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Abstract: This paper proposed an entropy weight optimum seeking method (EWOSM) based on the
typical scenarios partitioning and load distribution matching, to solve the reactive power optimization
problem in distribution network under the background of big data. Firstly, the mathematic model of
reactive power optimization is provided to analyze the relationship between the data source and the
optimization schemes in distribution network, which illustrate the feasibility of using large amount of
historical data to solve reactive power optimization. Then, the typical scenarios partitioning method
and load distribution matching method are presented, which can select out some loads that have the
same or similar distributions with the load to be optimized from historical database rapidly, and the
corresponding historical optimization schemes are used as the alternatives. As the reactive power
optimization is a multi-objective problem, the multi-attribute decision making method based on
entropy weight method is used to select out the optimal scheme from the alternatives. The objective
weights of evaluation indexes are determined by entropy weight method, and then the multi-attribute
decision making problem is transformed to a single attribute decision making problem. Finally,
the proposed method is tested on several systems with different scales and compared with existing
methods to prove the validity and superiority.

Keywords: entropy weight optimum seeking method (EWOSM); big data; reactive power
optimization in distribution network; typical scenarios partitioning; load distribution matching;
multi-attribute decision making

1. Introduction

Reactive power optimization is an effective means to ensure the safe and economic operation of
power system. The reasonable reactive power distribution can reduce the network loss [1,2], improve
the voltage quality [3,4], and maintain the normal operation of the power grid. Reactive power
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optimization is a nonlinear mixed integer programming problem with multiple objectives, and generally,
the solution of existing methods is to make hypothesis and simplifications of the optimal model, and
then solve it with iterative optimization. The optimization algorithm can be roughly divided into two
types: the traditional optimization method such as interior point method [5], sequential quadratic
programming [6], and artificial intelligence algorithms such as genetic algorithm [7], particle swarm
algorithm [8], and multi-agent technology [9]. With a large number of distributed generators [10–12],
energy storages and demand side response control equipment [13–16] access to distribution network,
the number of control variables in reactive power optimization increased significantly, while the
convergence cannot be guaranteed and the computation time of traditional mathematical methods
increased. The results of artificial intelligence algorithms are instable and easy to fall into local optimum.

In order to improve the convergence, accuracy and computing speed of reactive power
optimization, the existing literature mainly studied on the simplification of the model and the
improvement of the algorithm. Literature [17] proposed a method to optimally set the reactive
power contributions of distributed energy resources present in distribution systems with the goal of
regulating bus voltages, then the reactive power optimization was modeled as a convex quadratic
program and solved based on the alternating direction method of multipliers efficiently. Literature [18]
proposed an advanced loss reduction approach to achieve the optimal control coordination among
multiple capacitors and DERs. The proposed approach and solution were developed on the basis of the
detailed multi-phase distribution network modeling and the state-of-the-art optimization technology.
The effectiveness of the proposed approach was demonstrated on practical utility distribution circuits
with varying degree of unbalance and model complexity. Literature [19] presented a mixed-integer
linear programming model to solve the simultaneous transmission network expansion planning
and reactive power planning problem. The proposed model considered reactive power, off-nominal
bus voltage magnitudes, power losses, multistage expansion, and security constraints. The use of
a mixed-integer linear programming (MILP) model guaranteed convergence to optimality by using
existing classical optimization methods. Although the above research has improved the efficiency
and convergence of reactive power optimization, it has not been separated from the limitations of the
traditional algorithm model and iterative optimization.

In recent years, big data technology has been paid more and more attention by experts and scholars
in various fields. The basic idea of big data is to guide the system operation or production practice
in the future by means of analyzing a large amount of data generated from practice or production
system, finding a certain law, and establishing the corresponding data model [20,21]. The distribution
network contains many nodes, the database has accumulated a lot of historical data, and the power
load showed a certain cyclical characteristics, which make it possible to apply the theory and method
of big data to reactive power optimization in distribution network.

At present, the research and application of big data in distribution network is still in the initial
stages. The relevant research focuses on multi-source data fusion and data storage technology [22,23],
application requirements and typical scene analysis [24–26], running state analysis [27–29] and other
fields, and it has made some achievements. In this paper, the method of modeling and analysis of big
data is introduced into the field of reactive power optimization in distribution network.

Based on the above background, an entropy weight optimum seeking method (EWOSM) is
proposed to solve the reactive power optimization in distribution network. The method contains two
steps. Firstly, typical load scenarios and topology scenarios are established based on historical data,
and a load distribution matching method based on Pauta criterion is proposed to select out some
alternatives from the historical database. Secondly, three evaluation indexes including the network loss,
node voltage offset and static voltage stability index are used to analyze and evaluate the alternatives,
and entropy weight method [30–32] is used to choose the optimal control scheme from the alternatives.

The remainder of the paper is organized as follows. The method of typical scenarios partitioning
and load distribution matching are presented in Section 2. And Section 3 presents the reactive power
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optimization method based on entropy weight method. Case simulation with different systems and
results comparisons are provided in Section 4. Section 5 is the summary and presents the conclusions.

2. The Method of Typical Scenarios Partitioning and Load Distribution Matching

2.1. Relationship between the Data Source and the Optimal Schemes in Reactive Power Optimization

The database in distribution network has accumulated a large amount of historical data, which
comes from different systems, such as SCADA (Supervisory Control and Data Acquisition), GIS
(Geographic Information System) and EMS (Energy Management System). It also can be divided
into operational monitoring data, marketing data, and management data according to the use of
data. Besides, part of the data is well-structured, but more data is unstructured or semi-structured.
Facing such a large amount of multi-source and heterogeneous data, it is necessary to consider how
to select out the effective data and make fully use of it to solve reactive power optimization problem.
Therefore, data fusion and data cleaning should be performed to make all the data well-structured
firstly [33,34]; then, the mathematic model of reactive power optimization is provided to analyze the
relationship between the data source and the optimal schemes, which can guide us to find out the data
that have a decisive effect on reactive power optimization.

Reactive power optimization is a multi-objective programming problem, and generally the
network loss, the node voltage offset and the minimum module-eigenvalue of the Jacobian matrix are
chosen as the objective functions to evaluate the economy and security of the system. The minimum
module-eigenvalue can measure the static voltage stability of the system; the smaller the value is, the
more unstable the system is, and the value will decrease to 0 if the voltage collapse occurs. The formulas
of the objective function are expressed as follows:

min f = w1 f1 + w2 f2 + w3 f3 (1)

f1 =
n

∑
i,j=1

Gij(V2
i + V2

j − 2ViVj cos θij) (2)

f2 =
n

∑
i=1

(
Vi −VB

i
∆Vmax

i
)

2

(3)

f3 = min(|eig(J)|) (4)

where f is the objective function; f 1, f 2 and f 3 are respectively the network loss, the node voltage offset
and the minimum module-eigenvalue; w1, w2 and w3 are the corresponding weight of f 1, f 2 and f 3, and
w1 + w2 + w3 = 1; Vi and Vj are the voltage amplitude of node i and node j; Gij and θij are respectively
the conductance and voltage phase angle difference between node i and node j, and particularly i 6= j;
n is the number of nodes in the system; Vi

B is the ideal voltage amplitude of node i, whose value is
usually 1.0 (p.u.); ∆Vi

max is the maximum allowable voltage offset of node i, which is generally ±7%
in the distribution network; J is the Jacobian matrix while the power flow is converged; and eig (J) is
the eigenvalue of matrix J.

The constraint of the reactive power optimization model contains power balance constraints,
voltage constraints and control variables constraints. The power balance constraints are as follows:

PGi − PLi −Vi

n

∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
= 0 (5)

QGi −QLi −Vi

n

∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
= 0 (6)
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where PGi and QGi represent the active and reactive power of node i; PLi and QLi represent the active
and reactive load of node i; Bij represents the susceptance between node i and node j.

The voltage and the control variables constraints are expressed as follows:

Vi,min ≤ Vi ≤ Vi,max (7)

Qciq = Kciq · qciq , iq = 1, . . . , nq (8)

TiT = 1 + KTiT · ∆TiT , iT = 1, . . . , nT (9)

where Vi,min and Vi,max represent the upper and lower voltage bounds of node i respectively; nq and nT
are respectively the number of capacitor compensation nodes and transformer nodes; if the capacitors
are equal grouping and the single capacity is qciq, Qciq is the compensation capacity of node iq with Kciq

groups put into operation; TiT is the ratio of transformer with the tap position KTiT and the minimum
adjustment ∆TiT .

As expressed in Equations (1)–(4), the objective function f can be expressed as a function of the
system active load P, reactive load Q, the capacitor compensation capacity Qc and the transformer tap
T, which can be expressed as follows:

f = F(P, Q, Qc, T) (10)

where F(·) expresses a mapping relation from P, Q, Qc and T to the optimal objective function.
Generally, the reactive power control scheme in distribution network consists of compensation

capacity Qc and transformer tap T, which are determined by the load level and load distribution in
each node while the network topology remains unchanged. Besides, reactive load is dependent upon
the existence of active load, so it can be obtained by power factor. Therefore, Equation (10) can be
simplified as follows:

(Qc, T) = g(P1, P2, . . . , Pn; Q1, Q2, . . . , Qn) (11)

where g(·) expresses a mapping relation from load distribution to reactive power control scheme;
(P1, . . . , Pn) and (Q1, . . . , Qn) respectively express the active power load and reactive power load
distribution in different nodes.

Since the compensation capacity of capacitor and the transformer tap are both finite discrete
variables, the number of reactive power control schemes is limited. Though power load is a continuous
variable and has some randomness, it appears a strong regularity and periodicity; and the optimal
reactive compensation scheme remains the same in a certain range of load fluctuation. Therefore,
while the amount of power load data and load distribution patterns that accumulated in the historical
database is large enough, and assume that all historical control schemes are optimal, the corresponding
control schemes of the existing load distributions are all contained in the database.

Therefore, if the reactive power optimization is carried out for a certain time in the future, the
similar network topologies, load distributions and corresponding control schemes are selected out
from the historical database, and then the optimal control scheme is among the schemes. This paper is
to solve the problem that how to find out the optimal plan from the historical database.

2.2. The Method of Typical Scenarios Partitioning

In the previous section, it is concluded that the control scheme of reactive power in distribution
network is determined by the network topology and load distribution. Then, how to make fully and
effectively use of the two types of data in historical database has become the key to solve reactive
power optimization problem. This paper presented a typical scenarios partitioning method, containing
typical topology scenarios partitioning and typical load scenarios partitioning.

Firstly, typical topology scenarios partitioning method is presented. The change of topology in
distribution network is achieved by the cooperation of section switches and tie switches. Although the
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combination of different switch states can produce many kinds of network topologies, it can be seen
from the historical operating data that the difference of the duration of different network topologies in
one year is obvious, and the number of typical topologies that has long duration is limited. Therefore,
select topologies that has long duration in historical database as the typical topology scenarios, and
other topologies are treated as special scenarios.

Secondly, the method of typical load scenarios partitioning is as follows. For some load that
have strong regularity and change smoothly, the load fluctuates around its typical load curve during
a specific operating cycle; while the data quantity is large enough, this type of load obeys a normal
distribution approximately around its typical load curve in a specific scenario in statistically, so
the similar load distributions can be found in the typical load scenario corresponding to the load
distribution to be optimized. As it appears different load characteristics in different seasons, weekdays
and weekends, it can be simply divided into eight typical load scenarios preliminarily, that is, weekdays
and weekend in four seasons. Besides, different types of load are affected by different factors, so
the eight typical load scenarios can be further refined according to the weather, holidays and other
factors, to increase the number of typical scenarios. For example, typical scenarios of residential load
in summer can be further subdivided based on temperature and humidity; national legal holidays
also have great influence on the commercial load, so it can be subdivided into the scenario of Spring
Festival, May Day, National day and other scenarios. The refinement of typical load scenarios can not
only improve the accuracy of load distribution matching, but also improve the computing time of the
method. The typical daily load curves of the eight scenarios in a certain region are shown in Figure 1.
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Figure 1. The typical daily load curves of different scenarios in a certain region: (a) weekdays in four
seasons; and (b) weekends in four seasons.

2.3. The Method of Load Distribution Matching

This paper proposed a load distribution matching method, which can quickly find out the load
that has the similar distribution with the load to be optimized from massive historical data, and the
corresponding control schemes are also selected out. While the power flow of time t in a certain day
is to be reactive power optimized, the first step is to select out the samples that both have the same
topology scenario and load distribution scenario with the load at time t, and the samples form a set.
Secondly, load distribution matching method is implemented with the sample set, and then a smaller
sample set is formed, which contains the optimal scheme.

Assume that there are N0 days in the historical database that has the same topology scenario and
load scenario to the time t; then match the load distribution at time t of the N0 days with the moment to
be optimized in turn, and select out the load that has the similar distribution with the time t. Suppose
that there are Ne similar load distributions are selected out, then the corresponding historical optimal
schemes form the alternative set.
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It is necessary to make a matching rule for the load distribution matching. If a load distribution
obeys the rule, it can judge that the load distribution is similar to the moment to be optimized, and its
corresponding historical optimal plan can be an alternative. In the Pauta criterion of statistics, while
the amount of statistical data is large enough, the probability of the value of the random variable
that subject to the normal distribution N ~(µ,σ2) beyond µ ± 3σ is 0.27%, which is considered a small
probability event and almost impossible happened in mathematics.

The Pauta criterion is applied to the load distribution matching in this paper. In a system with
n nodes, generate two load intervals (P − 3σP, P + 3σP) and (Q − 3σQ, Q + 3σQ), where the mean
values are the load to be optimized in each node P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn); the variance
values are σP

2 and σQ
2; σP = (σP1, . . . , σPn) and σQ = (σQ1, . . . , σQn) are empirical value, which can

be calculated with large amount of historical load in different typical scenarios. Take the active power
load as an example to illustrate the specific matching process, the active load is divided into three
regions by the interval (P − 3σP, P + 3σP), which is shown in Figure 2.
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Figure 2. Schematic diagram of load distribution matching.

Read load distributions in the typical scenario from the historical database in turn. And if a
load distribution is completely within the interval (P − 3σP, P + 3σP), that is, within the Region 1 in
Figure 2, take the corresponding historical optimal plan as an alternative; otherwise, the corresponding
historical plan cannot be used. After the active power load distribution matching is finished and Nm

historical load are selected out, reactive power load distribution matching is also carried out with the
Nm historical load.

In summary, if the reactive load optimization is carried out for the load at time t, the process of
the load distribution matching is shown in Figure 3, and the final result is a set of alternative schemes
composed of Ne historical reactive power control plans.

As the method proposed in this paper is dependent on the historical data, it is suitable for the
system that the load changes smoothly and the historical data accumulates enough. In the system with
frequently load changing or little historical data, maybe there is no load in the interval (P − 3σP, P +
3σP) to be matched or the number of matched load samples is little. There are two solutions in this
case. The first one is simulation off-line, generate a number of load distributions in the interval (P −
3σP, P + 3σP) randomly, and conventional method is used for reactive power optimization of each
load distribution respectively; the historical database is extended in this way, and then the proposed
method can be used. The second solution is that conventional method is directly used for reactive
power optimization and the optimal results are saved into the database; while enough load data are
accumulated in the database, the proposed method can be used.
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3. Reactive Power Optimization in Distribution Network Based on EWOSM

3.1. Introduction to Multi-Attribute Decision Making Problem Based on Entropy Weight Method

While selecting the optimal control scheme from alternatives, several reactive power optimization
evaluation indexes should be considered comprehensively, including the network loss, voltage offset,
power factor and so on. Therefore, it is a multi-attribute decision making problem, which is also called
multiple objective decision making with finite alternatives. It is a decision making problem that select
the optimal scheme from alternatives or schedule the alternatives ranking with the consideration of
multiple attributes. Entropy weight method based on information entropy can solve the problem.
The objective weights of multiple attribute indexes are determined by information entropy calculated
from alternatives, and then the best scheme is selected out.

The concept of entropy is derived from thermodynamics and it is a physical quantity that reflecting
the directivity of natural thermal processes in initially. Then information entropy is put forward with
the development of related research, which opens up a new way for quantitative decision method.
In information theory, the amount and quality of information obtained in decision-making is an
important factor to determine the accuracy and reliability of final decision. Exactly, entropy is a good
measure for useful information provided by data.

In the multi-attribute decision making problem with M evaluation indexes and N alternatives, the
evaluation index matrix is expressed as follows:



Appl. Sci. 2017, 7, 787 8 of 19

Y =


y11 y12 · · · y1N
y21 y22 · · · y2N

...
... · · ·

...
yM1 yM2 · · · yMN

 (12)

where yij is the value of the i-th evaluation index at the j-th alternative.
Matrix R = {rij} is got with the standardized of matrix Y. The greater the value of the element

in matrix R is, the better the evaluation effect is, so all evaluation indexes should be standardized
according to this regulation. For the evaluation index that smaller value has better evaluation effect
should be standardized with Equation (13), and conversely with Equation (14).

rij =

max
j
{yij} − yij

max
j
{yij} −min

j
{yij}

(13)

rij =

yij −min
j
{yij}

max
j
{yij} −min

j
{yij}

(14)

where max
j
{yij} and min

j
{yij} are respectively the maximum and minimum value of the i-th row in

matrix Y. The maximum value of the elements in matrix R is 1 and minimum is 0, that is, 0 ≤ rij ≤ 1,
where i = 1, . . . , M; j = 1, . . . , N.

Calculate the proportion pij that evaluation index rij on the i-th index according to Equation (15),
where rij is the i-th evaluation index of the j-th alternative.

pij = rij

/
N

∑
j=1

rij (15)

And the entropy of the i-th evaluation index is expressed as follows [35]:

Hi = −k
N

∑
j=1

pij ln pij (16)

where pij × lnpij = 0 if pij = 0; and k = 1/ln N in order to make it meet the constrain that 0 ≤ Hi ≤ 1.
Entropy is a measure of uncertainty, and the smaller the entropy value is, the more effective the

information corresponding to the evaluation index is. Therefore, the entropy weight wi of the i-th
index is shown as follows:

wi =
1− Hi

M−
M
∑

i=1
Hi

(17)

After the entropy weight of each evaluation index is determined, the multi-attribute decision
making is transformed into a single attribute decision making problem; and then the optimal scheme
can be selected from the alternatives.

3.2. Specific Steps of EWOSM

The proposed EWOSM contains two procedures. Firstly, typical scenarios partitioning and load
distribution matching method is used and select out Ne alternative schemes from historical database.
Secondly, select the optimal scheme from alternatives with the entropy weight method, and the specific
steps are expressed as follows.
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Step 1: Based on the power load at the time to be optimized, calculate the power flow with Ne

alternatives respectively and the results of power flow must be checked according to Equations (5)–(9)
to ensure the constraints are satisfied. If the constraints are not met, the corresponding alternative
control scheme should be removed. Besides, three indexes containing the network loss, the node
voltage offset and the minimum module-eigenvalue of the Jacobian matrix are used to evaluate the
control effect of each alternative, and the three indexes are presented by y1, y2 and y3.

Step 2: This is a multi-attribute decision-making problem with 3 evaluation indexes and Ne

alternatives, and the evaluation index matrix is formed as expressed in Equation (12).

Y =

 y11 y12 · · · y1Ne

y21 y22 · · · y2Ne

y31 y32 · · · y3Ne

 (18)

Step 3: As the smaller the value of the network loss and the node voltage offset, the better the
control effect of reactive power, standardize the two indexes according to Equation (13); conversely,
the larger the minimum module-eigenvalue is, the more stable the system is, so standardize the index
according to Equation (14). Then calculate the proportion pij that the evaluation index rij on the index i
with Equation (15).

Step 4: Calculate the entropy of each evaluation index and the corresponding entropy weight
according to Equation (16) and Equation (17) respectively.

Step 5: The objective weight w1, w2 and w3 of the three evaluation indexes are substituted into
Equation (19) to calculate the total evaluation value of each alternative respectively. And the scheme
that has the highest evaluation value is the optimal control plan.

rj = w1r1j + w2r2j + w3r3j, j = 1, · · · , Ne (19)

In summary, the reactive power optimization process based on the entropy-weight method in
distribution network is shown in Figure 4.
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entropy-weight method.

As the proposed EWOSM is based on the analysis and comparison of a large number of historical
reactive power optimization schemes, under the ideal condition, two assumptions are set up that
the historical database is large enough to containing all the load distributions and the corresponding
historical control scheme are optimized, so that the result of EWOSM should be the optimal scheme.
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But in practical engineering applications, the two assumptions are hardly to set up, so the result cannot
be guaranteed the optimal scheme and it is more like a suboptimal feasible solution. Then, a hybrid
method based on the combination of EWOSM and some existing methods, such as Genetic Algorithm
(GA) method, neighborhood search method and Sequential Quadratic Programming (SQP) method, is
proposed to ensure the optimality and practicability. For example, the neighborhood search algorithm
can be used to find the global optimal solution in the neighborhood of the result of EWOSM; besides,
the result of EWOSM also can be taken as an initial solution of the existing optimization algorithm to
speed up the convergence and improve efficiency.

4. Case Study

4.1. A Practical Distribution System with 173 Nodes

4.1.1. Case Descriptions of the 173 Nodes System

To demonstrate the effectiveness, the proposed method EWOSM was tested on a practical
distribution system with 173 nodes. The head of the system is slack bus, and it is in the low voltage
side of a step-down substation from 220 kV to 110 kV. There are two lines of 110 kV connected from
the slack bus to two step-down substations from 110 kV to 10 kV respectively, and the substations are
connected by five medium-voltage lines of 10 kV, which are named by line A, line B, line C, line D and
line E. The single-line diagram of the tested system is shown in Figure 5.
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In Figure 5, T1 and T2 are the main transformers in the substation, and the models are both
SFZ11-12500/110 with the tap ranging from 0.9 p.u. to 1.1 p.u. by 17 steps. The load is connected
to the medium-voltage distribution network by distribution transformer; take T3–T7 for example,
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the models are S11-400/10, S11-630/10, S11-630/10, S11-630/10 and S11-800/10 respectively, and the
taps are fixed to 1.0 p.u. There are thirteen nodes installed by shunt capacitors in the system, where
Qc1 and Qc2 are the centralized compensations in the low-voltage side of substation, and Qc3–Qc13
are the feeder compensations. The capacity of capacitors is equal grouped and each group is 50 kvar.
The configuration information of capacitors is listed in Table 1. The proposed method EWOSM was
coded in MATLAB R2009a (MathWorks, Natick, MA, USA) and run on an Intel i5-3230M 2.6 GHz
notebook with 4 GB RAM (Dell, Round Rock, TX, USA).

Table 1. The configuration of capacitors in 173 nodes system.

Capacitors
Name

Connected Bus
Number

Compensation
Capacity/Kvar

Capacitors
Name

Connected Bus
Number

Compensation
Capacity/Kvar

Qc1 3 2000 Qc8 C19 600
Qc2 5 2000 Qc9 C27 1200
Qc3 A19 1200 Qc10 D11 2000
Qc4 A44 1000 Qc11 D21 1200
Qc5 B13 1200 Qc12 E10 2000
Qc6 B26 800 Qc13 E25 800
Qc7 C7 600

The historical load data in the test system is from the actual historical database from year 2011 to
2015, and the corresponding reactive power control schemes are also read from the historical database.
The missing part of control schemes are calculated by Sequential Quadratic Programming (SQP) based
on literature [36], and then the historical database is completed.

In Figure 5, the tie lines are represented by the red dashed lines, and S1–S6 are the tie switches
on the corresponding tie lines. The network topology changes through the cooperation of the section
switches and tie switches.

4.1.2. The Typical Scenarios Partitioning of the 173 Nodes System

There are eight typical topology scenarios in the historical database from year 2011 to 2015, and
the sum of the duration accounts for 94.85% of the total running time of the system. The rest time is
accounted for other topology scenarios. The specific information of the typical topology scenarios are
shown in Table 2.

Table 2. The typical topology scenarios information of the 173 nodes system.

No.
The State of Tie Switches The Disconnected

Feeders
Scenario

Duration/h
The Ratio of

DurationS1 S2 S3 S4 S5 S6

Typical topology
Scenario 1 Open Open Open Open Open Open / 10,512 23.99%

Typical topology
Scenario 2 Close Open Close Open Close Open A12–A13,

C23–C24, D14–D20 9744 22.23%

Typical topology
Scenario 3 Close Close Open Open Open Close A12–A13,

A43–A44, E19–E23 7536 17.20%

Typical topology
Scenario 4 Open Close Close Open Close Open A43–A44,

C23–C24, D14–D20 6576 15.01%

Typical topology
Scenario 5 Close Close Open Close Open Open A12–A13,

A43–A44, B18–B19 2280 5.20%

Typical topology
Scenario 6 Open Close Close Close Close Open A43–A44, B18–B19,

C23–C24, D14–D20 1752 4.00%

Typical topology
Scenario 7 Close Open Close Close Open Close A12–A13, B18–B19,

C23–C24, E19–E23 1608 3.67%

Typical topology
Scenario 8 Close Close Close Open Close Open

A12–A13,
A43–A44,

C23–C24, D14–D20
1560 3.56%

Sum / / / / / 41,568 94.85%
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According to the information of seasons, weekdays and weekends, there are eight typical load
scenarios, and the specific scenario information is shown in Table 3.

Table 3. The typical load scenarios information of the 173 nodes system.

No. The Typical Load Scenarios The Number of Days No. The Typical Load Scenarios The Number of Days

1 Weekday in Spring 328 5 Weekday in Autumn 325
2 Weekend in Spring 132 6 Weekend in Autumn 130
3 Weekday in Summer 328 7 Weekday in Winter 323
4 Weekend in Summer 132 8 Weekend in Winter 128

The total load forecast curve of one day is shown in Figure 6, and three different load levels are
selected out for reactive power optimization calculations, respectively at 2 o’clock, 10 o’clock and
17 o’clock.
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Figure 6. The load curve of the next day.

Take the high load level (at 17 o’clock) for example to illustrate the calculation processes. Firstly,
it is determined that the topology at the time belongs to the first type of the typical topology scenarios
according to Table 2, and the typical scenario lasts for 10,512 h from year 2011 to 2015, which can be
converted to 438 days. Besides, the day belongs to the typical summer weekdays according to the date,
and the typical load scenario lasts for 328 days from year 2011 to 2015. Take the intersection of the two
typical scenarios, and there are 217 days in the database that the topology scenario and load scenario
are both belonged to the same typical scenario with time to be optimized.

4.1.3. The Load Distribution Matching of the 173 Nodes System

Then, the load distributions at 17 o’clock of the 217 days are matched with the proposed load
distribution matching method, and σ is set to the 1% of the load on corresponding nodes. Finally, there
are 59 alternatives are selected out, and the results of load distribution matching are shown in Figure 7.

As shown in Figure 7, the black symbols * represent the load distribution at 17 o’clock; the
red symbols ∨ and magenta symbols ∧ respectively indicate the upper and lower limits of the load
distribution matching, that is, the 1% positive and negative deviation of the load on each node at
17 o’clock; the blue points represent the 59 load distributions from the matching results. It can be
seen obviously from the partial enlarged diagram at the top-left corner of Figure 7 that the matched
59 load distributions are all within the 1% positive and negative deviation of the load on each node at
17 o’clock.

4.1.4. The Entropy Weight Method of the 173 Nodes System

Power flow is calculated in turn with the 59 alternatives based on the load at 17 o’clock, and
the corresponding network loss, node voltage offset and minimum module-eigenvalue are shown in
Figure 8, which are calculated according to Equations (2)–(4).
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Figure 7. The result of load distribution matching at 17:00.
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Figure 8. The evaluation indexes of alternatives: (a) the network loss; and (b) the node voltage offset;
(c) the minimum module-eigenvalue.

As shown in Figure 8, there are some cases that the network loss or node voltage offset of
the 59 alternatives is similar or the same. It is because that a part of the control schemes of the
alternatives may be same or similar. The weights of the network loss, node voltage offset and
minimum module-eigenvalue are 0.5402, 0.2106 and 0.2492 respectively, and the optimal scheme is the
thirty-second alternative. The specific optimal scheme and results are shown in Table 4.

Table 4. The results of reactive power optimization with two methods under different load levels.

High Load Level (at 17 o’clock) Middle Load Level (at 10 o’clock) Low Load Level (at 2 o’clock)

GA SQP EWOSM GA SQP EWOSM GA SQP EWOSM

Optimal schemes

Qc1/kvar 950 400 400 1000 300 350 950 250 200
Qc2/kvar 1000 800 850 900 550 550 950 350 350
Qc3/kvar 600 800 850 800 700 650 450 550 500
Qc4/kvar 900 550 550 450 450 400 500 350 300
Qc5/kvar 1050 950 1000 1150 800 800 600 600 600
Qc6/kvar 600 450 450 250 400 350 350 300 300
Qc7/kvar 600 500 500 450 400 400 300 300 300
Qc8/kvar 500 500 500 450 450 450 350 350 300
Qc9/kvar 1200 800 800 700 650 600 450 500 500
Qc10/kvar 1900 1150 1200 1150 950 950 650 700 700
Qc11/kvar 650 1150 1150 850 950 900 850 700 700
Qc12/kvar 1900 1550 1650 1450 1350 1300 900 1050 1000
Qc13/kvar 800 750 800 550 650 650 450 500 450

T1 1 + 6 × 1.25% 1 + 6 × 1.25% 1 + 6 × 1.25%
T2 1 + 6 × 1.25% 1 + 6 × 1.25% 1 + 6 × 1.25%

Network loss/kW 637.16 632.86 631.40 494.76 494.34 495.39 342.93 342.11 342.40
Node voltage offset 32.28 16.826 18.40 29.84 19.578 17.84 33.09 25.332 23.15

Minimum module-eigenvalue 0.00579 0.00568 0.00569 0.00590 0.00582 0.00581 0.00606 0.00601 0.00599
Computation time/s 44.663 13.64 4.37 44.29 10.143 4.846 39.2 11.497 3.925
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4.1.5. Results, Comparisons and Analysis of the 173 Nodes System

The proposed method EWOSM is compared with conventional reactive power optimization
method to verify the validity and effectiveness. Genetic Algorithm (GA) and SQP method are chosen
as the representatives of the existing artificial intelligence algorithms and traditional mathematical
methods respectively to compare with EWOSM. The optimal results of the three methods under three
different load levels are shown in Table 4. GA method based on literature [37,38] is used as the solution
of conventional reactive power optimization, and the specific parameters are as follows: crossover rate
is 0.8, mutation rate is 0.2, population size is 20, the maximum number of iterations is 100, and the
algorithm will stop with no evolution for more than 50 continuous generations. And SQP method is
based on literature [36].

It can be seen from Table 4 that the differences of network loss of GA, SQP and EWOSM under
the three different load levels are less than 1%, and the differences of minimum module-eigenvalue are
less than 1.5%, which proves the validity and effectiveness of the proposed EWOSM. Besides, the three
methods are also applied to several different scales of test systems, including the standard distribution
system of IEEE 33 nodes [39], PG & E 69 nodes [40] and a practical distribution system with 292 nodes,
and the results are listed in Appendix A (Table A1) due to length of the article, which can further proof
the effectiveness of EWOSM.

4.2. The Influence of System Scale and the Number of Control Variables on the Computation Time

In order to verify the superiority of the proposed method in terms of computing speed, several
test systems are simulated respectively to analyze the influence of the system scale and the number of
control variables on the computation time, based on the historical data from year 2011 to 2015. To fully
verify the impact of the two factors on the computation time, the network topologies of the following
test systems are assumed to remain unchanged.

4.2.1. Analysis of the Influence of System Scale on the Computation Time

Firstly, test the impact of the system scale on the computation time with three systems, containing
the standard distribution system of IEEE 33 nodes, PG & E 69 nodes and a practical 292 distribution
system with 292 nodes. The three testing systems all contain one on-load tap changer (OLTC) and
three shunt capacitor compensation nodes, and the specific configuration information of capacitors are
shown in Table 5. The single group capacity of capacitors is 50 kvar, and tap of OLTC is 1 ± 8 × 1.25%.

Table 5. The configuration of capacitors in three different scale distribution networks.

No.
IEEE 33 Nodes System PG&E 69 Nodes System 292 Nodes System

Connected Bus Capacity/Kvar Connected Bus Capacity/Kvar Connected Bus Capacity/Kvar

Capacitors C1 13 500 35 500 29 1200
Capacitors C2 23 500 45 1200 157 600
Capacitors C3 29 1000 61 500 277 500

The proposed EWOSM, GA method and SQP method are used for reactive power optimization
respectively on the three testing systems, and the comparison of computation time is shown in Figure 9.

As shown in Figure 9 that while the number of control variables is the same, the computation time
of EWOSM and GA method increases with the increasing of the system scale, but the computation
time of SQP method has little relevance to the system scale. The reason is that power load of all nodes
need to be matched in the load distribution matching. Therefore, the computation time of EWOSM is
positive correlated to the number of system nodes, but it is still much shorter than GA method.
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4.2.2. Analysis of the Influence of the Number of Control Variables on the Computation Time

Next, the influence of the number of control variables on computation time is tested on the
173 nodes system mentioned in Section 4.1. The system contains five medium-voltage lines of 10 kV
and fifteen control variables. Adjust the number of lines that take part in reactive power optimization,
and then the number of control variables changes correspondingly. The proposed EWOSM, GA method
and SQP method are used to calculate the optimal results respectively. The specific setting of control
variables is shown in Table 6 and the comparison of computation time is shown in Figure 10.
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control variables.

Table 6. The comparison of computation time with three methods varied with the number of
control variables.

The Line Participation in
Reactive Power Control

The Number of
Control Variables The Specific Control Variables

Line A 6 T1, T2, Qc1–Qc4
Line A and B 8 T1, T2, Qc1–Qc6

Line A, B and C 11 T1, T2, Qc1–Qc9
Line A, B, C and D 13 T1, T2, Qc1–Qc11

Line A, B, C, D and E 15 T1, T2, Qc1–Qc13
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It can be seen from Figure 10 that the computation time of SQP method increases with the
increasing of the number of control variables, while the computation time of EWOSM and GA
method are less affected by the number of control variables. While the number of control variables
is small, the advantage in computation time of the method proposed is not obvious compared with
the existing methods. But with the increasing of the number of control variables, the advantage is
obviously enhanced.

4.3. The Combination of EWOSM and SQP Method

As the proposed method EWOSM is based on the analysis and comparison of large amount of
historical data, in practical applications, some historical data may be missing and some historical
control schemes are not optimized, which will lead to that the result of EWOSM is more like a
suboptimal feasible solution rather than a global solution. In practical scenarios that the global
optimal solution is necessary, EWOSM can be used in combination with GA method, neighborhood
search method, SQP method and other existing methods to speed up the convergence and ensure the
global optimization.

In this case, comparison of objective function values, computation time and convergence algebra
of three different methods is designed to prove the effectiveness of the proposed hybrid method, in
which the result of EWOSM is treated as an initial solution of SQP method. The computation time and
results of EWOSM, the hybrid method and SQP method are shown in Table 7.

Table 7. Comparison of computation time and results with three methods.

Method EWOSM The Hybrid Method SQP Method

Network loss/kW 631.40 632.02 632.75
Node voltage offset 18.40 17.18 16.71

Minimum module-eigenvalue 0.00569 0.00568 0.00567
Convergence algebra / 9 42
Computation time/s 4.37 7.41 19.50

It can be seen from Table 7 that the objective function of the three methods is almost the same,
which proves the validity of the hybrid method proposed. From the view of computation time, the
time of hybrid method is 7.41 s, which is reduced by 62% than SQP method. Besides, from the view
of convergent rate, the hybrid method converges in the ninth iteration, which is much less than the
forty-second iteration of SQP method. The comparison result illustrates that the effect of the proposed
hybrid method in speeding up the convergence and reducing the computation time is remarkable.

5. Conclusions

A reactive power optimization method in distribution network based on EWOSM is presented.
The proposed method is tested on several systems with different scales and comparison has been
made with GA method and SQP method. The results have proved the validity and effectiveness of the
proposed method EWOSM. The contributions and the novelties can be concluded as follows:

(1) The proposed EWOSM can rapidly and accurately select out the optimal scheme from large
amount of historical data. And the advantage in computation time is remarkable than
existing methods.

(2) The proposed EWOSM can be used in combination with existing methods to speed up the
convergence and ensure the global optimization.

(3) As the proposed EWOSM is based on the analysis of large amount of historical data, it is more
suitable for the distribution system that has relatively stable load and complete historical database;
otherwise the proposed EWOSM needs to cooperate with existing methods. The application
of big data theory and method in reactive power optimization needs to be further improved
and perfected.



Appl. Sci. 2017, 7, 787 17 of 19

Acknowledgments: This work was supported by Science and Technology Project of State Grid Corporation of
China (EPRIPDKJ (2015) 1495), and Beijing Natural Science Foundation (3172039).

Author Contributions: Yuqi Ji and Guangfei Geng conceived, designed and performed the experiments; Yuqi Ji,
Keyan Liu, Dongli Jia and Kaiyuan He analyzed the data; Wanxing Sheng and Xiaoli Meng contributed the power
load data and provided some suggestions on the experiments and manuscript; Yuqi Ji, Keyan Liu and Guangfei
Geng wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Calculation Results of Three Methods with Different Scales of Systems

Table A1. The calculation results of three methods in different scales of systems.

IEEE 33 Nodes System PG&E 69 Nodes System 292 Nodes System

EWOSM GA SQP EWOSM GA SQP EWOSM GA SQP

Optimal scheme

C1/kvar 300 300 300 300 300 300 750 750 750
C2/kvar 400 400 400 1000 1050 1050 300 300 300
C3/kvar 800 800 800 200 200 200 400 400 400

T 1 + 4 × 1.25% 1 + 4 × 1.25% 1 + 4 × 1.25%

Network loss/kW 75.5 75.5 75.5 124.8 124.7 124.7 93.8 93.8 93.8
Node voltage offset 1.27 1.27 1.27 4.49 4.50 4.50 8.69 8.69 8.69

Minimum module-eigenvalue 0.0169 0.0169 0.0169 0.00991 0.00992 0.00992 0.00155 0.00155 0.00155
Computation time/s 1.08 23.15 2.48 1.67 32.13 3.21 1.87 49.49 2.36
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