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Abstract: The bonded-particle model (BPM) is a very efficient numerical method in dealing with
initiation and propagation of cracks in rocks and can model the fracture processes and most of macro
parameters of rocks well. However, typical discrete element method (DEM) underestimates the
ratio of the uniaxial compressive strength to the tensile strength (UCS/TS). In this paper, a new
DEM method with a nonlinear elastic tensile model embedded in BPM is proposed, which is named
as nonlinear elastic tensile bonded particle model (NET-BPM). The relationships between micro
parameters in NET-BPM and macro parameters of specimens are investigated by simulating uniaxial
compression tests and direct tension tests. The results show that both the shape coefficient of the
nonlinear elastic model and the bond width coefficient are important in predicting the value of
UCS/TS, whose value ranging from 5 to 45 was obtained in our simulations. It is shown that the
NET-BPM model is able to reproduce the nonlinear behavior of hard rocks such as Lac du Bonnet
(LDB) granite and the quartzite under tension and the ratio of compressive Young’s modulus to
tensile Young’s modulus higher than 1.0. Furthermore, the stress-strain curves in the simulations of
LDB granite and the quartzite with NET-BPM model are in good agreement with the experimental
results. NET-BPM is proved to be a very suitable method for modelling the deformation and fracture
of rock-like materials.

Keywords: discrete element model; nonlinear elastic model; UCS/TS; Young’s modulus; calibration

1. Introduction

Discrete element method (DEM) is proved to be a very effective method in modelling rock-like
materials [1–20]. The discontinuous nature of DEM makes DEM very suitable for dealing with the
initiation and propagation of micro cracks in rock-like materials. Within DEMs, the bonded-particle
model (BPM) is widely used to simulate the deformation and fracture of rock-like materials [1–15].
Since the BPM was first proposed [1], it has been rapidly developed. A clumped particle model was
proposed in [2] based on the BPM, which improves the predictive capability of the DEM by successfully
predicting the whole failure envelope and increasing the ratio of uniaxial compressive strength to
tensile strength (UCS/TS) making it closer to that of rocks. A damage-rate law was first included
by Potyondy [3] to extend the BPM and to make it more suitable for simulating the static-fatigue
behavior of granite. Utili [19] introduced the Mohr-Coulomb failure criterion into the BPM without
considering the bending stiffness, and successfully reproduced the mechanical behavior of frictional
cohesive materials. A progressive failure model was applied later in [21], which makes the BPM more
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proper in simulating the failure behavior of rock with different brittleness. Shear tests were modeled
in [11] by using the BPM and the development of micro-cracks during shear test under normal stress
was investigated. In order to increase UCS/TS to a practical level, many efforts have been made in the
past decade. Through investigating the effect of porosity and crack density on macro parameters of
materials, Schöpfer [6] found that UCS/TS can be increased by decreasing porosity and increasing
creak density. Increasing the interaction range of particles [12] and using specimens containing
larger macro-pores [9] are also proved to be effective in increasing UCS/TS. Ding [14] modified the
BPM by partially considering the contribution of moments to the stress and got satisfactory results
in capturing high UCS/TS. Besides the BPM, there are many other models proposed for rock-like
materials. A model assuming that the adjacent particles interact over a width rather than a point was
proposed by Jiang [22,23] and was used to study the effect of rolling resistance. Recently the twisting
resistance was included in a three dimensional contact model by Jiang [24]. A model with hardening
damage response was introduced to study the mechanical behaviors of concrete under high confining
pressures in [25]. Tavarez [26] proposed an energy-based failure criterion which proved to be more
suitable for numerical simulation of particulate materials. Matsuda [27] investigated the performance
of specimens with weak bonds or heterogeneous in modelling rocks.

Most of the work related to DEM for rock focuses on reproducing the failure process of rock
materials and capturing proper macro parameters of given rock by using proper micro parameters in
the model. The relationships of micro and macro parameters in the DEM were investigated in [4,28,29].
The effect of particle size was studied in [30–32]. The effect of the particle size distribution and different
methods to calculate the stiffness were discussed in [33]. Although a lot of investigations of rock
deformation and failure based on DEM have been made and some attempts to model rock cutting
process using DEM were made [10,34,35], to the best of our knowledge, there still is not any published
work discussing the nonlinear deformation of rock-like materials under tensile loading using DEM.
Many experimental results show that the strain-stress curve of rock under uniaxial tensile loading is
nonlinear [8,36–40]. And the Young’s modulus and Poisson’s ratio in tension are found to be different
from that in compression [38,41–43]. However, most of the numerical studies for rock assume that the
strain-stress curve is linear for simplicity, which results in the same Young’s modulus and Poisson’s
ratios both in tension and compression of rocks which is disagreement with experimental results. Even
though the UCS/TS is increased to an agreeable value through the methods proposed in [2,12,14,20],
those methods have limitations (see details in [14]). In addition, all those methods ignored the fact
that not all the rocks under tensile follow linear strain-stress curves. Thus, further research is required
to obtain suitable UCS/TS and to capture the correct relationships between Young’s modulus and
Poisson’s ratios in tension and compression for rock by DEM.

In this work, a new numerical method for rock materials based on BPM is proposed which is
characterized by using a nonlinear elastic model to describe the relationship between normal force
and normal strain undergoing tension. The new method is named as nonlinear elastic tensile bonded
particle model (referred to hereafter as NET-BPM), which is described in detail in Section 2. Then,
relationships between micro and macro parameters in NET-BPM are discussed in Section 3. It is shown
that the results calculated with the proposed NET-BPM model are close to known results of a granite
rock and a quartzite rock. Finally, some conclusions are made in the last part of this paper regarding
the performance of the NET-BPM model.

2. Method Description

In this Section, the new method for 2-D simulation is presented in detail, which includes the
contact model and the numerical simulation model. The main parameters in the model are introduced.
Meanwhile the model and specimens for simulations of uniaxial compression tests and direct tension
tests are created.
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2.1. Contact Model

The contact particles are bonded together by the bonds, which can resist normal force, shear force
and bending moment. As shown in Figure 1a, particle p and particle q are in contact with each other
at point A at the original states. X0

p and X0
q are their coordinates respectively. dir0

pq and dir0
qp are the

vectors pointing from their centers to the contact point A respectively. At time t, the two particles move
to new positions Xt

p and Xt
q, as shown in Figure 1b. The contact point A on particle p move to point B

and the point A on particle q move to point C. The vector dir0
pq and the vector dir0

qp rotate to dirt
pq and

dirt
qp, respectively. In addition, θp and θq are rotation angles of particles p and q in time t respectively,

defining anticlockwise as positive direction. The contact forces and moment applied to particle p from
particle q via the bond are normal force Fnr

pq , shear force Ftn
pq and moment Mpq, as shown in Figure 1c.
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Figure 1. Bond between particles and its forces and moment: (a) original positons of p and q;
(b) positions of p and q at time t; (c) contact forces and moment on p.

The shear force and moment are determined by the following equations:

Ftn
pq = −ksεs

pq (1)

Mpq = −km(θp − θq) (2)

where ks and km are shear stiffness and bending stiffness respectively, dis0
pq is the original distance

between p and q, εs
pq is shear strain of the bond between p and q which is the ratio of deformation in

tangential direction to dis0
pq. A nonlinear elastic tensile stiffness model is proposed to describe the

relationship between normal force and normal strain undergoing tension. Then the force in normal
direction is expressed as:

Fnr
pq =

knbεn
0

(
1− exp(−εn

pq/bεn
0)
)

if εn
pq > 0

knεn
pq if εn

pq ≤ 0
(3)

where kn is normal stiffness, εn
pq is normal strain of the bond between p and q, the b is shape coefficient

of the nonlinear elastic model and εn
0 is the ultimate normal tensile strain. Figure 2 presents the

relationship between normal force and normal strain with different value of b. The value of b has great
effect on the normal force versus normal strain curve and the ultimate normal tensile force, Fnr

m . εn
pq

and ∆εs
pq which is the increment of εs

pq in each time step are given by:

εn
pq =

dist
pq − dis0

pq

dis0
pq

(4)

∆εs
pq =

rp
.
θp + rq

.
θq + (

.
up −

.
uq)•Upq

dis0
pq

∆t (5)

where dist
pq is the distance between the centers of p and q at time t, rp and rq are the radii of particles p

and q respectively, up and uq are the centroid displacements of particles p and q respectively, Upq is an



Appl. Sci. 2017, 7, 686 4 of 20

unit vector obtained by rotating the unit vector which points to the center of q from the center of p 90
degrees in the anticlockwise direction, ∆t is time step.
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Another modification to the BPM is that the bonds are assumed as many tiny elastic beams, which
distribute between two contact particles in a region wide 2wrm and are parallel to the center line of
the two particles, as presented in Figure 3, where the w is bond width coefficient, rm is the smaller
one of rp and rq. The range of w is from 0 to 1 and that w equals 0 means all the tiny beams gather in
the center line of the two contact particles. Bonds with different bending stiffness but with the same
normal stiffness and shear stiffness can be modelled by changing the distribution of the tiny beams.
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Figure 3. Bonds between contact particles.

The modified Mohr-Coulomb criterion with a tension cut-off and an upper bound is used for the
shear strength of the bonds, as shown in Figure 4, where εs

max is the upper bound of shear strain, εs
0 is

the ultimate pure shear strain of the bond, ϕ is the internal friction angle and ϕ f is the friction angle
between particles when the bond between them fails. In this paper, the stresses are replaced by the
strains in order to obtain better simulation results by cooperating with the nonlinear tensile model and
the effect of the bend on the tensile strain is taken into consideration as follows.

εn +
wrm

rp + rq
|θp − θq| ≤ εn

0 (6)

If the bond is broken or no bond exists between particles p and q which contact with each other,
then only normal force and shear force exist between them. The normal force Fnr

pq is calculated by
Equations (3) and (4). dis0

pq in Equation (4) should be replaced by the sum of the radii of p and q.
The shear force Ftn

pq is calculated as follows:

Ftn
pq = µFnr

pq (7)

where µ is the coulomb friction coefficient.
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The resultant contact force vector Fp and the resultant contact moment Mp on particle p are
calculated as follows:

Fp =
Gp

∑
q

(
VpqFnr

pq + UpqFtn
pq

)
(8)

Mp =
Gp

∑
q

(
rpFtn

pq + Mpq

)
(9)

where Vpq is an unit vector pointing from the center of particle p to the center of particle q. Gp is a set
of particles which are in contact with particle p.
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2.2. Numerical Simulation Model

The disc-shaped particles are considered as rigid bodies and their translational motions and
rotational motions are governed by the standard equations of rigid body dynamics:

Fp + Fext
p + Fd

p = mp
..
up (10)

Mp + Mext
p + Md

p = Jp
..
θp (11)

where Fext
p and Mext

p are the external force vector and external moment applied to particle p respectively.
mp and Jp are mass and moment of inertia of particle p respectively. Fd

p and Md
p are damping force and

damping moment respectively, which are introduced to dissipate kinetic energy and gain a quasi-static
state of equilibrium of the particles and are expressed as [34]:

Fd
p = −αt‖Fp + Fext

p ‖
.
up

‖ .
up‖

(12)

Md
p = −αr

∣∣∣Mp + Mext
p

∣∣∣ .
θp∣∣∣ .
θp

∣∣∣ (13)

where αt and αr are translational and rotational damping constant respectively. The centroid
displacement and rotation angle of particle p can be obtained by using an explicit central difference
method to integrate Equations (10) and (11). The algorithm is described as follows:

.
ui+0.5

p =
.
ui−0.5

p +
..
ui

p∆t (14)

ui+1
p = ui

p +
.
ui+0.5

p ∆t (15)
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.
θ

i+0.5
p =

.
θ

i−0.5
p +

..
θ

i
p∆t (16)

θi+1
p = θi

p +
.
θ

i+0.5
p ∆t (17)

where the superscript i indicates ith step. ∆t should not exceed the critical time step ∆tc to remain
numerical stability as introduced in [34].

The forces and moments are transmitted through the contacts between particles or the contacts
between particles and plates. There are two kinds of particle contacts according to whether an effective
bond exists between the contact particles: the bonded particle contacts and the unbonded particle
contacts. Two particles p and q are bonded together in the original rock specimens if their relative
position satisfies the Equation (18):

‖up − uq‖ ≤ (1 + δ)(rp + rq) (18)

where δ is a nonnegative constant defined by user to eliminate the numerical errors caused during
the particle generating. The errors may result in separation of two particles which should touch each
other. A bond is created between every bonded particles. If δ is too large, it would lead to forming
bond between two particles far away from each other. In our model, δ = 0.001 is suggested. When the
bond is broken, the bonded particle contact becomes unbonded particle contact. Furthermore, two
particles p and q which are not close to each other may approach each other during the simulation
process, and form an unbonded particle contact when their relative position satisfies the Equation (19):

‖up − uq‖ < (rp + rq) (19)

The forces and moments on the bonded particle contacts are calculated by Equations (1)–(3). While
forces on the unbonded particle contacts, where no moment exists are calculated by Equations (3)
and (7). The bonded particle contacts are identified at the beginning of the simulation and updated in
each time steps if any bond is broken. The unbonded contacts should be identified in every time steps.

In order to improve the computational efficiency, background grids and cells are introduced in
searching particle contacts. In each step, all the particles are stored in the cells formed by the grids
according to their centroid position coordinates. The cell size is equal to 2(1 + λ)Rmax, where Rmax is
the maximum radius of the particles and λ is a user-defined parameter, which is positive and very
small to obtain high searching efficiency. The suggested value for λ is 0.01 in our model. A particle can
only form a particle contact with particles located in the same cell with it and with particles located in
the neighbor cells. To avoid duplicate calculation, particles in cell j are only used to try to form particle
contacts with particles in cell j or in neighbor cells whose numbers are larger than j.

2.3. Dimensionless Parameters in NET-BPM

In the conventional BPM, the micro parameters are normal stiffness kn, shear stiffness ks, bending
stiffness km, ultimate normal strain εn

0, ultimate pure shear strain εs
0, upper bound of shear strain εs

max,
ultimate relative rotation angle θ0, friction angles ϕ and ϕ f , translational damping constant αt and
rotational damping constant αr, etc. The macro parameters are UCS, TS, the ratio of UCS/TS, Young’s
modulus E and Poisson’s ratio v, etc. A few more micro parameters, which are w and b are included in
the NET-BPM. In addition, because Young’s modulus and Poisson’s ratio in compression and tension are
different, they are denoted as Ec and Et, vc and vt, respectively. In this paper, the effects of particle size,
particle arrangement, porosity and density of the specimens are not investigated. Young’s modulus and
Poisson’s ratio discussed here are the apparent ones. By using dimensionless analysis similar to [28,34],
the dimensionless micro parameters are ks/kn, km/(knR), εs

0/εn
0, εs

max/εn
0, ϕ, ϕ f , w, b, and the dimensionless

macro parameters are EcR2/kn, vc, σcR2/knεn
0, σtR2/knεn

0, Et/Ec, vt/vc in our model. R is the characteristic
length which is equal to Rmax. As the nonlinear elastic model is applied, the ratio of Ec to Et and the ratio
of vc to vt are not equal to 1 anymore, so Et/Ec and vt/vc should be taken into consideration.
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2.4. Specimen Preparation

Uniaxial compression tests and direct tension tests are simulated in this study. The rock specimens
used for simulations are created by the particle generating method proposed in [44], which can create
dense and stable particle packings with disks once the geometric contour of the specimen and the
minimum and maximum particle size are given. The effect of the size of particles and specimens on
our method is not concerned in this study. Thus, square specimens with length L = 50 mm created by
the method from [44] with Rmax = 0.9 mm and minimum particle radius Rmin = 0.3 mm are used for
our simulations. Five specimens are created by using different seeds in the initiation of the particle
generation, as shown in Figure 5. They are used to study the effects of the particle arrangement on
the simulations. Some main parameters of the specimens are listed in Table 1, where Ra is the average
radius of the particles and overlap ratio is the ratio of the overlap length to the sum of the radii of the
two overlap particles.
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Table 1. Parameters of the specimens.

Specimens Ra (mm) Particle Number Bonded Contacts Porosity (%) Overlap Ratio (10−15)

Specimen A 0.544 2031 5100 13.77 5.4
Specimen B 0.559 2006 5031 13.76 4.9
Specimen C 0.557 2023 5089 13.65 4.7
Specimen D 0.560 1996 5004 13.72 4.2
Specimen E 0.564 1960 4912 14.02 6.2

As presented in Figure 6, when the uniaxial compression tests are simulated, the specimens are
placed between two parallel plates which are considered as rigid bodies. The bottom one is fixed and
the top one moves towards the bottom one with a given constant velocity, V. When the direct tension
tests are simulated, the particles in the specimens near the top and bottom boundaries are fixed to the
top and bottom plates respectively and have the same velocity with the plate. In order to eliminate
the effect of the boundaries on the simulation results, a layer with a height of 0.6L in tensile direction
and a width of L perpendicular to the tensile direction is defined, which located in the center of the
specimens. Only the bonds existing between the particles located in this layer are allowed to fail,
similar to that in [12]. The bottom plate is fixed and the top plate moves away from the bottom one
with a constant velocity V. The lateral strain of the specimens is determined by the displacement of
two particle groups. One particle group consists of four particles, which are closer to the middle point
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of the left side boundary of the specimen than other particles at the initial time. The other particle
group consists of four particles, which are closer to the middle point of the right side boundary than
other particles. The average distance of the two groups of particles in the direction perpendicular to
the loading direction at the initial time and its variation during simulations are used to calculate the
lateral strain. The axial strain is determined by the displacement of the two rigid plates. The loads
are calculated by averaging the forces on the top and bottom plates. UCS and TS can be obtained by
dividing the ultimate loads by the width of the specimen. The thickness of the specimen is assume to
be 1 m in 2-D. Ec, Et, vc and vt are determined at the state when the load is equal to half the ultimate
load and the secant lines are used to estimate them as introduced in [8,45,46].
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the tensile direction, but several oblique cracks appeared in compression tests. All cracks observed in 
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The NET-BPM model is compiled in Fortran 90 language for simulating uniaxial compression
tests and direct tension tests. The values of the micro parameters in the model are presented in Table 2.
The density of the particles is set to be 2900 kg/m3. The critical time step ∆tc = 2.5 × 10−8 s is obtained
with the method introduced in [34] if the safety factor is set to 0.1. Thus, the time step ∆t = 10−8 s is
proper in our model. The loading speed V = 0.1 m/s in both compression and tension tests. Damping
constant αt and αr are set to be 0.02 which are proved to be large enough to guarantee the quasi-static
state of equilibrium of the particles. All five specimens presented in Figure 5 are used for simulations
with the micro parameters in Table 2.

Table 2. Values of the micro parameters in the model.

kn (106 N) ks/kn km/(knR) εn
0 (10−3) εs

0/εn
0 εs

max/εn
0 ϕ (◦) ϕf (◦) w b

30.0 0.5 0.256 4.0 3.5 10 45 39 0.8 0.2

A simulation case costs about two hours on a machine with an Intel Core 5 3.2 GHz Processor.
The compressive loads and tensile loads of specimen A at different displacements are presented in
Figure 7. The creak patterns of specimen A under compression and tension are shown in Figure 8.
The tcm and ttm are the time when the loads reach their peak values in compression and tension,
respectively. The color of the particle varies from black to red gradually according to the ratio of the
present number to the original number of the bonded contacts on the particle, which varies from 1 to 0.
Tensile failure is the dominant failure pattern of the bonded contacts in both uniaxial compression tests
and direct tension tests. The number of the failed bonded contacts was 420 by the time t = tcm, which
increased sharply to 931 after 10,000 time steps in compression test. The number of the failed bonded
contacts was 7 by the time t = ttm, which increased sharply to 88 after 4000 time steps in tension test.
Only one main crack appeared in tension test, which is almost perpendicular to the tensile direction,
but several oblique cracks appeared in compression tests. All cracks observed in our simulation are
similar to those observed in experiments presented in [47,48].
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The properties of specimen A–E from the simulations are listed in Table 3. It shows that the
difference of the properties between different specimens is small. The maximum ratio of the stand
deviation value to the average value is 0.15. This indicates that the specimens created by the method
in [44] with the same Rmax and Rmin share almost the same properties.

Table 3. Properties of specimens; UCS: uniaxial compressive strength; TS: tensile strength.

Specimens Ec (GPa) Et (GPa) vc vt UCS (MPa) TS (MPa) UCS/TS Ec/Et vc/vt

Specimen A 16.9 14.4 0.19 0.11 185.0 11.4 16.2 1.17 1.69
Specimen B 16.9 15.4 0.19 0.14 195.2 9.5 20.5 1.10 1.29
Specimen C 17.4 13.8 0.20 0.13 206.4 13.0 15.9 1.26 1.58
Specimen D 15.0 12.5 0.19 0.11 164.1 11.3 14.5 1.20 1.64
Specimen E 16.7 13.0 0.21 0.13 194.9 14.6 13.4 1.29 1.69

Average 16.6 13.8 0.19 0.12 189.1 12.0 16.1 1.20 1.58
Stand deviation 0.81 1.02 0.01 0.01 14.24 1.71 2.43 0.07 0.15

3. Relationship between Micro and Macro Parameter

In this Section, the relationships between micro and macro parameters in the NET-BPM introduced
in Section 2.3 are investigated, which are revealed by simulating the uniaxial compression tests and
direct tension tests with different values of one or two micro parameters. If not specified particularly,
the values of the micro parameters are the same as those in Table 2. In order to eliminate the effects of
the particle arrangement, specimen size and particle size on the simulations, specimen A introduced in
Section 2.4 is used for all the simulations.

3.1. Effect of Bond Stiffness on Macro Parameters

Changing the value of ks/kn from 0.1 to 1.0 with km/(knR) equal to 0.064, 0.160 and 0.256, different
values of the macro parameters can be observed. The relationships between the macro parameters
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and ks/kn at different km/(knR) are presented in Figure 9. The results show that Ec increases with
the increasing of ks/kn at different values of km/(knR), and vc decreases with the increasing of ks/kn.
The trends are in accord with those in [28,29,34]. With the values of the ks/kn changing from 0.1 to
1.0, Poisson’s ratio decreases from 0.45 to 0. The effects of the bending stiffness on Ec and vc are very
small and can be ignored. However, increasing the bending stiffness can enhance the strength (UCS
and TS) of the specimens and increase UCS/TS distinctly when ks/kn is higher than 0.4, as shown in
Figure 9c–e. The values of ks/kn and km/(knR) have very small effects on the value of Ec/Et, as shown
in Figure 9f, and small effects on the value of vc/vt.
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3.2. Effect of Shape Coefficient on Macro Parameters

As presented in Figure 2b is a very important micro parameter whose effects on macro parameters
are investigated by changing its value from 0.05 to 1.0 with ks/kn equal to 0.2, 0.5 and 0.8 in the
simulations. The results are presented in Figures 10 and 11.
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The results show that with the increasing of b, TS increases but UCS almost remains unchanged
and the value of UCS/TS decreases. The effects of b on TS and UCS/TS decrease with the increasing of
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b and when b is larger than 0.5, the effects become very small, as shown in Figure 10. By choosing a
small b, e.g., b = 0.05, a value of UCS/TS as large as 45 can be obtained to meet the practical values of
many hard rocks, which is difficult to achieve by the conventional BPM [14]. The value of b has distinct
effects on the value of Et, while small effects on the value of Ec, as shown in Figure 11a,b. Decreasing b
from 1.0 to 0.05 results in increasing of Ec/Et from 1.05 to 1.6 in our study at different values of ks/kn,
as shown in Figure 11c. Similar to the Young’s modulus, the Poisson’s ratio are also affected by the
value of b. Increasing of b leads to decrease of vc, increasing of vt and sharply decreasing of vc/vt,
as shown in Figure 11d–f. The value of vc/vt can reach 4.5 when b is 0.05. When b is larger than 0.7,
the variation of b has small effect on the macro parameters.

3.3. Effect of Bond Width Coefficient on Macro Parameters

The effects of w on macro parameters are investigated by changing its value from 0.4 to 0.8 with
ks/kn = 0.2, 0.5 and 0.8. In order to guarantee the identical value of km/(knR) in all the cases, the
distributions of the tiny beams in the bonds are changed according to the value of w. The simulation
results are presented in Figure 12. The results show that the width of the bond has little effects on
Young’s modulus and Poisson’s ratio, and has almost no effects on Ec and vc, as shown in Figure 12a–d.
While larger w leads to smaller UCS, as shown in Figure 12e, and has almost no effect on TS, thus
results in smaller UCS/TS, as shown in Figure 12f. Noticing Equation (6), if the relative rotation angle
is not zero, larger w indicates smaller εn when the bond fails, that means smaller tensile forces in the
bonds. However, this relationship is not shown in the simulated tension tests because the relative
rotation angles between contact particles are very small in the tension tests. While in the compression
tests, the relative rotation angles are large enough to affect the strength of the specimens and the major
failure type of the bonds is tensile failure.
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3.4. Effect of Ultimate Pure Shear Strain on Macro Parameters

The ultimate pure shear strain has great effects on UCS, as shown in Figure 13a. Changing εs
0/εn

0
from 2.0 to 4.5 with ks/kn equal to 0.2, 0.5 and 0.8, UCS increases by more than 50%, but TS, Et and vt

remain the same, as shown in Figure 13b,d,f. Increasing εs
0/εn

0 can decrease Ec and increase vc, but the
effects are very small and can be ignored, as shown in Figure 13c,e.
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4. Application of the NET-BPM 

In this section, the Lac du Bonnet (LDB) granite which are widely used for model calibration and 
a quartzite studied in [39] under uniaxial compression and direct tension are modelled with the  
NET-BPM. Firstly, two specimens are created and the micro parameters in our model are determined 
for the two rocks. Then the simulation results of LDB granite and the quartzite are compared with 
the experimental results. 

4.1. Modelling LDB Granite 

A rock specimen with the size same as that in [42] is created using the method in [44] with  
Rmax = 0.9 mm and Rmin = 0.3 mm. The effect of particle size is not discussed in this study, so the particle 
size same as that in Section 3 is adopted. The parameters of the specimen for LDB granite are listed 
in Table 4. The properties of the LDB granite are presented in Table 5, where Young’s modulus are 
from [49], and the rest of the data are from [42]. It should be noticed that Young’s modulus and 
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4. Application of the NET-BPM

In this section, the Lac du Bonnet (LDB) granite which are widely used for model calibration
and a quartzite studied in [39] under uniaxial compression and direct tension are modelled with the
NET-BPM. Firstly, two specimens are created and the micro parameters in our model are determined
for the two rocks. Then the simulation results of LDB granite and the quartzite are compared with the
experimental results.

4.1. Modelling LDB Granite

A rock specimen with the size same as that in [42] is created using the method in [44] with
Rmax = 0.9 mm and Rmin = 0.3 mm. The effect of particle size is not discussed in this study, so the
particle size same as that in Section 3 is adopted. The parameters of the specimen for LDB granite are
listed in Table 4. The properties of the LDB granite are presented in Table 5, where Young’s modulus
are from [49], and the rest of the data are from [42]. It should be noticed that Young’s modulus and
Poisson’s ratio are converted to the apparent values.

From the investigation in Section 3, we know that b is the major factor affecting the values of Ec/Et,
and that b and ks/kn is the major factor affecting the values of vc. Combining Figures 9b and 11c,d,
the values of b and ks/kn can be roughly estimated to satisfy that vc = 0.35 and Ec/Et = 1.43. Then kn

can be estimated by amplifying initial value in Section 3 to obtain that Ec = 68.1 GPa. The next step
is to get an appropriate value of εn

0 so that TS = 9.3 MPa is obtained. The last step is to guarantee
that UCS = 200 MPa, which can be achieved by choosing proper values of km/(knR), w and εs

0/εn
0.

Proper micro parameters in NET-BPM for LDB granite can be obtained through several simulations
and modifications, as shown in Table 6. The macro parameters obtained are presented in Table 5.

As the ultimate axial strain in tensile test is small, a lower loading speed of 0.01 m/s is applied in
direct tensile tests. The results show that not only Ec, vc, UCS, TS and UCS/TS from the NET-BPM
model are in good agreement with the experimental values, which is achieved in [14], but also Et

and Ec/Et are in good agreement with the experimental values. The stress-strain curves of the LDB
granite under uniaxial compression test from our method are similar to those from experiments in [42],
as shown in Figure 14. The crack patterns of LDB granite under compression and tension tests are
shown in Figure 15. Same method introduced in Section 2.4 is used to present the cracks. Figure 15a
shows the cracks at the time when the compressive load reaches its peak. After that, the cracks develop
quickly. Most of them are oblique. Figure 15d shows the cracks at time when the tensile load reaches
its peak. The cracks extend perpendicular to the loading direction quickly, which results in the fracture
of the specimen.
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Table 4. Parameters of specimens for LDB (Lac du Bonnet) granite and the quartzite.

Parameters Size (mm)
Width/Height

Ra
(mm)

Particle
Number

Bonded
Contacts

Porosity
(%)

Overlap
Ratio (10−14)

LDB 63/157.5 0.562 7892 20071 13.48 1.55
Quartzite 31/78 0.373 4365 11021 13.67 1.22

Table 5. Properties of LDB granite and the quartzite from experiments and simulations.

Properties UCS
(MPa)

TS
(MPa) UCS/TS Ec (GPa) Et (GPa) Ec/Et vc

LDB
granite

Experimental 200.0 9.3 21.5 68.1 47.5 1.43 0.35
NET-BPM 201.4 9.3 21.7 68.0 46.8 1.45 0.36

Quartzite
Experimental 264.0 14.9 17.8 75.3 66.6 1.13 0.20

NET-BPM 265.8 14.8 18.0 75.7 62.0 1.22 0.20

Table 6. Micro parameters in NET-BPM (nonlinear elastic tensile bonded particle model) for LDB
granite and the quartzite.

Parameters kn (106 N) ks/kn km/(knR) εn
0 (10−3) εs

0/εn
0 εs

max/εn
0 ϕ (◦) ϕf (◦) w b

LDB 127 0.37 0.24 1.10 4.36 10 45 39 0.8 0.095
Quartzite 87 0.50 0.32 0.72 7.18 10 45 39 0.8 0.300
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4.2. Modelling of Quartzite

A rock specimen with the size same as that in [39] is created using the method in [44]. Since the
width of the specimen is only 31 mm, Rmax = 0.6 mm and Rmin = 0.2 mm are used for the specimen
preparation. The parameters of specimen for the quartzite are listed in Table 4. The properties of the
quartzite from experiments in [39] are listed in Table 5. Similar to that in Section 4.1, a set of micro
parameters is obtained in order to get a response close to the quartzite, as listed in Table 6.

A loading speed V = 0.01 m/s is used in the direct tension tests. The properties of the specimen
from our simulations are listed in Table 5. All the properties from simulations are in good agreement
with those from experiments. The stress-strain curves of the quartzite under compression and tension
are presented in Figure 16. The stress-strain curves of sample C-Q1 and sample T-Q1 in [39] are
presented for comparison. The results show that the stress-strain curves of the specimen modelled by
the NET-BPM are in good agreement with those of the quartzite. The stress-strain curve of the quartzite
under direct tension tests is nonlinear, which is reproduced well by our model. The crack patterns of
the quartzite in the simulations are presented in Figure 17. Most of the cracks under compression are
parallel to the loading direction, which is different from that in the simulation of LDB granite. Even
though failure pattern of sample C-Q1 is shear failure found in [39], split failure pattern is observed in
another sample, C-Q2 under uniaxial compression loading. The cracks of the quartzite form a line
perpendicular to the loading direction, which results in failure of the specimen. This is in accord to
experimental results in [39].
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5. Conclusions

In this paper, a new model is proposed for rock-like materials, which is named as NET-BPM model.
The NET-BPM model, which adopts nonlinear tensile stiffness and a new form of bonds in its contact
model, has the following advantages. (1) It is very difficult to gain a large ratio of UCS/TS more than 20
in conventional BPM model [1,2,20]. However, compared to our model, a large range of UCS/TS ratio
(from 5 to 45 in the presented simulations) can be obtained by using different b and εs

0/εn
0; (2) The nonlinear

behavior of some rocks under direct tension, which is observed in many experiments [8,36–40], can
be reproduced well in our model with a proper b; (3) The differences between Young’s modulus,
Poisson’s ratio of specimens, when they are under compression and tension, which are observed in
experiments [38,41,49,50], are captured well in the NET-BPM model. e.g., the value of Ec/Et ranging from
1.0 to 1.6 can be obtained; (4) It is possible to change the width of the bond without changing the stiffness
of the bond in the NET-BPM model, which helps to obtain different UCS without affecting TS and Ec.

The relationships between micro and macro parameters in our model were investigated through
simulating uniaxial compression tests and direct tension tests. And the tests were performed upon
specimens sharing identical particle arrangement. The results show that there is no significant
difference for the effect of ks/kn on rock’s strength, Young’s modulus and Poisson’s ratio between our
model and typical DEM model [28]. Larger ks/kn will results in larger Ec, UCS, TS and UCS/TS, and
smaller vc. Besides ks/kn, km/(knR) also has great effects on UCS, TS and UCS/TS, and the effects will
become larger with the increasing of ks/kn. It should be noted that the larger km/(knR) will results in
greater UCS, TS and UCS/TS, while it still has ignorable effects on Young’s modulus and Poisson’s
ratio. In present investigation, the parameter b has great effects on strength, Young’s modulus and
Poisson’s ratio of specimens in tensile tests but small effects in uniaxial compressive tests. In conclusion
to this, parameter b has great influences on TS, UCS/TS, Ec/Et and vc/vt. However, as the increasing
of b, those effects will become smaller. In addition, the effect of the bond width coefficient w on UCS
is obvious in the NET-BPM. When w increases, UCS will decrease, but TS, Ec and vc will remain
unchanged. Moreover, the ultimate shear strain has great effects on UCS, but very small effect on TS,
Ec, Et, vc and vt. Increasing ultimate shear strain will increase UCS and results in larger UCS/TS.

The LDB granite and a quartzite under uniaxial compression tests and direct tension tests were
modelled by the NET-BPM model. All the properties, including Ec, Et, vc, UCS, TS and UCS/TS from
simulations are in good agreement with those from experiments. In addition, the stress-strain curves
of LDB granite and the quartzite are also reproduced correctly. All those results indicate that NET-BPM
is a very suitable method for modelling the deformation and fracture of rock-like materials.

Some work in the subsequent studies are listed as follows. (1) The effects of particle size
and particle size ratio on the simulation results, which are not concerned in this work, need to
be investigated. (2) More simulations like biaxial and Brazilian tests need to be performed to validate
our model. (3) The 3-D NET-BPM model needs to be established to broaden the application scope of
the NET-BPM model.
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