images that were used in this study came in Level-1.5 product, which means the range
and multilook azimuth compressed data is represented by amplitude data. The range coordinates
were also converted from slant range to ground range, and map projection was performed.

https://scihub.copernicus.eu/dhus/#/home
http://srtm.usgs.gov/index.html
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Level-1 GRD consist of Sentinel-1A products consist of focused SAR data that has been detected,
multi-looked and projected to ground range using an Earth ellipsoid model such as WGS84. The
ellipsoid projection of the GRD products is corrected using the terrain height specified in the product
general annotation. The terrain height used varies in azimuth but is constant in range.

Ground range coordinates are the slant range coordinates projected onto the ellipsoid of the
Earth. Pixel values represent detected magnitude. Phase information is lost. The resulting product
has approximately square resolution pixels and square pixel spacing with reduced speckle at a cost of
reduced geometric resolution. In addition, the GRD products have thermal noise removed to improve
the quality of the detected image.

Other than these processes, they are two important pre-processing stages, namely, speckle
suppression and radiometric terrain correction. Spatial domain Lee Sigma filter with a kernel size
of 7 × 7 pixels was used to remove speckle effect on the images. Digital Elevation Model (DEM)
acquired from SRTM was used to minimize terrain shadowing effect on the images. The presence
of this effect on SAR imagery was because the signal strengths were dependent on two variables,
which were incidence angle and surface roughness or topography of terrain. If slope is facing the SAR
transmitter, the signal will become stronger than the other side of the slope. Semi-empirical method
was used for radiometric terrain correction [27] and the processes were performed in ENVI/IDL
(Harris Corporation, Melbourne, Australia) following the same approach as found in Canty et al. [28].
This process was necessary to normalize both sides of the slopes and it minimized errors towards the
end of AGB prediction.

2.2.3. Satellite Image Calibration

The objective of SAR calibration is to provide imagery in which the pixel values can be directly
related to the radar backscatter of the scene. The PALSAR-2 image that was used in this study was built
on a 16-bit data type and all pixels have digital numbers (DN) ranging from 0 to 65,535. These DNs
however do not represent the radar signal of features or objects on the ground. Therefore, the DNs
have to be converted to backscatter (i.e., the returned radar signals) known as Normalized Radar Cross
Section (NRCS) and represented as σ0 in decibels (dB). The equation that was used for the calculation
of NRCS for PALSAR are slightly different from other sensors in that the usual sine term has already
been included in the DN values. Thus, for the products stored at Level 1.5 and above, the equation
for NRSC of any of the polarization component can be obtained by the following formula with single
calibration factor (CF), which can be expressed as follows [29].

σ0
dB = 10· log10

(
DN2

)
− 83 (1)

The Sentinel-1A product uses radiometric calibration look-up table (LUT) to do the calibration.
This was performed on Sentinel Application Platform (SNAP) tool, a software that was designed
specifically for Sentinel-1 products processing and it available for free at http://step.esa.int/main/
download/. The essential conversion of amplitude to DN and from DN to sigma nought were
done automatically on SNAP and once the sigma nought values was obtained, the computation of
backscatter (σ0

dB) can be performed as

σ0
dB = 10·log10σ0 (2)

2.3. Forest-Non-Forest Classification

Forest-non-forest (FNF) classification was performed on PALSAR-2 polarizations images to
delineate the forests from other land cover. This process is critical to define the boundary of forests
and to ensure that the estimated AGB did not include other types of vegetation. The reason was that
the forests are often confused with rubber, teak, and other timber tree plantations, which are common
in Peninsular Malaysia and they appear almost identical on both HH and HV polarizations. Instead of

http://step.esa.int/main/download/
http://step.esa.int/main/download/
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using only the original backscatter HH and HV polarizations, an attempt has been also made to derive
other image variables derived from PALSAR HH and HV images. Image variables, namely (i) simple
band ratio (HH/HV), (HV/HH), (ii) average (HH + HV/2), and (iii) square root of products (

√
(HH ×

HV)) were produced.
The incorporation of texture measure also can improve classification of spatially distributed pixels

on an image. Gray-level co-occurrence matrix (GLCM) uses a gray-tone spatial dependence matrix to
calculate texture values. This is a matrix of relative frequencies with which pixel values occur in two
neighboring processing windows separated by a specified distance and direction. For this purpose,
texture has been defined as repeating pattern of local variations in image intensity which is too fine to
be distinguished as separate class at the observed resolution. Thus, a connected set of pixels satisfying
given gray-level properties which occur repeatedly in an image region constitute a textured region. A
mean-type GLCM was applied to the original HH and HV polarizations to produce textured images
with clearer definitions of the objects on the images [30].

These inputs were used for the FNF classification and the Maximum Likelihood Classifier
algorithms with nearest neighbor technique was applied. The forests were then further classified into
several forest types by using the DEM from SRTM.

2.4. Forest Survey Data

The sampling design in this study modified from the standard operating procedure (SOP) that
was developed by Winrock International [31], which follows the Intergovernmental Panel on Climate
Change (IPCC) standards [1]. A cluster comprises of four plots and the design is shown in Figure 3.
The plot was designed in circular with smaller nests inside. The biggest nest measures 20 m in radius,
followed by the smaller nests, measuring 12 and 4 m. The sizes of trees were measured according
to the nest sizes, which is summarized in Table 2. Depending on the nest size, it indicates that not
all stands were measured in a single plot. In additional to these nests, there is another small nest
measuring 2 m in radius, which is used to count saplings (i.e., trees measuring <10 cm in diameter at
breast height (dbh) and >1.3 m in height). Clustering of plots at each sampling unit was recommended
for natural forest areas and areas that have been selectively logged. The sampling system was designed
in such a way to make the data collection process easier and faster, but reliable and representative for a
particular forest stratum.
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A forest ecosystem normally has five terrestrial carbon pools, which are; (i) aboveground living
biomass, (ii) belowground living biomass, (iii) deadwood, (iv) non-tree vegetation and litters, and (v)
soil. However, one of the most significant carbon pools is aboveground biomass as it the easiest and
the most practical pool to assess, while being representative to an ecosystem. Aboveground biomass
comprises all the living components of a tree, including stems, branches, and leaves. Allometric
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functions are the best way that AGB can be estimated. In this study, a published allometric function
for dry inland forest in Asia region was used to estimate the AGB of living trees [32].

AGB = [exp(−1.803 − 0.976E + 0.976ln(ρ) + 2.673ln(D) − 0.0299[ln(D)]2] (3)

AGB denotes aboveground biomass (kg/tree), E represents bioclimatic variable, ρ is wood specific
gravity/wood density, and D is dbh.

Table 2. Summary of living trees measurement in a plot.

Nest Radius (m) Size Diameter at Breast Height, dbh (cm)

2 Sapling <5 cm (dbh) & >1.3 m (height)
4 Small 10.0–19.9

12 Medium 20.0–39.9
20 Large ≥40.0

A total number of 332 plots have been surveyed between years 2014 and 2016 and were used as
sample plots information for this study. The forest survey was conducted in a number of field trips
that cover mainly the central parts of Peninsular Malaysia. The States include Terengganu, Pahang,
Johor, Negeri Sembilan, Selangor, Perak, Kelantan, and Perlis in the north. In each plot, every tree
which meets the dbh size in the nest radius was inventoried. Species of every stand being inventoried
was also recorded. Position (coordinate) of each plot was recorded at the center by using hand-held
Global Positioning System (GPS) (Trimble Inc., Sunnyvale, CA, USA). The locations of all plots were
post-processed by using base position data from the Department of Survey and Mapping Malaysia to
ensure the accuracy of the position acquired. Locations of the sample plots are shown in Figure 4 and
a summary of the sample plots is given in Table 3.
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Table 3. Summary of distribution of sample plots within the study area.

State
No. of Plot

Total
Lowland Hill Upper Hill

Perlis 8 2 0 10
Terengganu 48 18 4 70

Pahang 46 18 8 72
Johor 6 0 0 6

Negeri Sembilan 40 14 0 54
Selangor 42 18 8 68

Perak 20 8 4 32
Kelantan 12 8 - 20

Total 222 86 24 332

2.5. Correlation Analysis

The backscatter values from both PALSAR-2 and Sentinel-1A were extracted from the images,
which represented HH, HV, VV, and VH polarizations. The AGB at the sample plots on the ground was
then correlated with the corresponding backscatter of these polarizations by using linear regression
method. Instead of using the single polarization as a variable, several other variables have been
derived by manipulating these single polarizations. This manipulation was performed to produce
variety of image variables and that to examine the roles of polarization in estimating AGB. Table 4 lists
the variables that have been derived from the individual PALSAR-2 and Sentinel-1A and combination
of polarizations from both sensors. These variables act as predictors to the AGB at the sample plots.

Table 4. Variables that were derived from PALSAR-2 and Sentinel-1A.

Variable PALSAR-2 Sentinel-1A

Single polarization HH VV
HV VH

Polarization multiplicative HH × HV VV×VH

Simple polarization ratio HH − HV VV − VH
HV − HH VH − VV

Polarization averaging (HH + HV)/2 (VV + VH)/2

Square root of multiplicative (HH × HV)1/2 (VV × VH)1/2

Combination of polarizations

HH − VV
HV − VH

(HH + HV)/(VV + VH)
(VV − VH)/(VH − HV)

(HH + HV + VV + VH)/4
(HH × HV)/(VV × VH)

(HH × HV × VV × VH)1/4

All polarizations are in sigma nought (σ0, dB).

Simple linear regression method was used to investigate the relationship between the AGB and
the image variables. Multiple linear regressions were also applied to the variables to observe whether
the combination of polarizations from both PALSAR-2 and Sentinel-1A able to improve strength of
the correlations. Manipulation of polarization of individual PALSAR-2 and Sentinel-1A as well as
combination of both sensors were tested and multiple variable equations have been produced. The
relationship between backscatter and AGB is represented in a common linear function as y = ax + b, x
and y denote image variables and AGB, respectively and a and b are the equation coefficients. The
strength of the relationship was measured by the derived coefficient of correlation (R2). The greater R2

indicates a stronger relationship between two variables; the value R2 of 0 means no correlation and 1 is
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a perfect correlation. In this case, the prediction equation with the highest R2 was selected to estimate
AGB within the entire study area.

Studies [9,11,33] have demonstrated that PALSAR polarization data actually has a logarithmic
relationship with AGB. Therefore, instead of employing linear regression only, the study also attempted
to correlate the AGB with the polarizations in a non-linear form. However, this method was applied
only on the individual polarizations, i.e., HH, HV, VV, and VH. Similar to simple linear regression, the
estimation models used AGB as independent variable to observe the sensitivity of the backscatter to
the AGB. The relationship between backscatter and AGB is commonly represented in exponential an
function as y = a × e(xb), where x and y denote image variables and AGB, respectively and a and b are
the equation coefficients.

2.6. Validation Approach

The study used K-fold cross validation method to evaluate the performance of the best prediction
model derived from PALSAR-2, Sentinel-1A, and combination of both data. This method provided
better indication on the prediction performance than the common residual method. Residual method
does not provide an indication as to how well the model makes new predictions over new sample data,
but this method does. In this study, 10-fold cross validation method [34] was used where all sample
plots data were randomly grouped into 10 groups. One group was used as a testing set while the other
nine groups were used in developing the model. The root mean square error (RMSE) was calculated
using the testing set. This process was iterated 10 times where each group was used as a testing set
once. Then, the average of all RMSEs was calculated to get the overall RMSE of that model.

3. Results and Discussion

3.1. Satellite Datasets

The images that were used for analysis have been calibrated, geometrically and radiometrically
corrected, and topographically normalized. Examples of the images that went through all the
pre-processing are depicted in Figure 5. The topographic normalization outcome is also shown
in Figure 6. The study found that these processes are necessary and must be done on any SAR images
before further analyses are carried out.
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3.2. Forest-Non-Forest Classification

The classification that was carried out over the HH and HV polarizations and all the manipulations
found that PALSAR-2 images have different capability in defining forests. The study demonstrated
that the most effective polarization for FNF classification was the HV. However, the HH polarization
was found effective on delineating plantation areas, such as rubber and teak, because the orientation of
the plantations is systematic and homogenous, which can be interpreted well by the HH polarization.
The classification was made based on the major forest types found in Peninsular Malaysia and the
results are summarized in Table 5. However, this study concentrated only in lowland, hill, and
upper hill dipterocarp forests. The breakdowns of these forest types are summarized in Table 6. The
classification results were compared with the land use map for the year 2014 that was produced by the
Department Agriculture Peninsular Malaysia and the classification accuracy was attained at 91.3%
with a kappa coefficient of 0.88. The remaining 8.7% belonged to errors due to misclassification of
secondary forest and rubber plantation as defined on the land use map. The results were reliable
because the classification interested only in distinguishing forests from other land covers.

Table 5. Extents of forests in Peninsular Malaysia.

Forest Type Extent (ha)

Inland 5,525,034
Peat swamp 264,578
Mangrove 106,198

Total 5,895,810

Table 6. Forest types within the study area.

Forest Type Lowland
Dipterocarp

Hill
Dipterocarp

Upper Hill
Dipterocarp Total (ha)

Extents (ha) 2,704,816 2,004,991 547,588 5,257,395
Percentage (%) 51.5 38.1 10.4 100

3.3. Forest Survey Results

Aboveground biomass within all the 332 sample plots have been estimated at plot level. In general,
the average AGB was 399.42 Mg ha−1 within the range between 35.57 and 615.50 Mg ha−1 and the
standard deviation of 127.82 Mg ha−1. AGB of small trees (dbh 10–19.9 cm) contributes only about
15% of the total AGB. However, trees under this category were plenty in terms of number. Figure 7
shows the relationship between the number of trees and AGB in a hectare of the forest. The AGB is
actually stored in the huge trees measuring dbh from 40 cm and above. Although the number of huge
trees is low, the amount of AGB within these trees is large.
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polarizations from a single sensor slightly improve the correlation strength. Further improvement 

Figure 7. Relationship between tree size, number of trees, and AGB in a hectare of dipterocarp forest.

3.4. Correlation Analysis

Backscatter values from all polarizations have been extracted at all sample plots and the
distribution is depicted in Figure 8. The boxplot indicates that PALSAR-2 basically had stronger
backscatter over the sample plots at both polarizations as compared to Sentinel-1A polarizations.
Higher variation of PALSAR-2 HV polarization indicates the capability in discriminating AGB level.
On the other hand, for Sentinel-1 data, VV polarization is more sensitive to the forest as compared to
VH. These backscatter values were used in the correlation analysis.
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3.4.1. Simple Linear Regression

The results indicated that all variables showed weak linear relationships with AGB even though
the correlations were significant at 95% confidence level. Table 7 summarized the correlation strength
of all variables derived from the polarizations of PALSAR-2 and Sentinel-1A. The corresponding
scatter plots listed in the table are shown in Figure 9. The results proved that the manipulation of
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polarizations from a single sensor slightly improve the correlation strength. Further improvement was
attained when the polarizations are combined together, from one either single sensor or integration of
both sensors.

Table 7. Summary of the AGB prediction equations produced from simple linear regression.

Sensor Variable Scatter
Plot Prediction Equation R2

PALSAR-2

HH a 28.59HH + 641.68 0.119
HV b 47.21HV + 978.87 0.276

HH × HV c −1.98(HH × HV) + 608.64 0.223
HH − HV d −6.5969(HH − HV) + 369.08 0.005
HV − HH e 6.5969(HV − HH) + 369.08 0.005

(HH + HV)/2 f 43.49((HH + HV)/2) + 850.56 0.219
(HH × HV)1/2 g −40.72((HH × HV)1/2) + 813.88 0.201

Sentinel-1A

VV h 15.56VV + 527.84 0.091
VH i 8.48VH + 518.33 0.023

VV × VH j −0.69(VV × VH) + 482.13 0.090
VV − VH k 13.78(VV − VH) + 319.88 0.041
VH − VV l −13.328(VH − VV) + 321.76 0.038

(VV + VH)/2 m 14.13((VV + VH)/2) + 556.84 0.062
(VV × VH)1/2 n −14.46((VV × VH)1/2) + 553.95 0.073

Combination

HH − VV o −4.11(HH − VV) + 398.50 0.004
HV − VH p 6.48(HV − VH) + 388.08 0.015

(HH + HV)/(VV + VH) q −31.53((HH + HV)/(VV + VH)) + 429.95 0.0001
(VV − VH)/(VH − HV) r −590.85((VV − VH)/(VH − HV)) + 269.13 0.099

(HH + HV + VV + VH)/4 s 36.98((HH + HV + VV + VH)/4) + 797.17 0.176
(HH × HV)/(VV × VH) t −0.91((HH × HV)/(VV × VH)) + 400.39 0.003

(HH × HV × VV × VH)1/4 u −35.30((HH × HV × VV × VH)1/4) + 764.90 0.177

All polarizations are in sigma nought (σ0, dB). All correlations are significant at p < 0.05.

3.4.2. Multiple Linear Regression

Synergy of the prediction has been obtained when the variables were integrated into an empirical
prediction equation derived from multiple line regression. This method was applied to the single
PALSAR-2, Sentinel-1A polarization, and also to the variables from the combination of both PALSAR-2
and Sentinel-1A. The best three models have been produced as summarized in Table 8. Evidently the
combination of PALSAR-2 L-band and Sentinel-1A able to strengthen the relationship between AGB
and the polarization, thus improving the accuracy of estimates. Both datasets have complemented to
each other that eliminated the effects of backscattering diffusion.

Table 8. The best correlations derived from multiple regression from a single sensor and combination
of sensors.

Sensor Prediction Equation R2

PALSAR-2 146.90HH + 169.78HV − 7.03(HH × HV) + 416.96(HH × HV)1/2 + 227.07 0.342

Sentinel-1A −17.040VH − 2.344(VV × VH) + 24.327(HH × HV)1/2 + 181.918 0.138

Combination −10.877VH − 13.292(HH × HV)1/2 + 139.702HH + 162.287HV − 6.526(HH
× HV) + 394.502(HH × HV)1/2 + 238.524

0.356

All polarizations are in sigma nought (σ0, dB). All correlations are significant at p < 0.05.
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3.4.3. Non-Linear Regression

Referring to the correlations listed in Table 9 and depicted in Figure 10, the backscatter of
PALSAR-2 HV polarization gave better R2 as compared to the HV as well as Sentinel-1A VV and VH.
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The HV backscatter ranged from −1 to −20 dB and the saturation point concentrated −12 dB. Rapid
increment occurred, especially at lower biomass level (i.e., up to 200 Mg ha−1), and then decreased
towards higher AGB. The trend line became almost constant when the AGB exceeded 200 Mg ha−1.
It was obvious that the estimation uncertainties are larger at AGB > 200 Mg ha−1. The results were
even worse for HH polarization.

Table 9. Summary of non-linear correlation between AGB and individual polarization.

Sensor Polarization Prediction Equation R2

PALSAR-2
HH y = 1043 × e0.1215x 0.2058
HV y = 3114.2 × e0.173x 0.3502

Sentinel-1A
VV y = 644.1 × e0.0664x 0.1596
VH y = 718.72 × e0.0469x 0.0749

All correlations are significant at p < 0.05.
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It has been reported that, at a given polarization and incidence angle, the saturated backscatter
value for forest was within a small range of backscatter [11]. The dynamic range is determined
primarily by the backscatter at low levels of AGB. It increases with decreasing frequency and it is
higher at HV compared to HH polarization. Similarly, Sentiel-1A polarizations saturated quickly at
AGB lower than 100 Mg ha−1. The Sentinel-1A VV and VH backscatter ranged from −18 to −3 dB and
−24 to −8 saturated at −8 dB and −14 dB, respectively. This was because the C-band wavelength is
shorter than the L-band, and thus not very sensitive to the AGB at high level. Figure 11 illustrates how
L- and C-bands interact with the forest canopy structure that influence the strength of the backscatter
at high biomass forest.
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The accuracy was also mostly influenced by the tree density, soil surface roughness, soil
moisture, tree sizes, and the layering effects of the SAR itself [35]. An experiment has found that the
backscattering intensity interacted only with trees of dbh larger than 15 cm. These stands are actually
dominating the higher canopies, which gave the best response to backscatter in HV polarization of
L-band [13]. Other factors—such as orientation of the forest, polarimetry, incidence angle, and crown
structure—also play important role in the estimated biomass [36,37].

3.4.4. The Combination Effects

Referring to Figures 8 and 11, the responses of PALSAR L-band and Sentinel-1A C-band towards
AGB are different in terms of strength and variation. L-band observations penetrate more into the
forest canopy and between branches and spaces, compared to the C-band, which only interacts with
top canopy layers before it is scattered back or extinct. In tropical forests, volume and volume-surface
scattering dominated the HH in while volumetric scattering due to dense vegetation cover dominated
the HV by [38]. It is also likely that forest has a higher amount of canopy variability influencing
scattering due to significant surface roughness as observed by the cross-pol (HV) term. Since structure
influences the cross-pol term, forest areas that undergo selective harvesting are theoretically observable
by PALSAR-2 HV, but not by Sentinel-1A, unless there is excessive timber extraction from the forest.
SAR sensors can receive a relatively higher amount of surface scattering in low-density forest rather
than a majority of scattering from trunks and trees or branches and crowns. Therefore, stand density,
basal area, and AGB influence these relationships; although variability remains low regardless of
height of the stands.

Since most of the sample plots were located in dense and mature forest (of AGB ≥ 200 Mg ha−1),
the variation of backscatter from both PALSAR-2 and Sentinel-1A polarizations are within the
saturation threshold. Except for a number of sample plots that were located inside the secondary and
logged forests, which contained relatively lower AGB than that inside the dense forest. Consequently,
these factors have influenced the scatterplots in the correlations. The presence of C-band in the
combination has complement the L-band at lower part of AGB (<200 Mg ha−1) forest thus produce a
better prediction overall. Taking the best linear correlations from PALSAR-2 HV and Sentinel-1A VV,
with R2 0.276 and 0.091 respectively, the R2 increased to 0.356 when combined. This has increased the
explained variance by about an average of 17.25%. Although a single PALSAR-2 HV polarization from
the non-linear correlation can predict the AGB with an R2 of 0.3502, the multiple linear correlations
remain stronger even with an increase of explained variance by about 0.58%. In addition, the
combination of L-band polarizations, as well as L- and C-band fusion has proven to be successful, thus
confirming the hypothesis of the study.

3.5. Estimated AGB and Mapping

The study demonstrated that the combination of polarizations from PALSAR-2 L-band and
Sentinel-1A C-band provided advantages for AGB estimation in dipterocarp forest with relatively
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high AGB. The equation that was derived from the multi linear regression resulted from the best
combination of PALSAR-2 and Sentinel-1A polarization, which gives the highest correlation value of
0.356, was used to estimate the AGB within the entire study area. The equation is expressed as

AGB (Mg ha−1) = −10.877VH − 13.292(HH × HV)1/2 + 139.702HH +
162.287HV − 6.526(HH × HV) + 394.502(HH × HV)1/2 + 238.524

(4)

By using this equation, AGB within the entire study area has been retrieved and mapped. Figure 12
shows the spatial distribution of AGB in the study area. From the map, the total AGB in about 5.25
million ha of the study area was estimated at 1,821,214,202 Mg over the year 2016. Figure 13 summarizes
the distribution of AGB in the study area, represented by histogram of frequency of pixel occurrences.
The distribution was found to be normal throughout the entire study area. Further classification was
made to the AGB distribution, reported in intervals as shown in Figure 14. More than half of the study
area comprised AGB within the range of 300–400 Mg ha−1. The highest AGB was concentrated mainly
in the northern part of Pahang and southern part of Kelantan, where the largest National Park in
Peninsular Malaysia is located. High density of AGB occurred also in the northern part of Perak where
Royal Belum State Park is located. These forests are virgin and have existed for millions years and are
still intact now. Variations are found scattered in other areas where there was a mix between natural
virgin and logged over forests. Low density of AGB appeared near the edges of forest areas, which
mostly interacted with other land use activities nearby.
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polarization from both PALSAR-2 and Sentinel-1A, gave the lowest error. However, the variation of 
RMSE between them was considered small, which means that even if the prediction were carried out 
from a single PALSAR-2 or Sentinel-1A, the error will be almost at the same level. Figure 15 shows 
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estimated using Equation (4). The error was observed to occur at around 400 Mg ha−1 and the 
distribution shows that the prediction model slightly overestimated the AGB within the study area.  

Figure 13. Distribution of AGB within the study area.

Appl. Sci. 2017, 7, 675 17 of 20 

 

Figure 13. Distribution of AGB within the study area.  

 

Figure 14. Overall breakdowns of AGB density in the study area.  

3.6. Validation of the Estimates 

Overall, the RMSE, resulted from 10-fold cross validation method, for the best model for PALSAR-
2, Sentinel-1A, and combination of PALSAR-2 and Sentinel-1A are 99.10 Mg ha−1, 111.18 Mg ha−1, and 
98.41 Mg ha−1, respectively. The best prediction model, which was produced from the combination of 
polarization from both PALSAR-2 and Sentinel-1A, gave the lowest error. However, the variation of 
RMSE between them was considered small, which means that even if the prediction were carried out 
from a single PALSAR-2 or Sentinel-1A, the error will be almost at the same level. Figure 15 shows 
the relationship between the reference AGB calculated from ground data and predicted AGB 
estimated using Equation (4). The error was observed to occur at around 400 Mg ha−1 and the 
distribution shows that the prediction model slightly overestimated the AGB within the study area.  

Figure 14. Overall breakdowns of AGB density in the study area.

3.6. Validation of the Estimates

Overall, the RMSE, resulted from 10-fold cross validation method, for the best model for
PALSAR-2, Sentinel-1A, and combination of PALSAR-2 and Sentinel-1A are 99.10 Mg ha−1,
111.18 Mg ha−1, and 98.41 Mg ha−1, respectively. The best prediction model, which was produced
from the combination of polarization from both PALSAR-2 and Sentinel-1A, gave the lowest error.
However, the variation of RMSE between them was considered small, which means that even if the
prediction were carried out from a single PALSAR-2 or Sentinel-1A, the error will be almost at the
same level. Figure 15 shows the relationship between the reference AGB calculated from ground data
and predicted AGB estimated using Equation (4). The error was observed to occur at around 400 Mg
ha−1 and the distribution shows that the prediction model slightly overestimated the AGB within the
study area.
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The study has successfully quantified the AGB over the lowland, hill, and upper hill dipterocarp 
forests in Peninsular Malaysia. The total AGB was estimated at about 1.82 trillion Mg over the year 
2016. The extent of forested area—i.e., 5,895,810 ha—was also identified from the L-band PALSAR-2 
data. The study confirmed that the synergetic of PALSAR-2 and Sentinel-1A produced better 
estimates than the single sensor. Although there were limitations found, the study provided an 
alternative for AGB retrieval that can be utilized in a practical manner to assist in the management 
and protection of forested areas. The study, to some extent, can also provide a significance 
contribution towards the MRV in the REDD+ implementation. One of greatest advantages of using 
the PALSAR-2 and Sentinel-1A data is the free access policy to the datasets. Free-cloud cover and 
rapid acquisition made them more valuable, especially for this kind of study in Malaysia.  
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4. Conclusions

The study has successfully quantified the AGB over the lowland, hill, and upper hill dipterocarp
forests in Peninsular Malaysia. The total AGB was estimated at about 1.82 trillion Mg over the year
2016. The extent of forested area—i.e., 5,895,810 ha—was also identified from the L-band PALSAR-2
data. The study confirmed that the synergetic of PALSAR-2 and Sentinel-1A produced better estimates
than the single sensor. Although there were limitations found, the study provided an alternative for
AGB retrieval that can be utilized in a practical manner to assist in the management and protection of
forested areas. The study, to some extent, can also provide a significance contribution towards the MRV
in the REDD+ implementation. One of greatest advantages of using the PALSAR-2 and Sentinel-1A
data is the free access policy to the datasets. Free-cloud cover and rapid acquisition made them more
valuable, especially for this kind of study in Malaysia.
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