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Featured Application: The proposed device can be very useful to high power and parametric applications.

Abstract: A novel concept of 4 × 1 power beam combiner based on multicore photonic crystal fiber is
described. The light coupling obtained by integrating small air-holes in the multicore photonic crystal
fiber (PCF) structure allows light coupling between coherent laser sources to the central core. The
beam propagation method (BPM) and coupled mode theory were used for analyzing the proposed
device. Simulation results show that four coherent fiber laser sources of 1 µm in a multicore PCF
structure can be combined into one source after 2.6 mm light propagation, with a power efficiency of
99.6% and bandwidth of 220 nm. In addition, a higher 8 × 1 ratio combiner was demonstrated, based
on the proposed device. Thus, the device can be very useful to combine beams.
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1. Introduction

In 1961, the first laser based on neodymium (Nd3+) doped fiber was demonstrated [1,2]. Since
then, fiber laser has been found as an efficient source for various applications, such as laser material
processing [3], medical diagnostics [4], high power [5], metrology [6], imaging [7], etc. The most
commonly used laser-active ion dopants in fibers are erbium (Er3+) and ytterbium (Yb3+) dopants,
with their emission wavelengths around 1.5–1.6 µm and 1–1.1 µm, respectively [8,9].

The benefits of using a fiber laser as a light source: strong stability against thermo-optic effects,
ease of use and higher gain, can be obtained by long fiber, while still keeping a compact cavity
structure. Another advantage of fiber lasers is the capability to achieve output power values as high as
10 kW [10], using a single fiber laser. However, problems such as modal instabilities, thermal damage,
and nonlinear effects, limit the power levels of a single fiber laser [11]. In order to overcome these
problems, several beam combining methods were developed, such as the coherent beam combining [12],
spectral beam combining [13], and incoherent beam combining [14].

Another solution is to use the combiner based on photonic crystal fiber (PCF). PCF is a versatile
technology, based on a microstructured formation of low- and high-index materials [15]. Usually,
the background material is pure silica (high-index), and the low-index areas are air holes along the
fiber length.

PCF has unique characteristics [16,17] that do not exist in classical fibers such as high birefringence,
larger single-mode areas, extremely low/high nonlinearity, and lower coupling length value between
two closer cores. In recent years, research has demonstrated the potential of using PCF based
coupler/splitter devices [17–19]. One of the recent improvements is the ability to obtain a smaller
value of the coupling length compared to coupler/splitter based classical fibers.

Appl. Sci. 2017, 7, 695; doi:10.3390/app7070695 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app7070695
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 695 2 of 9

Recently, the authors demonstrated a compact 4 × 1, 8 × 1 and 16 × 1 power combiner based
on PCF [20]. The combining was achieved by replacing some air-holes areas with pure silica along
the fiber length. However, this approach cannot be fabricated by fiber drawing methods [21–23].
In order to solve this problem, we propose a new approach that involves small air-holes in the
PCF structure, which allows the control of light coupling between close cores without changing the
refractive index structure. Thus, this technique can be used with the drawing and stack method for
fabricating a combiner device based on multicore PCF. In this paper, we propose a new approach to
obtain a multicore PCF that combined multiple laser sources to one source with high power level.
The coupled mode theory and the beam propagation method [24,25] were used to investigate the
performances of the 4 × 1 power combiner. In addition, a higher ratio of 8 × 1 combiner was designed
using a cascade of two 4 × 1 power combiners and one 2 × 1 power combiner.

2. Principle of the Work

Figure 1 shows a schematic sketch of the multicore PCF 4 × 1 power combiner design based on
the coupling between five cores (yellow color). The coefficients κ1, κ2 are the coupling coefficients
between the cores: κ1 denotes the coupling between core 3 and core 1, or between core 2 and core 1.
κ2 denotes the coupling between core 4 and core 1, or between core 5 and core 1. d is the diameter
of the air-holes (white color), d is the diameter of the small air-holes (black color) and Λ denotes the
pitch—the distance between two air holes.
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Figure 1. Schematic sketch of the 4 × 1 power combiner design at the x–y plane.

Classical coupled-mode equations can be used to analyze the light coupling between the five
cores in the multicore PCF 4 × 1 power combiner. In our model, we integrated eight small air holes
(black color), which leads to cancellation of other coupling that may occur between closer cores
such as core 3–core 5, core 3–core 4, core 2–core 4, and core 2–core 5, and by assuming polarization
independence, the solutions of the mode amplitudes can be given as

Ar = αne(−jz(β+ε)) (1)

where Ar (r = 1, 2, 3, 4, 5) are the amplitudes of the fundamental mode in core r, β is the propagation
constant of the fundamental propagation mode, z is the propagation distance, αn (n = 1, 2, 3, 4, 5) is
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the amplitude constant, and ε is an eigenvalue. In our design, there are five cores, which mean that
five coupled-mode equations can be used to describe our design. However, the combiner is based on
multicore PCF with symmetrical hexagonal structure; in other words, the mode amplitude is equal in
core 2–core 3 (A2 = A3) and core 4–core 5 (A4 = A5). Therefore, the five coupled-mode equations can
be reduced to three equations which are given by

d(α1e(−jz(β+ε)))

dz
+ jβα1e(−jz(β+ε)) = −j

{
2α2e(−jz(β+ε))κ1 + 2α4e(−jz(β+ε))κ2

}
(2)

d(α2e(−jz(β+ε)))

dz
+ jβα2e(−jz(β+ε)) = −jα1e(−jz(β+ε))κ1 (3)

d(α4e(−jz(β+ε)))

dz
+ jβα4e(−jz(β+ε)) = −jα1e(−jz(β+ε))κ2 (4)

where the boundary conditions are given by

A1(z = 0) = 0, A2(z = 0) = A4(z = 0) = 0.25 (5)

The three coupled-mode Equations (2)–(4) can be simplified to three linear equations, which are
given by

εα1 = 2α2κ1 + 2α4κ2 (6)

εα2 = α1κ1 (7)

εα4 = α1κ2 (8)

The matrix system can be described as follows: ε −2κ1 −2κ2

−κ1 ε 0
−κ2 0 ε


 α1

α2

α4

 =

 0
0
0

 (9)

The eigenvalues and the eigenvectors can be found by solving the matrix system (Equation (9)).
The field E(z) can be represented by a linear combination of the eigenvectors. In a particular solution,
where κ1 = κ2, a complete transfer of the energy from cores 2, 3, 4, and 5 to the central core 1, can be
obtained. However, this condition depends on the geometrical parameter values of the multicore PCF
structure (z, d, d′, and Λ). Therefore, optimization of the key parameters was done, in order to fulfill
the necessary condition. In addition, this model can be duplicated, in order to design a higher ratio
power such as 8 × 1 combiner.

3. Results: The Designs of 4 × 1 and 8 × 1 Power Combiners

Figures 2a–c and 3a–c shows the refractive index structure of the 4 × 1 power combiner and
8 × 1 power combiner, respectively. In these figures, the red color areas represent silica, and the purple
color areas represent air.

The optimal values of the 4 × 1 power combiner multicore PCF structure are

z = 2.6 mm, d = 0.8277 µm, d′ = 0.2483 µm, Λ = 2.365 µm,
d′

Λ
= 0.105,

d
Λ

= 0.35

The 8 × 1 power combiner is based on a cascade which includes two units of 4 × 1 power
combiners and one unit of 2 × 1 power combiner, as shown in Figure 3a–c.
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Figure 2. Refractive index profiles of the 4 × 1 power combiner: (a) xz plane at y = 0; (b) yz plane at x 
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other four cores at z = 1 mm. Figure 4c shows that four Gaussian sources are combined to one source 
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Figure 3. Refractive index profiles of the 8 × 1 power combiner: (a) xz plane at y = 0; (b) yz plane at
x = 0; (c) xy plane at z = 0.

4. Simulation Results

The multicore PCF 4 × 1 power combiner structure was simulated using RSoft Photonics CAD
software (5.1.5, RSoft, Ossining, NY, USA), based on BPM.

Figure 4a shows the transmission of four Gaussian sources at a 1 µm wavelength at z = 0, with a
normalized power value of 0.25. Figure 4b shows the light coupling between the central core to the
other four cores at z = 1 mm. Figure 4c shows that four Gaussian sources are combined to one source
at z = 2.6 mm, with 99.6% of the total power.
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Figure 4. The 4 × 1 power combiner of the optical signals (λ = 1 µm) of three xy cross sections:
(a) z = 0 mm, (b) z = 1 mm; (c) z = 2.6 mm.

The proposed device can also act as a two dimensional (2D) 2 × 1 power combiner, as shown in
Figure 5a,b.
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In addition, a MATLAB script code, combined with BPM simulations, was developed to examine
the sensitivity of the proposed device to the wavelength variation of the laser sources around 1 µm.
Figure 6 shows power attenuation around the central wavelength (1 µm).
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It can be noticed from Figure 6 that the bandwidth (FWHM) of the 4 × 1 power combiner is about
220 nm in the 900–1120 nm range. Such a bandwidth implies that this combiner may be suitable for
tunable lasers around a wavelength of 1000 nm, and can support broadband sources. This provides
many benefits, due to the fact that within this range, one can use optical lasers such as ytterbium
doped fiber laser, which is highly useful for high power and parametric applications.

This device can be also used in cascade configuration for obtaining a higher ratio of combining.
For example, we used two units of the 4 × 1 power combiner and connected them to a 2 × 1 combiner,
in order to obtain an 8 × 1 power combiner. Figure 7a shows the transmission of eight Gaussian
sources at a 1 µm wavelength at z = 0, with a normalized power value of 0.125. Figure 7b shows the
combining of eight sources to two at z = 2.6 mm. Figure 7c shows that eight Gaussian sources are
combined to one single mode at z = 5.8 mm.
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