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Featured Application: Noise reduction in high-speed transport vehicles.

Abstract: A plasma actuator comprising a dielectric layer sandwiched between upper and lower
electrodes can induce a flow from the upper to lower electrode by means of an externally-applied
electric field. Our objective is to clarify the mechanism by which such actuators can control the cavity
tone. Plasma actuators, with the electrodes elongated in the streamwise direction and aligned in the
spanwise direction, were placed in the incoming boundary of a deep cavity with a depth-to-length
ratio of 2.5. By using this experimental arrangement, the amount of sound reduction (“control effect”)
produced by actuators of differing dimensions was measured. Direct aeroacoustic simulations
were performed for controlling the cavity tone by using these actuators, where the distributions
of the body forces applied by the actuators were determined from measurements of the plasma
luminescence. The predicted control effects on the flow and sound fields were found to agree
well with the experimental results. The simulations show that longitudinal streamwise vortices
are introduced in the incoming boundary by the actuators, and the vortices form rib structures in
the cavity flow. These vortices distort and weaken the two-dimensional vortices responsible for
producing the cavity tone, causing the tonal sound to be reduced.

Keywords: cavity tone; direct aeroacoustic simulation; aeroacoustics; plasma actuators; flow control;
noise control; vortices; wind tunnel experiments; acoustic sources

1. Introduction

Self-sustained oscillations in a flow over a cavity as shown in Figure 1—such as a sunroof of an
automobile or various gaps between parts of a high-speed transportation vehicle—can radiate intense
tonal noise as a cavity tone. This high-intensity noise also occurs at a single peak frequency, making
it a very unpleasant for many people. It is, thus, important to develop methods to suppress such
cavity tones.

Many researchers over the past 50 years have investigated the mechanism of acoustic radiation
from self-sustained oscillations in cavity flows. Rossiter [1] described an oscillation mechanism similar
to that presented for edge tones by Powell [2]. In this mechanism, the interactions of vortices with
the downstream edge of the cavity radiate acoustic waves, which cause the formation of new vortices
at the upstream edge. Furthermore, an acoustic resonance sometimes occurs in the cavity—such as
a one-quarter-wavelength-depth mode—making the cavity tone more intense [3].

Zhuang et al. [4] investigated the control of the cavity tone by blowing jets at the upstream edge
of the cavity. Yokoyama et al. [5] showed that the cavity tone can be reduced by blowing jets aligned
across the span in the upstream boundary layer, and the amount of reduction was affected by the
spacing of the jets.
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Figure 1. Configuration of the flow over a cavity. 
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exposed and a lower embedded electrode, with a dielectric layer sandwiched between the electrodes. 
By applying a high AC voltage to the electrodes, momentum is transferred from the charged plasma 
particles to the neutral gas through collisions between the plasma components and neutral air 
molecules. As a result, a flow is induced from the upper electrode toward the lower one. Plasma 
actuators have many advantages: they are simple configurations without moving parts, have fast 
time response and low mass, with the ability to be attached easily onto objects, as compared with 
other flow-control actuators, such as a piezo-actuator, an impinging jet, or a synthetic jet.  

 
Figure 2. Typical configuration of a dielectric-barrier-discharge plasma actuator. 

Huang et al. [6] succeeded in reducing the cavity tone by using spanwise-aligned plasma 
actuators, with the electrodes elongated in the streamwise direction (“streamwise plasma actuators”), 
which introduced a spanwise variation of velocity in the cavity flow. However, the sound-reduction 
mechanism of this approach has not been clarified in detail. 

The objective of the present investigation is to clarify the mechanism by which streamwise 
plasma actuators reduce the cavity tone. In preliminary experiments, the effects of the spanwise 
width and pitch of the lower electrode on the control of the cavity tone were studied. In Section 2, 
both our experimental methodologies and the simulations performed to clarify the mechanism 
through which the plasma actuators control the intensity of the cavity tone are discussed. The 
comparison of predicted results with those measured is discussed in Section 3. The predicted and 
measured results are discussed in detail in Section 4. In Section 5, conclusions are summarized. 

2. Methodologies  

2.1. Experimental Tests 

2.1.1. Wind Tunnel and Test Section 

Figure 3 shows the experimental setup for our tests. The experiments were carried out using a 
suction-type, low-noise wind tunnel with a rectangular test section having a cross-section with 
dimensions of 150 mm × 75 mm. The intensity of freestream turbulence was less than 0.5%, and the 
background-noise level was 55.2 dB (A) at the freestream velocity of 30 m/s.  

The origin of coordinates was located at the mid-span of the upstream edge of the cavity.  
The x, y, and z axes were oriented in the streamwise, normal, and spanwise directions, respectively.  

Figure 1. Configuration of the flow over a cavity.

Control of the cavity tone by a plasma actuator (PA) has also been investigated [6,7]. Figure 2
shows a typical configuration of a dielectric-barrier-discharge plasma actuator. It comprises an
upper exposed and a lower embedded electrode, with a dielectric layer sandwiched between the
electrodes. By applying a high AC voltage to the electrodes, momentum is transferred from the
charged plasma particles to the neutral gas through collisions between the plasma components and
neutral air molecules. As a result, a flow is induced from the upper electrode toward the lower one.
Plasma actuators have many advantages: they are simple configurations without moving parts, have
fast time response and low mass, with the ability to be attached easily onto objects, as compared with
other flow-control actuators, such as a piezo-actuator, an impinging jet, or a synthetic jet.

Appl. Sci. 2017, 7, 790  2 of 15 

 
Figure 1. Configuration of the flow over a cavity. 

Control of the cavity tone by a plasma actuator (PA) has also been investigated [6,7]. Figure 2 
shows a typical configuration of a dielectric-barrier-discharge plasma actuator. It comprises an upper 
exposed and a lower embedded electrode, with a dielectric layer sandwiched between the electrodes. 
By applying a high AC voltage to the electrodes, momentum is transferred from the charged plasma 
particles to the neutral gas through collisions between the plasma components and neutral air 
molecules. As a result, a flow is induced from the upper electrode toward the lower one. Plasma 
actuators have many advantages: they are simple configurations without moving parts, have fast 
time response and low mass, with the ability to be attached easily onto objects, as compared with 
other flow-control actuators, such as a piezo-actuator, an impinging jet, or a synthetic jet.  

 
Figure 2. Typical configuration of a dielectric-barrier-discharge plasma actuator. 

Huang et al. [6] succeeded in reducing the cavity tone by using spanwise-aligned plasma 
actuators, with the electrodes elongated in the streamwise direction (“streamwise plasma actuators”), 
which introduced a spanwise variation of velocity in the cavity flow. However, the sound-reduction 
mechanism of this approach has not been clarified in detail. 

The objective of the present investigation is to clarify the mechanism by which streamwise 
plasma actuators reduce the cavity tone. In preliminary experiments, the effects of the spanwise 
width and pitch of the lower electrode on the control of the cavity tone were studied. In Section 2, 
both our experimental methodologies and the simulations performed to clarify the mechanism 
through which the plasma actuators control the intensity of the cavity tone are discussed. The 
comparison of predicted results with those measured is discussed in Section 3. The predicted and 
measured results are discussed in detail in Section 4. In Section 5, conclusions are summarized. 

2. Methodologies  

2.1. Experimental Tests 

2.1.1. Wind Tunnel and Test Section 

Figure 3 shows the experimental setup for our tests. The experiments were carried out using a 
suction-type, low-noise wind tunnel with a rectangular test section having a cross-section with 
dimensions of 150 mm × 75 mm. The intensity of freestream turbulence was less than 0.5%, and the 
background-noise level was 55.2 dB (A) at the freestream velocity of 30 m/s.  

The origin of coordinates was located at the mid-span of the upstream edge of the cavity.  
The x, y, and z axes were oriented in the streamwise, normal, and spanwise directions, respectively.  

Figure 2. Typical configuration of a dielectric-barrier-discharge plasma actuator.

Huang et al. [6] succeeded in reducing the cavity tone by using spanwise-aligned plasma
actuators, with the electrodes elongated in the streamwise direction (“streamwise plasma actuators”),
which introduced a spanwise variation of velocity in the cavity flow. However, the sound-reduction
mechanism of this approach has not been clarified in detail.

The objective of the present investigation is to clarify the mechanism by which streamwise plasma
actuators reduce the cavity tone. In preliminary experiments, the effects of the spanwise width and
pitch of the lower electrode on the control of the cavity tone were studied. In Section 2, both our
experimental methodologies and the simulations performed to clarify the mechanism through which
the plasma actuators control the intensity of the cavity tone are discussed. The comparison of predicted
results with those measured is discussed in Section 3. The predicted and measured results are discussed
in detail in Section 4. In Section 5, conclusions are summarized.

2. Methodologies

2.1. Experimental Tests

2.1.1. Wind Tunnel and Test Section

Figure 3 shows the experimental setup for our tests. The experiments were carried out using
a suction-type, low-noise wind tunnel with a rectangular test section having a cross-section with
dimensions of 150 mm × 75 mm. The intensity of freestream turbulence was less than 0.5%, and the
background-noise level was 55.2 dB (A) at the freestream velocity of 30 m/s.
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The origin of coordinates was located at the mid-span of the upstream edge of the cavity. The x, y,
and z axes were oriented in the streamwise, normal, and spanwise directions, respectively.

The cavity length was L = 20 mm and the depth-to-length ratio was D/L = 2.5. From such small
gaps between parts of an actual high-speed transportation mode, such as an automobile, tonal sound
often radiates as cavity tone. The test section of the cavity was terminated in the spanwise direction by
end walls composed of porous plates, which suppressed acoustic resonances in the spanwise direction.
The width of the test section was W/L = 7.5.
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2.1.2. Measurement of Sound and Flow Fields

The magnitude of the acoustic pressure in the far field (x/L = 6.75, y/L = 21.5) was measured with
a non-directional 1

2 -inch microphone (UC-53A, RION, Tokyo, Japan) and a precision sound-level meter
(NL-52, RION, Tokyo, Japan) for a freestream flow velocity U0 = 10–45 m/s. The measurement time
required for data acquisition was 30 s, and the sampling frequency was 40 kHz.

The flow induced by the plasma actuators was also visualized by using a fog generator (Safex
Fog Generator 2010, Dantec Dynamics A/S, Skovlunde, Denmark), with tracer particles (D/SPEZIAL,
Safex, Tangstedt, Germany), in the absence of a freestream flow. The generated fog was illuminated
by a green laser sheet, and photographs of the visualized flow were taken with a digital camera
(Nikon D5200, Nikon, Tokyo, Japan).

2.2. Test Case Descriptions

In the experiments, the control effects of the actuators on the sound pressure were clarified
while changing the freestream velocities, U0 = 10–45 m/s, while the simulations were performed at
U0 = 30 m/s. The actuators are shown in Figure 3. The Reynolds number based on the cavity length
was Re ≡ U0L/ν = 1.3 × 104–6.0 × 104, and the Mach number was M ≡ U0/a = 0.029–0.131, where ν

and a are the dynamic viscosity and the speed of sound in air, respectively. In addition, to clarify the
nature of the flow induced by the actuators, flow visualizations and simulations were performed in
the absence of a freestream flow.

Figure 4 shows the measured sound-pressure spectra for freestream velocities U0 = 15–45 m/s at
the location x/L = 6.75 and y/L = 21.5 without control. The frequency resolution of the spectral analysis
was 4.88 Hz. As shown in this figure, the tonal sound at the fundamental frequency f = 1500 Hz
becomes most intense at a velocity of 30 m/s, where the existence of an acoustic resonance was
confirmed by the phase distributions of the pressure in the cavity [8].

In both our experiments and simulations, the incoming boundary layer was laminar, and the
velocity profile was confirmed to agree with the Blasius profile. The momentum thickness was
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θ/L = 0.0071 for a freestream velocity of U0 = 30 m/s at the upstream edge of the cavity, where this
value was measured and found to be consistent with that predicted for flow over a flat plate without
a cavity.Appl. Sci. 2017, 7, 790  4 of 15 

 
Figure 4. Measured sound-pressure spectra without control at U0 = 15, 25, 30, 35, 45 m/s. SPL is the 
sound-pressure level in decibels 

2.3. Plasma Actuator Control 

2.3.1. Control by Streamwise Plasma Actuators 

As shown in Figure 5, the plasma actuators consist of lower and upper copper electrodes 18 μm 
thick, with a dielectric layer of polyimide 200 μm thick sandwiched between them. The lower 
electrodes were placed in the spanwise direction between the upper electrodes. The actuators were 
designed and built by the authors. As discussed in Section 3.1, these actuators induce pairs of 
streamwise vortices with spanwise widths equal to those of the lower electrodes. The electrodes were 
arranged symmetrically in the spanwise direction with respect to the mid-span (z = 0). 

(a) (b) 

Figure 5. Configuration of the streamwise plasma actuators: (a) top view; and (b) view in a cross-
section perpendicular to the streamwise direction. 

An AC voltage at the frequency fpa = 4.2 kHz was applied to the electrodes. To clarify the effects 
of the applied voltage on the control, it was changed in the range from Epa = 4 kVp-p to 5.5 kVp-p in the 
experiments. Addtionally, the effects of the pitch of the actuators, s = 4, 10 mm, and the spanwise 
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2.3. Plasma Actuator Control

2.3.1. Control by Streamwise Plasma Actuators

As shown in Figure 5, the plasma actuators consist of lower and upper copper electrodes 18 µm
thick, with a dielectric layer of polyimide 200 µm thick sandwiched between them. The lower electrodes
were placed in the spanwise direction between the upper electrodes. The actuators were designed
and built by the authors. As discussed in Section 3.1, these actuators induce pairs of streamwise
vortices with spanwise widths equal to those of the lower electrodes. The electrodes were arranged
symmetrically in the spanwise direction with respect to the mid-span (z = 0).
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An AC voltage at the frequency f pa = 4.2 kHz was applied to the electrodes. To clarify the effects
of the applied voltage on the control, it was changed in the range from Epa = 4 kVp-p to 5.5 kVp-p in
the experiments. Addtionally, the effects of the pitch of the actuators, s = 4, 10 mm, and the spanwise
width of the lower electrode, dl = 1, 3, 5, 7 mm, on the control were investigated. Moreover, to clarify
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the nature of the control on the cavity flow and tone, aeroacoustic simulations were performed, as well
as flow measurements, both with and without control. An actuator with Epa = 5 kVp-p, s = 10 mm
(s/L = 0.5, s/θ = 71), and dl = 3 mm was utilized at U0 = 30 m/s, where substantial reduction of the
intense sound was achieved.

2.3.2. Flush-Mounted Plasma Actuators

To minimize the influence on the flow and on noise generation of the protrusion of the actuators
from the wall, a flush-mounted actuator, with the dielectric layer embedded in the model, was utilized
so that the protrusion was only the 18 µm thickness of the upper electrode. In order to maintain the
sharpness of the cavity edge, the actuator was set back from the upstream edge by a space of 0.1L in
the upstream direction.

Figure 6 compares the sound-pressure levels, at the fundamental frequency, of the cavity flow both
with and without the actuator; the difference was negligibly small. Consequently, this flush-mounted
actuator does not affect the evaluation of control effects on the cavity tone obtained using the low-noise
wind tunnel.
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2.4. Numerical Simulations

2.4.1. Governing Equations and Finite-Difference Schemes

To clarify the fluid-acoustic interactions in the cavity flows, the flow and acoustic fields were
simultaneously simulated by solving the three-dimensional compressible Navier-Stokes equations
with mass and energy conservation laws in conservation form:

Qt + (E− Ev)x + (F− Fv)y + (G−Gv)z = D, (1)

D =


0

sx(x, y, z, t)
sy(x, y, z, t)
sz(x, y, z, t)

Dc(sxu + syv + szw)

, (2)

where Q is the vector of the conserved variables, E, F, G are the inviscid flux vectors, and Ev, Fv, Gv are
the viscous flux vectors. To reproduce the body force produced by the actuator, the term D representing
the body force and the power added by it to the unit volume are included on the right-hand side of the
equation [9]. Details of the body forces are described in next subsection.
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The spatial derivatives were evaluated using a sixth-order-accurate, compact, finite-difference
scheme (fourth-order accurate on the boundaries) [10]. Time integration was performed with a
third-order-accurate Runge-Kutta method.

The flow in the cavity became turbulent under the given conditions, although the incoming
boundary layer was laminar. To reduce the computational cost, large-eddy simulations (LES) were
performed in the present study. No explicit subgrid-scale (SGS) model was used. The turbulent energy
at the grid-scale (GS) that should be transferred to SGS eddies was dissipated by a 10th-order spatial
filter described below. A number of studies [11–13] have shown that this approach, which combines
low-dissipation discretization schemes with filtering, correctly reproduces turbulent flows. This filter,
which also removes numerical instabilities, is given by [14]:

α f ψ̂i−1 + ψ̂i + α f ψ̂i+1 =
5

∑
n=0

an

2
(ψi+n + ψi−n), (3)

where ψ is a conserved quantity, and ψ̂ is the filtered quantity. For the coefficients an, the same
values as Gaitonde and Visbal [15] were utilized, and the value of the parameter αf was set to be
0.45. Cavity flows with incoming laminar and turbulent boundary layers can be predicted with high
accuracy using the methods described above [16].

2.4.2. Body Force Exerted by Plasma Actuators

The body force and the power exerted by the actuators were modeled by including the quantities
sx, sy, sz and usx + vsy + wsz in the Navier-Stokes equations. For the body-force vector, the expression
as follows was used:  sx

sy

sz

 = Aρc(x, y, z)

 ϕx(x, y, z)
ϕy(x, y, z)
ϕz(x, y, z)

 sin2(2π fpat), (4)

A = 1 (sin(2π fpat) ≤ 0), −0.4(sin(2π fpat) > 0), (5)

where ρc is the plasma density, and ϕ is the electric field. The square of the sine function in Equation (4)
means that the plasma discharge occurs twice in one period, as in the body-force model of [9].

The distributions of plasma density and electric field were computed using the method proposed
by Suzen [17]. In computing the plasma density, the Debye length was taken to be 0.7 mm, and the
distributions of plasma density between the exposed upper electrodes were determined from the
luminescence of the plasma.

Figure 7 shows the distributions of plasma density determined from the luminescence
measurements along with those predicted near the wall (y = 0.05 mm), where the horizontal
direction is the spanwise position from the midpoint of the embedded electrode (z = zpa), which
is non-dimensionalized using the pitch of the actuators. As shown in the figure, the predicted
distributions agree well with those determined in the experiments.

The coefficient A in Equation (4) was introduced to represent the change of the amount and
direction body forces between positive and negative applied voltages. The value of A was set to be the
same as that in [18], where simulations by the above-described method were employed to reproduce
the induced flow in an experiment by Forte [19].

The simulated distributions of the body forces are shown in Figure 8. The most intense body force
is generated around the edges of the exposed electrodes. The non-dimensional maximum body force
was taken to be Dc = ρc,maxEpa/(ρ0U0

2/L) = 2.8 × 10−6 so that control effects on the mean velocity
profile in the cavity were in good agreement with those measured in the experiments discussed in
Section 3.1.



Appl. Sci. 2017, 7, 790 7 of 15

Appl. Sci. 2017, 7, 790  7 of 15 

 
Figure 7. Plasma distributions. Photograph of the plasma luminescence (left). Predicted distributions 
of plasma density near the wall (y = 0.05 mm), compared with those determined from the plasma 
luminescence in the photograph (right). 

 
Figure 8. Predicted vectors of the body force and contours of the magnitude of the force vector. 

2.4.3. Computational Grid 

Figure 9 shows the computational grid for the flow over the cavity. The spanwise length  
Wc/L = 3.0 of the computational domain was sufficiently wide to reproduce the effects of control by 
an actuator with pitch s/L = 0.5, with six sets of electrodes included in the computation. The spanwise 
grid resolution was Δz/L = 1/80. The streamwise resolution in the cavity was Δx/L = 1/100, and the 
normal resolution near the wall in the incoming boundary layer and in the shear layer in the cavity 
was Δymin/L = 1/400. The grid was stretched into the far field in both the normal and streamwise 
directions. The grid resolution in the x-y cross-section in the cavity was the same as that in our past 
research [8], where the predicted flow and sound fields were found to be in good agreement with 
those measured. The total number of grid points was 55 million. 

 
Figure 9. Computational grid, where every fourth grid line is shown for clarity. 

Figure 7. Plasma distributions. Photograph of the plasma luminescence (left). Predicted distributions
of plasma density near the wall (y = 0.05 mm), compared with those determined from the plasma
luminescence in the photograph (right).

Appl. Sci. 2017, 7, 790  7 of 15 

 
Figure 7. Plasma distributions. Photograph of the plasma luminescence (left). Predicted distributions 
of plasma density near the wall (y = 0.05 mm), compared with those determined from the plasma 
luminescence in the photograph (right). 

 
Figure 8. Predicted vectors of the body force and contours of the magnitude of the force vector. 

2.4.3. Computational Grid 

Figure 9 shows the computational grid for the flow over the cavity. The spanwise length  
Wc/L = 3.0 of the computational domain was sufficiently wide to reproduce the effects of control by 
an actuator with pitch s/L = 0.5, with six sets of electrodes included in the computation. The spanwise 
grid resolution was Δz/L = 1/80. The streamwise resolution in the cavity was Δx/L = 1/100, and the 
normal resolution near the wall in the incoming boundary layer and in the shear layer in the cavity 
was Δymin/L = 1/400. The grid was stretched into the far field in both the normal and streamwise 
directions. The grid resolution in the x-y cross-section in the cavity was the same as that in our past 
research [8], where the predicted flow and sound fields were found to be in good agreement with 
those measured. The total number of grid points was 55 million. 

 
Figure 9. Computational grid, where every fourth grid line is shown for clarity. 

Figure 8. Predicted vectors of the body force and contours of the magnitude of the force vector.

2.4.3. Computational Grid

Figure 9 shows the computational grid for the flow over the cavity. The spanwise length
Wc/L = 3.0 of the computational domain was sufficiently wide to reproduce the effects of control by
an actuator with pitch s/L = 0.5, with six sets of electrodes included in the computation. The spanwise
grid resolution was ∆z/L = 1/80. The streamwise resolution in the cavity was ∆x/L = 1/100, and the
normal resolution near the wall in the incoming boundary layer and in the shear layer in the cavity
was ∆ymin/L = 1/400. The grid was stretched into the far field in both the normal and streamwise
directions. The grid resolution in the x-y cross-section in the cavity was the same as that in our past
research [8], where the predicted flow and sound fields were found to be in good agreement with those
measured. The total number of grid points was 55 million.
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2.4.4. Boundary Conditions

Figure 10 shows the boundary conditions. Non-reflecting boundaries [20–22] at the inflow and
outflow boundaries were utilized so that acoustic waves pass the boundaries smoothly. On the lower
boundary at the upstream side of the cavity, the boundary condition was changed from a slip wall to a
non-slip and adiabatic wall. The position of this change was determined so as to make the thickness of
the incoming boundary layer equal to that measured. Periodic boundary conditions were used in the
spanwise direction. A uniform steady flow was asymptotically imposed in the inflow buffer region
(x/L ≤ −12.5).
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2.4.5. Prediction of the Far Acoustic Field

The porous Ffowcs, Williams, and Hawkings (FW-H) method [23–25] was used to predict the
acoustic pressure at the measurement point (x/L = 6.75 and y/L = 21.5). The pressure p was sampled
at a semi-cylindrical surface of radius r = 2.5L, near the center of the cavity (x/L = 0.5 and y = 0).

A spanwise computational domain of width Wc = 3L, which was chosen to be smaller than that of
the experiment, W = 7.5L, was utilized in order to reduce computational resources. To take the effects of
this difference into account, the sound-pressure levels, SPL (f ), were corrected by using the equivalent
coherence length, Lc (f ), which was computed based on the coherence of the velocity along the center
of the cavity (x/L = 0.5, y = 0) in the spanwise direction. The detailed method is described in [5].

3. Comparison and Validation

3.1. Flow Fields

Figure 11a shows a visualization of the induced flow in the y-z cross-section produced by activating
the actuators in the absence of a freestream flow. As shown in the figure, a pair of vortices with
a streamwise (x) axis are induced by each actuator, composed of two upper electrodes and one
lower electrode. Figure 11b shows the predicted velocity vectors color-coded by the vertical velocity
component under the same conditions. The streamwise vortices measured in the experiments also
occur in the present simulation. The predicted maximum induced velocity was roughly 2 m/s.
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Figure 11. Vortices induced by actuators in the absence of a freestream flow: (a) visualized flow in the
experiment; and (b) the predicted velocity vectors color-coded by values of the vertical velocity.

The predicted mean velocity profiles at the position x/L = 0.05 and z = zpa for U0 = 30 m/s, both
with and without control are compared with those measured. The time-series velocity, measured by
the hot-wire anemometer in our experiment, was given by uh = (u2 + [0.5v]2)0.5 in the computation,
in the same way as in our previous research [26], and the time-averaged values, Uh, were computed.
Figure 12 shows that the predicted profile agrees well with that measured for cases both with and
without control. The free shear layer is moved in the upward direction by the control. This is because
the incoming boundary is moved upward due to the streamwise vortices induced by the control.

Appl. Sci. 2017, 7, 790  9 of 15 

 
(a) 

 
(b) 

Figure 11. Vortices induced by actuators in the absence of a freestream flow: (a) visualized flow in the 
experiment; and (b) the predicted velocity vectors color-coded by values of the vertical velocity. 

The predicted mean velocity profiles at the position x/L = 0.05 and z = zpa for U0 = 30 m/s, both 
with and without control are compared with those measured. The time-series velocity, measured by 
the hot-wire anemometer in our experiment, was given by uh = (u2 + [0.5v]2)0.5 in the computation, in 
the same way as in our previous research [26], and the time-averaged values, Uh, were computed. 
Figure 12 shows that the predicted profile agrees well with that measured for cases both with and 
without control. The free shear layer is moved in the upward direction by the control. This is because 
the incoming boundary is moved upward due to the streamwise vortices induced by the control. 

 
Figure 12. Predicted and measured mean velocity profiles with and without control (x/L = 0.05, z = zpa). 

3.2. Sound-Pressure Spectra 

Figure 13 shows the measured and predicted sound-pressure spectra both with and without 
control, where the frequency resolution is ΔSt = 0.1 (Δf = 156 Hz), where St represents the Strouhal 
number based on the cavity length and the freestream velocity. The spectra were averaged 9374 and 
18 times, respectively, in the experimental and computational results. The predicted fundamental 
frequency around St = 1.0 agrees well with that measured both with and without control. The sound-
pressure level at the fundamental frequency also is in good agreement with that measured, both with 
and without control, where the level is reduced by the control. The predicted and measured reduction 
levels were 5 and 6 dB, respectively. 

The discussions in the previous and present subsections confirm that the present computations 
adequately predict the flow and sound fields, both with and without control. 

Figure 12. Predicted and measured mean velocity profiles with and without control (x/L = 0.05, z = zpa).

3.2. Sound-Pressure Spectra

Figure 13 shows the measured and predicted sound-pressure spectra both with and without
control, where the frequency resolution is ∆St = 0.1 (∆f = 156 Hz), where St represents the Strouhal
number based on the cavity length and the freestream velocity. The spectra were averaged
9374 and 18 times, respectively, in the experimental and computational results. The predicted
fundamental frequency around St = 1.0 agrees well with that measured both with and without
control. The sound-pressure level at the fundamental frequency also is in good agreement with that
measured, both with and without control, where the level is reduced by the control. The predicted and
measured reduction levels were 5 and 6 dB, respectively.

The discussions in the previous and present subsections confirm that the present computations
adequately predict the flow and sound fields, both with and without control.
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4. Results and Discussions

4.1. Measured Geometric Effects of Actuators on Control

The variation of the sound-reduction level at the fundamental frequency of 1500 Hz as a function of
the voltage Epa applied to the actuators was measured, where the spanwise pitch of the lower electrode
was either s = 4 mm or s = 10 mm, and the fixed width of the lower electrode was dl = 3 mm. Figure 14a
shows the measured variation. The frequency resolution of spectral analysis was ∆f = 4.88 Hz and it
should be noted that the reduction level was different from that in the previous section due to the
difference of the frequency resolution.

As shown in Figure 14a, the amount of noise reduction is greater for higher applied voltages,
particularly in the range from Epa = 4 kVp-p to 5.5 kVp-p. The sound level drops sharply at lower
voltages for the narrower pitch s = 4 mm, as compared to the case with s = 10 mm. For s = 4 mm, the
sound reduction level of 31 dB was achieved at Epa = 5 kVp-p. However, for a fixed cavity width, more
actuators and greater power consumption are necessary for narrower pitches. In the next subsection,
the sound-reduction mechanism is discussed for s = 10 mm and Epa = 5.0 kVp-p.

According to the investigation by Yokoyama et al. [5], the cavity tone was also reduced by pairs
of introduced streamwise vortices by blowing jets in the incoming boundary layer. Additionally,
the results at the jet velocity of Vj/U0 = 0.07, which roughly corresponds to the jet velocity (2 m/s)
induced by the present plasma actuators, show that the control effects became smaller for finer
spanwise displacement of the jets, such as s/L = 0.1 and 0.25. The maximum reduction level was
achieved at s/L = 0.5. This was because the induced longitudinal vortices were weakened for the
finer displacement.

Meanwhile, the present plasma actuators can most largely reduce cavity tone with a finer
displacement of s/L = 0.2. This difference from the results of blowing jets is possibly because the
electrodes of the actuators are elongated into the streamwise direction making it easier to introduce
intense streamwise vortices, while the blowing jets were ejected from simple circular holes. Deliberately
SETTING up the inlet shape and blowing direction for the jets for the introduction of the streamwise
vortices possibly increases the effects.

The comparison of the present results with those of the control by blowing jets indicates that
the present plasma actuators can effectively introduce longitudinal vortices and reduce cavity tone
with a finer displacement. Meanwhile, for a fixed cavity width, more actuators and greater power
consumption are necessary for a narrower displacement. The exact estimation of power consumption
remains a problem for the future.

To clarify the effects of the lower-electrode width on control of the cavity tone, the sound-reduction
levels were measured for lower-electrode widths of dl = 1, 3, 5, and 7 mm, at a constant pitch of
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s = 10 mm, as shown in Figure 14b. The results show that sound reduction was obtained and that the
influence of the lower-electrode width on sound reduction was small, except for the narrowest width,
dl = 1 mm. Streamwise vortices are not induced at this narrow width, possibly because the body force
is not sufficiently large, due to too narrow a width for expansion of the plasma between the exposed
electrodes [27].
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Figure 14. (a) The variation of the sound-reduction level, in decibels, at the fundamental frequency
of 1500 Hz as a function of the applied voltage; and (b) the variation of the sound-reduction level for
different lower-electrode widths as a function of the freestream velocity U0.

4.2. Control Effects on Flow Structures and Pressure Fields

4.2.1. Vortical Structures

Figure 15 shows the predicted vortical structures with and without control as iso-surfaces of the
second invariant q ≡ ||Ω||2 − ||S||2, where Ω and S are the anti-symmetric parts and symmetric
parts, respectively, of the velocity gradient tensor for the phase-averaged flow fields at the phase where
the vortex collides with the downstream edge of the cavity. The iso-surfaces are color-coded by the
values of the streamwise vorticity.
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As shown in Figure 15a, two-dimensional large-scale vortices are generated in the baseline cavity
flow. Low-pressure regions are generated in the large-scale vortices, and an expansion wave is radiated
due to the collision of the vortices with the downstream edge of the cavity [16]. Figure 15b shows
that streamwise vortices are induced by the actuators in the incoming boundary layer and form rib
structures between the large-scale vortices.

Figure 16 shows the iso-surfaces of the component of the second invariant qz, which was computed
from Equation (6):

qz ≡ |ωz|2 −
∥∥∥∥∥
(

Sxx Syx

Sxy Syy

)∥∥∥∥∥
2

,qz ≡ |ωz|2 −
∥∥∥∥∥
(

Sxx Syx

Sxy Syy

)∥∥∥∥∥
2

, (6)

where ωz is the spanwise vorticity and Sxx, Sxy, and Syy are the elements of the symmetric parts of the
velocity gradient tensor. This quantity is related to vortices with spanwise axes and is color-coded by
the spanwise vorticity in the figure. Figure 16 also shows the contours of streamwise vorticity in the
shear layer (y/θ = 2.9).

As shown in Figure 16a, vortical structures with spanwise axes are apparent in the baseline flow.
These vortices correspond approximately to the above-mentioned large-scale vortices. The periodic
collision of these vortices with the downstream edge of the cavity produces the intense cavity tone.
Figure 16b shows that these vortices are distorted by the streamwise vortices in the controlled flow.
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of the cavity: (a) baseline flow; and (b) controlled flow.

4.2.2. Power Spectra of Velocity Fluctuations

Figure 17 shows the predicted power spectra of velocity fluctuations at x/L = 0.5 and z = zpa

at the peak of maximum power for y/θ = 6.4 and 3.6, respectively, with and without control, along
with the measured data. The figure shows that the power at the fundamental frequency is weakened
by the control in both computations and experiments. This corresponds to the weakening of the
above-mentioned large-scale vortices with spanwise axes that produce the cavity tone.

4.2.3. Spanwise Coherence

To clarify further the nature of the vortical structures, the coherence between two points separated
by spanwise distances ∆z at x/L = 0.5 and y = 0 was examined. Figure 18 shows the spanwise coherence
of the streamwise velocity with and without control. Although the coherence shows locally-high
values, depending on the pitch s/L = 0.5 of the actuators, overall it is decreased.

Figure 19 shows the phase-averaged fluctuation pressure with and without control at the phase
where the vortex collides with the downstream edge of the cavity. In the baseline flow, the distribution
of the pressure is coherent in the spanwise direction. At the collision of the large-scale vortical structures
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with the downstream edge of the cavity, the radiated sound is reinforced in the spanwise direction by
the coherent pressure fluctuations. In the controlled flow, however, the fluctuation pressure varies in
the spanwise direction. This variation also contributes to the weakening of the cavity tone.
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5. Conclusions

To clarify the mechanism by which streamwise plasma actuators aligned in the spanwise direction
reduce the cavity tone with the acoustic resonances, direct aeroacoustic simulations were performed,
as well as wind tunnel experiments. The predicted flow and acoustic fields, both with and without
control, are in good agreement with those measured. To the authors’ knowledge, this is the first time
that direct aeroacoustic simulations of the control of aerodynamic noise by plasma actuators have been
performed, including comparisons with experimental data.

On the measured effects of lower electrode width on the control, the cavity tone was effectively
reduced for a lower-electrode width of dl = 3, 5, and 7 mm, while the control effects on the cavity tone
were negligible for dl = 1 mm. The predicted and measured flow fields show that streamwise vortices
are induced by the actuators for dl = 3 mm in the absence of a freestream.

The results show that aerodynamic sound can be controlled at the relatively high freestream
velocity of 30 m/s by 31 dB by plasma actuators with the spanwise fine pitch of actuators of s = 4 mm
and dl = 3 mm at the applied voltage of Epa = 5 kVp-p, even though they can only induce flows with
a maximum velocity of 2 m/s. In comparison with the control by blowing jets, the plasma actuators can
more effectively reduce the cavity tone by introducing streamwise vortices with the fine displacement.

The predicted phase-averaged flow fields show that the streamwise vortices by the control are
introduced into the cavity flow as longitudinal vortices. Due to these vortices, large-scale vortices with
spanwise axes that cause the cavity tone are distorted and weakened. Moreover, the coherence of the
velocity fluctuations in the spanwise direction decreases, which also contributes to the reduction of the
cavity tone.

Although the exact estimation of the power consumption is a future problem, the effectiveness of
the plasma actuators as the devices for noise reduction can be shown in this paper. The technological
problems related with high-voltage safety or high-frequency effects are also remaining challenges for
application to actual vehicles.
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