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Abstract: In this paper, a novel method to determine the center of mass position of each link of
human-like multibody biped robots is proposed. A first formulation to determine the total center
of mass position has been tested in other works on a biped platform with human-like dimensions.
In this paper, the formulation is optimized and extended, and it is able to give as output the center of
mass positions of each link of the platform. The calculation can be applied to different types of robots.
The optimized formulation is validated using a simulated biped robot in MATLAB.
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1. Introduction

One of the pioneers in the field of biped robots was the Waseda University of Tokyo. In 1973,
research groups from Waseda University developed WABOT-I, and in 1984 WABOT-2 as to become a
professional musician [1]. In 1999, they developed a humanoid with a complete human configuration
capable of biped locomotion, WABIAN (Waseda Bipedal humANoid), and in 2011 its Italian version
SABIAN [2–4]. In 2017, a more complex version of the WABIAN robot is presented in [5]. In 2013,
Google acquired eight advanced robot companies. Boston Dynamics, one of these, is known for its
advanced robots including the world’s fastest robot, Cheetah [6] (which can travel at 29 mph), Big
Dog [7] (the all-rough and tough robot that walks, runs, climbs, and carries heavy loads), and the latest
Atlas (a biped humanoid capable of walking in outdoor rough terrain with the upper limbs capable
of performing other tasks while walking). Several versions of Atlas [8,9] have been prepared for the
DARPA Robotics Challenge program. In 2017, Boston Dynamics presented a very innovative robot
with higher locomotion capabilities including wheels in the feet [10].

The general robot design process includes many phases, like the design of every complex machine.
A tentative method to define these phases is shown as follows:

• PHASE 1—Determination of the technical specifications which define limits and characteristics
that the robot should have.

• PHASE 2—Conceptual design of the robot including analysis of the developed robots in the
world; design of novel systems; definition of the whole system including mechanics, electronics,
low and high level control.

• PHASE 3—Functional design of the robot including interaction of the robot with the environment;
theoretical formulation and optimization; software and hardware design of virtual models
(virtual model prototyping using CAD tools, analytical simulations, finite elements analysis,
multibody analysis).

• PHASE 4—Development of the robot including rapid prototyping modeling and tests.
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• PHASE 5—Realization of the final robot prototype and final tests.

All robots realized in Phase 5 should have, theoretically, the same architecture of the virtual
models designed in Phase 3. In particular, the positions of the CoM (Center of Mass) of each link of
the robot should have the same position defined in the virtual model. However, the total CoM of the
real platform is not in the same calculated position of the total CoM of its respective virtual model.
Why are these discrepancies are created? Are these errors (between virtual models and real robots)
influences on the robot functionality?

In order to answer to these two questions we could show how the problem was evident in
the SABIAN robot (height: 1500 mm; 64 kg). During our tests on the platform, we noted a weight
difference of about 5 kg including differences of CoM position between real and virtual SABIAN. These
discrepancies are created because during manufacturing, construction, and maintenance of the robot,
the tolerances of the joints, cables, drivers, batteries, links, etc. could not be completely respected and
errors are created. These errors influence the robot functionality and cannot be eliminated [11]. Hence,
the real center of mass (CoM) of the robot is not coincident with the CoM of its virtual model [12].
In our experiments, the robot SABIAN [2,3] had about 5 kg of errors in an unknown position and
during locomotion, the controller implemented on the virtual model architecture was not able to
control the real platform with this unknown error position. Dynamic balance in locomotion is not
simple to control in a biped platform and these errors may disturb biped stability.

Some researchers and specialists in the humanoid robotics field use a posture controller [11,12],
in order to reduce the error between the robotic platform and its virtual model. Kwon et al. [13] (2007)
proposed a method that uses a closed-loop observer based on a Kalman filter, adopted as estimation
framework. Ayusawa et al. (2008) [14] proposed a method based on regression analysis models in order
to estimate inertial parameters using a minimal set of sensors. In the work of Sujan and Dubowsky
(2003) [15] the dynamic parameters of a mobile robot are calculated using an algorithm based on a
mutual-information-based theoretic metric for the excitation of vehicle dynamics. Liu et al. (1998) [16],
Khalil et al. (2007) [17], and Swevers et al. (1997) [18] show other methods oriented to improve the
balancing performances of mobile biped robots when the center of mass is not precisely known.

In [2,3], the authors proposed a novel approach to determine the correct position of the center
of mass in humanoid robots. In order to compensate the errors between the biped platform and
its virtual model, an additional mass has been implemented in the virtual model of the humanoid
robot. The value of this mass error is the analytical difference between the weight of the robot and the
weight of its virtual model. Its position in the space is not known a priori, but it will be approximately
calculated with the procedure described in [3]. In order to define its position, the authors of the paper
proposed an analytic formula that gives the real position of the CoM of the platform and is based on
the application of a procedure that requires only the values of the force-torque sensors, applied on
the feet of the humanoid robot, and the values of the motors torque. This procedure standardizes the
calibration procedure in order to minimize the errors and it can be applied to every biped platform.
The formulation approach has been implemented on the SABIAN robot with dimensions comparable
to humans (height: 1500 mm; weight: 64 kg) giving very good results.

The limits underlined in the papers [2,3] were based on the approximation used to put the error
mass in the determined CoM with the proposed formula. The approximation has been justified because
the real position of the error mass is not known and if an external mass is positioned in the real CoM,
its negative influence is reduced. However, the problem remains because an approximation has been
used on behalf of exact calculation.

In this paper, the limits underlined in [2,3] are bypassed with the optimization of the formula
based on the determination of the CoM position of each link of the robot. With the proposed solution,
the error mass is distributed on each link of the biped robot.

Another advantage of the formulation presented in this paper is that if the total CoM position of
the platform is known a priori, the first formulation proposed in [2,3] can be bypassed and the CoM
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positions of each link of the platform can be calculated analytically without using force-torque sensors
and the motor’s torque.

The paper is structured as follows: Section 2 presents, in synthesis, the first validated theoretical
formulation proposed in [2,3]; Section 3 shows results and discussion on the second theoretical
formulation to determine the center of mass position of each link of the platform. Section 4 presents
validation of the second theoretical formulation. The paper ends with a conclusion and future works.

2. First Validated Theoretical Formulation

2.1. Dynamics of Multibody Biped Robots

Figure 1 shows global and local reference Cartesian system (respectively G-XYZ and P-XpYpZp
and three points in the space (0, 1 and 2). The three points can be considered as belonging to a rigid
body in the space; furthermore, the rigid body can be compared to a humanoid platform, or multibody
robot, with its center of gravity in the Point 2 and its feet in the Points 0 and 1. A humanoid robot is
indeed composed of a trunk and articulated kinematic chains such as legs and arms, connected to the
trunk with joints and motors, and with force-torque sensors positioned on the feet and on the hands.
The Points 0 and 1 represent the feet, where the force-torque sensors are positioned, and are shown
with a light blue colour; the center of mass represented with the Point 2 is shown in red; the other
black points indicate the center of mass of the links of the robot.
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Figure 1. Scheme for determining the total CoM (Center of Mass) position. The direction of the force
and torque vectors is only indicative. Points 0 and 1 represent the feet, where the force/torque sensors
are positioned; the center of mass is represented with the Point 2; the other black points indicate the
mass of the links of the robot.

The dynamics of the system is described by the two equations (see Figure 1):

m2·
→
a 2 = m2·

→
g +

→
F 0 +

→
F 1 +

→
F 2 (1)

→
MP =

→
M0 +

→
M2 +

→
M1 +

→
p 0 ×

→
F 0 +

→
p 1 ×

→
F 1 +

→
p 2 ×

→
F 2 (2)

where:
→
a 2 = [aX2, aY2, aZ2]

T is the acceleration of the CoM; m2 is the total mass of the robot
without feet;

→
p 0 = [−n,−l, e]T and

→
p 1 = [o, q, f ]T are the position vectors shown in Figure 1.

→
p 2 = [X2, Y2, Z2]

T is the CoM position that will be determined with the proposed formula in Section 3.
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→
M0 = [MX0, MY0, MZ0]

T ,
→
M1 = [MX1, MY1, MZ1]

T ,
→
M2 = [MX2, MY2, MZ2]

T ,
→
F 0 = [FX0, FY0, FZ0]

T ,
→
F 1 = [FX1, FY1, FZ1]

T ,
→
F 2 = [FX2, FY2, FZ2]

T respectively represent the torques (
→
M0,

→
M1,

→
M2) and the

forces (
→
F 0,
→
F 1,
→
F 2) acting at the Points 0, 1 and 2.

→
MP = [MXP, MYP, MZP]

T is the resultant moment
calculated with respect to the local Cartesian system (see Figure 1). The direction of the force and
torque vectors, shown in Figure 1, is only indicative; the positive direction of the force and torque
vectors has been considered with the same positive direction of the global reference Cartesian system
(G-XYZ).

Furthermore, we can say that:

→
M2 =

 MX2

MY2

MZ2

 =

 ∑ Mj_roll

∑ Mj_pitch

∑ Mj_yaw

 (3)

M2 includes only the internal torques; M0 and M1 include the ground reaction torques. The
Equation (3) is based on the assumption that the Jacobian Matrix is equal to the identity Matrix.
This assumption is correct if the joints axis of the robot remain parallel, during motion, to the Y
axis of the global reference Cartesian system (G-XYZ). It means that the motion of the robot for the
determination of the formula is performed in a 2D plane. In this paper, the XZ plane is considered.
∑ Mj_roll , ∑ Mj_pitch, ∑ Mj_yaw are the torques of all roll, pitch, and yaw motors of the robot [11] and
Mj is obtained from the equation:

Mj[Nm] = K[Nm/A]·I[A] (4)

The accuracy in the estimation of Mj, calculated in (4) depends on the accuracy of the K value that
is a constant parameter set for each motor and on the accuracy of the current I necessary for the motor
function. In particular, the resolution of the used A/D converters is a fundamental parameter to define
the accuracy of the current I.

2.2. Equilibrium

Considering the robot equilibrium (m2
→
a 2 = 0;

→
MP = 0) with respect to the Point P as shown in

the Figure 1, Equations (1) and (2) can be modified. Moving the point of view from the vector shape
to the scalar one, the values of the three components x, y, and z of the force and the torque can be
obtained. The new system consists of six equations (five linearly independent) in six unknown values
FX2, FY2, FZ2, X2, Y2, Z2. The forces and torques in Points 0 and 1 can be calculated by means of the
load cells. The torques MX2, MY2, MZ2 are determined using (3) and (4).

In order to simplify the system, the robot is positioned in two different configurations. The two
configurations are chosen in order to have a simplified geometry using l = q, n = o = e = f = 0 (see
Figure 1) obtaining

→
p 0 = [0,−l, 0]T and

→
p 1 = [0, l, 0]T .

In the first step the robot is placed on a walking surface and the platform should be kept in a first

balance configuration (Scheme A, see Figure 2), allowing a measurement of the forces (
→
F 0,
→
F 1) and

the torques (
→
M0,

→
M1) by means of the force-torque sensors on the feet, and of the armature currents

(∑ Mj_roll , ∑ Mj_pitch, ∑ Mj_yaw). In a second step, the robot is placed in a second balance configuration
(Scheme B, see Figure 2), and in the same way, forces, torques, and motor currents associated with this
new balance configuration are measured. The two balance configurations can be performed as the
reader prefers underlining that the robot should be in a balance position. In particular, the coordinates
X2A and Z2A are relative to the position of the center of mass of the platform in the configuration A
along the first straight common line, which is chosen (in this paper) orthogonal to the plane of standing,
and then parallel to the Z axis. mu, ru, lu, are the mass and the position of the center of mass of the
robot ankle link from the floor to the ankle joint; U is the length of the ankle. mw, rw, lw, are the mass
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and the position of the center of mass of the remaining links of the platform. In the second balance
configuration B, the components of the body are aligned according to a second straight common line,
inclined to the vertical line with an angle θt. While mu, mw, ru, lu remain constant, rw and lw change
their values. In this case, X2B and Z2B identify the coordinates of the center of mass of the body in
the second balance configuration B. The coordinates of the two feet are the same because we chose
this configuration as input. The implementations have been done positioning the robot in this initial
position using a leveller and the encoders of the motors.
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Based on the choice l = q, n = o = e = f = 0 (
→
p 0 = [0,−l, 0]T and

→
p 1 = [0, l, 0]T), the Equations (1)

and (2) can be rewritten in a general form that is function of the balance i configuration (I = A or I = B).
Thus, Equations from (5) to (9) are obtained.

FX2i = −FX0i − FX1i (5)

FY2i = −FY0i − FY1i (6)

FZ2i = m2·g− FZ0i − FZ1i (7)

X2i = −(MY0i + MY1i + MY2i)/(FZ0i + FZ1i)

+[(FX0i + FX1i)/(FZ0i + FZ1i)]·Z2i
(8)

Y2i = [(MX0i + MX1i + MX2i)/(FZ0i + FZ1i)]

+[l·(FZ1i − FZ0i)/(FZ0i + FZ1i)]+

+[(FY0i + FY1i)/(FZ0i + FZ1i)]·Z2i

(9)

2.3. Proposed Coefficients

In following, four novel coefficients (αi, βi, γi, δi) are introduced

− (MY0i + MY1i + MY2i)/(FZ0i + FZ1i) = αi (10)

(FX0i + FX1i)/(FZ0i + FZ1i) = βi (11)
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(MX0i + MX1i + MX2i)/(FZ0i + FZ1i)

+[l·(FZ1i − FZ0i)/(FZ0i + FZ1i)] = γi
(12)

(FY0i + FY1i)/(FZ0i + FZ1i) = δi (13)

Rewriting Equations (8) and (9) (for I = A or I = B)

X2i = αi + βi·Z2i (14)

Y2i = γi + δi·Z2i (15)

Using the parameters mu, mw, ru, lu, rw and lw, the Equations (16) and (17) can be obtained. Thus,
the Equations (14), (16) and (17) can be seen as a system composed of six equations in six unknown
variables (for i = A and i = B) X2A, Z2A, X2B, Z2B, rw, lw; the relation between mw and mu is given by the
Equation (18). θt is fixed by the user (θt = 0 in i = A), in a way that does not allow to tilt the platform.

X2i = [mu·ru + mw·(lw· sin θt + rw· cos θt)]/m2 (16)

Z2i = [mu·lu + mw·(U + lw· cos θt − rw· sin θt)]/m2 (17)

mw = m2 −mu (18)

Solving the equations system constituted by (14), (16) and (17), the positions of the center of mass are
calculated in both the configurations A and B (for i = A and i = B). It must be underlined that only X as
a function of Z has been considered, but the same result can be obtained considering Y as a function
of Z.

2.4. Determination of the Partial Center of Mass Position

Placing θt = 0 (then i = A) and substituting (16) and (17) into (14) and placing θt 6= 0 (then i = B)
and substituting (16) and (17) into (14), two different equations will be obtained. Finally, combining
these two equations lw and rw are obtained.

Placing θt 6= 0 (then i = B) and rewriting (17) with the latter values given by lw and rw,
Z2B is obtained.

Z2B represents the general position of the height Z of the center of mass for any value of θt. Placing
i = B in (14) and (15) and substituting the found value of Z2B, the general formula of the position of the
center of mass in (19) is given. Considering the equilibrium configuration, A (i = A) and then θt equal
to zero, the system (20) is obtained.

In particular, the calculation of the center of mass position is strictly related to the proposed
coefficients αA, βA, γA, δA, αB, βB, γB, δB, that are numerical values associated with the first and
second measurements on the robot. In order to calculate these coefficients, it is necessary to consider
the arbitrary θt associated with the second balance configuration, in addition to other parameters
such as the above mentioned position of the center of mass of the feet (ru and lu) and its mass (mu)
calculated using the CAD model. These parameters have a lower weight with respect to other links of
the platform and then a lower inertial influence [3]. The two formulations (19) and (20) were tested
and validated on the SABIAN platform giving very good results and presented in [2,3].

Z2B = f (θt, m2, βB, βA, αA, mu, lu, U, ru, αB);
X2B = αB + βB·Z2B;
Y2B = γB + δB·Z2B;

(19)


Z2B(θt = 0) = Z2A

= f (m2, βB, βA, αA, mu, lu, U, ru, αB);
X2B(θt = 0) = X2A = αA + βA·Z2A;
Y2B(θt = 0) = Y2A = γA + δA·Z2A;

(20)
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3. Second Theoretical Formulation

3.1. Procedure for n Degrees of Freedom

In order to find the CoM positions of each link of the platform, the following procedure and
formulation must be used. In particular, if n are the degrees of freedom of the platform; i represents
the used configurations to calculate the CoM of each link. j represents the initial configuration. The
number (k) of the configurations necessary to calculate the CoM position for each link of the system is
calculated in the following

k = n + 1 (21)

The total CoM position (X2i, Y2i, Z2i) of the complete system for each configuration i can be obtained
with the following formulas where the coefficients αi, βi, γi, δi, αj, β j, γj, δj, are calculated using
respectively (10)–(13). 

Z2i = f
(
θi, m2, βi, β j, αj, mu, lu, U, ru, αi

)
;

X2i = αi + βi·Z2i;
Y2i = γi + δi·Z2i;

(22)

The following formulas from (23) to (26) allow to determine the CoM positions of each link of the
robot. mw, m2, mu, ru, qu, lu, U, are the input of the system as shown in the Section 2. rwi, qwi, lwi, are

the components of the vector position
→
t i =

[
rwi qwi lwi + U

]T
respectively in XP, YP, and ZP

directions (see Figure 1). χi and εi are the angles of the vector position
→
t i =

[
rwi qwi lwi + U

]T

as shown in Figure 3.
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rwi =
X2i·m2 −mu·ru

mw
; qwi =

Y2i·m2 −mu·qu

mw
;lwi =

Z2i·m2 −mu·lu
mw

−U (23)

rwi =
X2i·m2 −mu·ru

mw
; qwi =

Y2i·m2 −mu·qu

mw
;lwi =

Z2i·m2 −mu·lu
mw

−U (24)
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→
t i =

 rwi
qwi

lwi + U

 =

 ti sin χi sin εi
ti sin χi cos εi

ti cos χi

 (25)

→
t i·mw =

n

∑
v=1

→
s iv·miv (26)

→
s i =

 ri
qi
li

 (27)

3.2. Procedure for n = 2 Degrees of Freedom

Figure 4 shows a sketch of a robot in a plane XP, ZP with two degrees of freedom (n = 2) and three
links (La, Lb, Lc). From (21) k = 3 is obtained. This result means that two configurations must be used to
calculate the coefficients αi, βi, γi, δi, and one configuration must be used to calculate the coefficients
αj, β j, γj, δj using respectively (10)–(13) in order to find the CoM position of the links of the robot.
In particular, the following iterative procedure should be used:

• The robot is placed on a walking surface and the platform should be kept in a first balance

configuration j allowing a measurement of the forces (
→
F 0,
→
F 1) and the torques (

→
M0,

→
M1) by

means of the force-torque sensors on the feet, and of the armature currents (∑ Mj_roll , ∑ Mj_pitch,
∑ Mj_yaw). These values are used to calculate the coefficients αj, β j, γj, δj, of the (22) using
respectively (10)–(13);

• The robot is placed in a second and third balance configuration i, and in the same way, forces,
torques, and motor currents associated with each balance configuration (second and third) are
measured. These values are used to calculate the coefficients αi, βi, γi, δi using respectively
(10)–(13).

• For each balance configuration i, the total CoM position is calculated using (22);
• Each total CoM position allows to determine rwi, qwi, lwi, using (23) and the CoM position of each

link of the robot using (27). For each configuration i, an equation using (26) is created. n linearly
independent equations are used to find n vector positions.
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Figure 4. Sketch of a robot in a plane with 2 degrees of freedom. Three Configurations (a)–(c). m2 is
the total mass of the system; ma, . . . , mc are the masses of the links and ra, . . . , rc and la, . . . , lc are
respectively the x and z components of the center of mass of the links respect to the relative revolute
joint; La, . . . , Lc are the lengths of the links.
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3.3. Implementation of the Analytical Formulation

The example shown in Figure 4 has four unknown parameters (rb, lb, rc, lc), but four linearly
independent equations can be obtained by the formulas shown in Section 3.1. In this case, we suppose
to have ma, mb, mc, ra, la, as input. Figure 5 shows in details the configurations b and c shown in
Figure 4. In particular, the four unknown parameters (rb, lb, rc, lc) which should be determined using

analytical formulation are found using polar coordinates.
→
t b and

→
t c are the position vectors of the

mass mw respect to the local reference system P-XPYPZP and respectively of the configuration b and c.
→
s b and

→
s c are respectively the position vectors of the masses, mb and mc, respect to the local reference

system of each link.Appl. Sci. 2017, 7, 724 9 of 14 
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Using (22), Z2b, X2b, and Z2c, X2c, can be calculated as shown in following{
Z2b = f (θb, m2, βb, βa, αa, ma, la, La, ra, αb)

X2b = αb + βb·Z2b
(28)

{
Z2c = f (θc, m2, βc, βa, αa, ma, la, La, ra, αc)

X2c = αc + βc·Z2c
(29)

Using (23)–(25), rwb, lwb, and rwc, lwc, can be determined (see Figure 5) and the modules and angles of

the two position vectors (
→
t b and

→
t c) are found

rwb =
X2b·m2 −mu·ru

mw
; lwb =

Z2b·m2 −mu·lu
mw

− La (30)

rwc =
X2c·m2 −mu·ru

mw
; lwc =

Z2c·m2 −mu·lu
mw

− La (31)

tb =
√

r2
wb + (lwb + La)

2; χb = tan−1
(

rwb
(lwb + La)

)
(32)

tc =

√
r2

wc + (lwc + La)
2; χc = tan−1

(
rwc

(lwc + La)

)
(33)

Using (26) and (27), the modules of the position vectors
→
s b and

→
s c (respectively the position vectors of

the masses mb and mc respect to the local reference system of each link) are determined. In the following,
detailed equations are shown which can determine the four unknown parameters (rb, lb, rc, lc).
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mw·rwb = mb·(lb· sin θb + rb· cos θb) + mc·((Lb + lc)· sin θb + rc· cos θb) (34)

mw·(lwb + La)= mb·(La + lb· cos θb − rb· sin θb) + mc

·((Lb + lc)· cos θb − rc· sin θb + La)
(35)

mw·rwc = mb·rb + mc·(lc· sin θc − rc· cos θc) (36)

mw·(lwc + La) = mb·(La + lb) + mc·(La + Lb + lc· cos θc − rc· sin θc) (37)

Solving the system using the Cramer’s rule, we obtain the following equations where
sin θb = sθb; cos θb = cθb; sin θc = sθc; cos θc = cθc;

A =

∣∣∣∣∣∣∣∣∣
mbcθb mbsθb
−mbsθb mbcθb

mccθb mcsθb
−mcsθb mccθb

mb 0
0 mb

−mccθc mcsθc

−mcsθc mcsθc

∣∣∣∣∣∣∣∣∣ (38)

∣∣∣∣∣∣∣∣∣
a1

a2

a3

a4

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

mwrwb −mcLbsθb
mw(lwb + La)−mbLa −mcLbcθb −mcLa

mwrwc

mw(lwc + La)−mbLa −mc(La + Lb)

∣∣∣∣∣∣∣∣∣ (39)

rb =

∣∣∣∣∣∣∣∣∣
a1 mbsθb
a2 mbcθb

mccθb mcsθb
−mcsθb mccθb

a3 0
a4 mb

−mccθc mcsθc

−mcsθc mcsθc

∣∣∣∣∣∣∣∣∣
det(A)

(40)

lb =

∣∣∣∣∣∣∣∣∣
mbcθb a1

−mbsθb a2

mccθb mcsθb
−mcsθb mccθb

mb a3

0 a4

−mccθc mcsθc

−mcsθc mcsθc

∣∣∣∣∣∣∣∣∣
det(A)

(41)

rc =

∣∣∣∣∣∣∣∣∣
mbcθb mbsθb
−mbsθb mbcθb

a1 mcsθb
a2 mccθb

mb 0
0 mb

a3 mcsθc

a4 mcsθc

∣∣∣∣∣∣∣∣∣
det(A)

(42)

lc =

∣∣∣∣∣∣∣∣∣
mbcθb mbsθb
−mbsθb mbcθb

mccθb a1

−mcsθb a2

mb 0
0 mb

−mccθc a3

−mcsθc a4

∣∣∣∣∣∣∣∣∣
det(A)

(43)

The proposed representation is general and can be implemented on robots with different types of
joints (prismatic, revolute, spherical, helical, etc.). In case of robot conceived in an unconventional way,
such as passive or flexible robots or robot with wheels [19–21], the procedure (21) and the formulas
from (22) to (27) can be implemented if the two following points are satisfied:

1. Only two force-torque sensors must be the contact elements between the robot and the ground;
2. Joint sensors must give relative position of motion and current values to produce join motion.
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Another advantage of the formulation presented in this paper, as underlined in the first section,
is that if the total CoM position of the platform is known a priori, the first formulation proposed
in [2,3] and shown in Section 2 of this paper can be bypassed and the CoM positions of each link of the
platform can be calculated analytically without using force-torque sensors and motor’s torque. In this
case, only the formulation of the Section 3 can be used.

4. Validation of the Second Theoretical Formulation

4.1. Example

In order to validate the second theoretical formulation shown in Section 3 (the first theoretical
formulation was validate in [2,3] as underlined in Sections 1 and 2), a virtual robot with three links and
two DoFs in each leg is used. Figure 6 shows the designed robot and Table 1 shows the characteristics
of the robot (lengths of the links, weights, CoMs positions, etc.).Appl. Sci. 2017, 7, 724 11 of 14 
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Figure 6. Example for implementing the formula.

Table 1. Characteristics of the robot.

Link Weight [kg] Absolute CoM Position
Respect to Xp, Yp, Zp [mm] Zp [mm] Relative CoM Position in

Xp-Zp Plane [mm]

Foot 0 6.72 0, −200, 26.32 La = 100 la = 26.32, ra = 0
Shin 0 0.95 0, −200, 300 Lb = 400 lb = 200; rb = 0

Thigh 0 1.16 0, −200, 750 Lc = 500 lc = 250; rc = 0
Foot 1 6.72 0, 200, 26.32 La = 100 la = 26.32, ra = 0
Shin 1 0.95 0, 200, 300 Lb = 400 lb = 200; rb = 0

Thigh 1 1.16 0, 200, 750 Lc = 500 lc = 250; rc = 0
Waist 0.94 0, 0, 1000 / /

4.2. Validation

In following, the example shown in Figure 6 with the characteristics shown in Table 1 is
implemented in MATLAB using equations presented in Section 3. The validation consists to give as
input the total CoM positions of each configuration and to verify that the CoM position of each link of
the platform, calculated with the formulations of the Section 3, has the same value used in input.
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% MATLAB Example
thb = 10 *pi/180; %radiant angle of the link Lb

thc = 10 *pi/180; %radiant angle of the link Lc

ma = 6.72; %kg weight of the Foot
mb = 0.95; %kg weight of the link b
mc = 1.16 + 0.94; %kg weight of the link c
mw = mb + mc; %kg
m2 = mu + mw; %kg
ra = 0; %mm position of the CoM of the foot
la = 26.32; %mm position of the CoM of the foot
La = 100; %mm length of the foot in Zp direction
Lb = 400; %mm length of the shin in Zp direction
Lc = 500; %mm length of the thigh in Zp direction
lb = 200; %mm INPUT CONDITION FOR VALIDATION
lc = 250; %mm INPUT CONDITION FOR VALIDATION
Z2a = (1/m2) *(ma *la + mb * (La + lb) + mc * (La + Lb + lc)); %mm Total CoM position in the
configuration a
X2a = 0; %mm Total CoM position in the configuration a
Z2b = (1/m2) *(ma *la + mb * (La + lb *cos (thb)) + mc *(La + (Lb + lc) *cos (thb))); %mm Total CoM
position in the configuration b
X2b = (1/m2) *(mb *lb *sin (thb) + mc *(Lb + lc) *sin (thb)); %mm Total CoM position in the
configuration b
Z2c = (1/m2) *(ma *la + mb *(La + lb) + mc * (La + Lb + lc *cos (thc))); %mm Total CoM position in the
configuration c
X2c = (1/m2) * (mc *lc *sin (thc)); %mm Total CoM position in the configuration c
rwb = (X2b *m2 −ma *ra)/mw; %mm from Equations (30) and (31)
lwb = (Z2b *m2 −ma *la)/mw − La; %mm from Equations (30) and (31)
rwc = (X2c *m2 −ma *ra)/mw; %mm from Equations (30) and (31)
lwc = (Z2c *m2 −ma *la)/mw − La; %mm from Equations (30) and (31)
B = mw * (lwb + La) −mb *La −mc *Lb *cos (thb) −mc *La; %change of variables
C = mw * (lwc + La) −mb *La −mc * (La + Lb); %change of variables
det_A = (mb *mc *cos (thb) * (cos (thc) − 1)); %from Equation (38)
lb_validation = (mc * (B *cos (thc) − C *cos (thb)))/det_A; %mm from Equation (41)
lc_validation = (mb * (C *cos (thb) − B))/det_A; %mm from Equation (41)

5. Conclusions

In this paper, an optimized formulation to determine the center of mass position of each link of a
multibody biped robot is presented. The formulation is merged with a procedure that can be applied
to each types of robot with two force-torque sensors in contact between the robot and the ground and
joint sensors. An advantage of the formulation presented in this paper, as underlined in the paper, is
that if the total CoM position of the platform is known a priori, the first formulation proposed in [2,3]
(and shown in Section 2 of this paper) can be bypassed and the CoM positions of each link of the
platform can be calculated analytically without using force-torque sensors and motors torque. In this
case, only the formulation of the Section 3 can be used. The validation confirms the functioning of the
proposed formulation.
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Nomenclature

G-XYZ global Cartesian system
P-XpYpZp local Cartesian system
→
a 2 = [aX2, aY2, aZ2]

T acceleration vector of the total CoM
m2 total mass of the robot without feet
→
p 0 = [−n, −l, e]T position vector of Point 0
→
p 1 = [o, q, f ]T position vector of Point 1
→
p 2 = [X2, Y2, Z2]

T position vector of Point 2
→
M0 = [MX0, MY0, MZ0]

T torque vector of Point 0
→
M1 = [MX1, MY1, MZ1]

T torque vector of Point 1
→
M2 = [MX2, MY2, MZ2]

T torque vector of Point 2
→
F 0 = [FX0, FY0, FZ0]

T force vector of Point 0
→
F 1 = [FX1, FY1, FZ1]

T force vector of Point 1
→
F 2 = [FX2, FY2, FZ2]

T force vector of Point 2
→
MP = [MXP, MYP, MZP]

T torque vector of the resultant moment calculated with respect to the
local Cartesian system P-XpYpZp

∑ Mj_roll , ∑ Mj_pitch, ∑ Mj_yaw torques of all roll, pitch, and yaw motors of the robot
X2A, Y2A, Z2A position of the centre of mass of the platform in the configuration A
X2B, Y2B, Z2B position of the centre of mass of the platform in the configuration B
mu, ru, qu, lu mass and position of the centre of mass of the robot ankle link from the

floor to the ankle joint
U length of the ankle
mw, rw, qw, lw mass and the position of the centre of mass of the remaining links of the

platform
θt angle used in the configuration B
K constant parameter set for each motor
I current necessary for the motor function
αi, βi, γi, δi four novel coefficients for the configuration i
αj, β j, γj, δj four novel coefficients for the configuration j
n degrees of freedom of the platform
k number of the configurations to calculate positions of the CoM for each

link of the system
i, j used configurations to calculate the CoM of each link
→
t i =

[
rwi qwi lwi + U

]T
vector position of mw

rwi, qwi, lwi components of the vector position
→
t i =

[
rwi qwi lwi + U

]T

respectively in XP, YP and ZP directions

χi and εi angles of the vector position
→
t i =

[
rwi qwi lwi + U

]T
with the the

local reference system P-XPYPZP
→
t b and

→
t c position vectors of the mass mw respect to the local reference system

P-XPYPZP and respectively of the configurations b and c
→
s b and

→
s c position vectors of the masses mb and mc respect to the local reference

system of each link
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