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Featured Application: By integrating fuzzy reasoning Petri Nets, interval expert evaluation and
cultural-based dynamic multi-objective particle swarm optimization (DMOPSO) using crowding
distance sorting, the proposed reliability-based and cost-oriented product optimization method
is effective to conduct the early product design. A reasonable reliability optimization design
scheme can be output, and it is of important guiding significance for the product detailed
design. The superiority of the proposed method lies in its outstanding ability to deal with the
uncertainties information and dynamic product failure propagation.

Abstract: In reliability-based and cost-oriented product optimization, the target product reliability
is apportioned to subsystems or components to achieve the maximum reliability and minimum
cost. Main challenges to conducting such optimization design lie in how to simultaneously consider
subsystem division, uncertain evaluation provided by experts for essential factors, and dynamic
propagation of product failure. To overcome these problems, a reliability-based and cost-oriented
product optimization method integrating fuzzy reasoning Petri net (FRPN), interval expert evaluation
and cultural-based dynamic multi-objective particle swarm optimization (DMOPSO) using crowding
distance sorting is proposed in this paper. Subsystem division is performed based on failure
decoupling, and then subsystem weights are calculated with FRPN reflecting dynamic and
uncertain failure propagation, as well as interval expert evaluation considering six essential factors.
A mathematical model of reliability-based and cost-oriented product optimization is established,
and the cultural-based DMOPSO with crowding distance sorting is utilized to obtain the optimized
design scheme. The efficiency and effectiveness of the proposed method are demonstrated by
the numerical example of the optimization design for a computer numerically controlled (CNC)
machine tool.

Keywords: FRPN; reliability optimization design; DMOPSO; cultural algorithm; uncertainty; interval
expert evaluation
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1. Introduction

Modern products are becoming more and more complex, and their reliability level has an
important influence on the development of the modern manufacturing industry. Thus, it is imperative
to improve the product reliability optimization design [1]. It is an important analytical tool to enhance
the inherent reliability of products, and the reasonable and effective reliability optimization design has
a guiding significance for the later product detailed design [2,3]. At the same time, the product cost
is also a determining factor which can decide their market competitiveness, and, during application
in practical engineering, the product optimal design scheme with high reliability and minimum cost
is often desired by designers and customers [4,5]. The reliability-based and cost-oriented product
optimization has been a hot area of research for several years [6,7]. The main common problems for the
reliability optimization design of sophisticated mechatronic products are unquantifiable relationships
among subsystems, modules, and components, as well as uncertain and insufficient product data.
This results in the infeasibility of the methods which rely purely on mathematical algorithms. Although
many efforts have been conducted on it, the efficient and effective method of reliability optimization
design is still a pressing need because the conventional methods have some shortcomings that can not
be ignored.

Firstly, most conventional methods fail to process the uncertain information with effect in
the product optimization design [8]. Uncertainty is a commonly encountered case in the initial
stage of design because of the difficulties in collecting accurate data, due to, for example, the
limitations of cost, time and resource [9,10]. Therefore, reasonable reliability optimization design
methodologies must have the ability to deal with such uncertainties [11,12]. Bayesian theory and
fuzzy mathematics were the initiate instruments to handle the uncertainties in conventional reliability
optimization design [13,14]. Ren et al. [15] put forward the multi-attribute group decision-making
(MAGDM) with the integration of techniques for order preference by similarity to ideal solution
(TOPSIS) and interval-valued intuitionistic fuzzy sets, which can consider the reliability of information.
Zwirglmaier et al. [16] put forward to adopt Bayesian model to capture cognitive causal relation in
reliability investigation, and it successfully provided a potential tool for assessing error distribution.
However, the Bayesian theory depends on a subjective judgment which brings inaccurate product
optimization design plans, and fuzzy mathematics needs to make their membership functions be
known in advance which is almost impossible for designers.

To remedy these problems, the reliability optimization design with interval analysis was proposed
where typical product variable configuration is represented using interval mathematical theory [17].
Interval analysis has recently been jointed with uncertainty algorithms, probability statistics, fuzzy
mathematics, and grey system theory to get the reliability scheme with real rationality. However, these
methods lack the consideration of the product failure which is linked closely with the reliability [18].

Critical product failures can bring heavy loss to economic value and society benefit, which means
the analysis of product failure is essential for reliability optimization design [19–21]. Quantitative
indicators of product failure are traditionally the failure frequency and failure severity, and some
scholars dealt with the product reliability optimal design by the introduction of the qualitative analysis
and quantitative calculation of failure mode effects analysis (FMEA) [22]. FMEA is used to describe
product failure modes and their effects. It has been a powerful means to ensure product reliability, but it
has three defects: (i) the relationship between the different product failures is neglected; (ii) FMEA
fails to manage the uncertain product information; and (iii) FMEA regards product failure as a static
process rather than a dynamic process, but it is obvious that the generation and propagation of
product failure is a typical dynamic and uncertain behavior process. Hence, many extensions to the
Petri net (PN) including places, transitions and directed arcs, such as colored PN, timed PN and
prioritized PN, fuzzy PN have been successfully developed and applied in analyzing reliability of
systems and conducting failure diagnosis [23–26]. Zhang and Yao [27] proposed an approach for
analyzing systems reliability using fuzzy stochastic Petri nets (FSPNs) with fuzzy parameters, and their
research successfully overcame the difficulties in adopting common software to detect multi-state
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systems with high complexity. Wu and Wu [28] put forward an approach to reliability modeling and
assessment by the extended object-oriented PN. Its consideration of probability statistics for product
failure makes the application scope of the proposed PN become wider than that of the traditional
ones. Wu et al. [29] introduced fuzzy reasoning PN (FRPN) into the reliability optimization design
for highly sophisticated products, and the case study of a spacecraft solar array demonstrated its
rationality and validity by its union with the fuzzy reasoning algorithm which allows it to consider
stochastic interconnection between product components. However, researchers expanded the most
critical influences on the product reliability optimization design, such as economic cost, state-of-the-art,
performance time, and so on [30]. When the reliability design is treated as an optimization problem
to solve, it is influenced by a variety of factors that can be converted into different forms of target
functions or constraints. It is difficult to process and express the relationship between the various
factors and the reliability indicators. The product models related to PN do not take the complexity
of the product unit, importance degree, technical level and other factors into account when dealing
with the influence of reliability optimization, and they fail to reflect the synthetic situation of product
reliability optimization. Modern products consist of so many functional modules and components,
but, in reality, reliability optimization design only needs to be conducted at the level of subsystems
which consist of modules to save time and cost. These methods based on PN do not consider the
subsystem division.

The objective of this paper is to develop an approach of reliability optimization design for
modern mechanical products, which cannot only use the uncertain evaluation provided by experts
for essential factors, subsystem division, but take into account the dynamic propagation of product
failure. The interval expert evaluation is combined with the FRPN to build a reliability-based and
cost-oriented product optimization model. Then, the cultural-based dynamic multi-objective particle
swarm optimization (DMOPSO) using crowding distance sorting method is adopted to solve it so that
the best compromise solution can satisfy the reliability constraint of the subsystem composition with
minimum cost the on the maximum balance [31].

The remainder of this paper is organized as follows. Section 2 describes the general framework
of the proposed method. Section 3 introduces the detail operators, and Section 4 illustrates a
numerical case study of the reliability-based and cost-oriented optimization design for a CNC machine
tool. Section 5 provides a comparison and analysis of the proposed method, and Section 6 offers
the conclusion.

2. Framework of Proposed Method

As illustrated in Figure 1, the proposed method contains six major stages which give full
consideration of uncertain expert evaluation for essential factors, subsystem division, as well as
the dynamic and uncertain propagation of product failure.

• Stage I: Preparation of the product information and data

Relevant data and information are collected. First, the minimum value of product reliability
allowable defined as R* is determined according to market requirements. The reliability of a product
obtained by optimization calculation is represented by R. Function module classification is conducted
based on the different product sub-functions, and a set of target products are regarded as the samples
to obtain the data of module failures.

• Stage II: Subsystem division based on module failure decoupling

Establish the adjacency matrix and accessibility matrix based on the module classification and
data of module failures, and the subsystem division is carried out by the module failure decoupling.
The detailed operator can be seen in Section 3.1.

• Stage III: Calculation of the subsystem weight considering the failure diagnosis based on FRPN
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Subsystem failure diagnosis with FRPN is performed based on the data and information collected
in Stage I. Principles and mathematical description of the FRPN model are introduced to build
the accessibility matrix for FRPN so that the failure probability of each subsystem is available.
Then, the subsystem weight considering the failure diagnosis based on FRPN can be obtained.
The detailed operator can be seen in Section 3.2.

• Stage IV: Calculation of the subsystem weight considering development cost based on interval
expert evaluation

Interval expert evaluation for subsystem considering development cost for six essential factors is
conducted. The detailed operator can be seen in Section 3.3.

• Stage V: Establishment of the reliability-based and cost-oriented optimization model

Mathematical method aiming the product reliability and cost is established with two types of
subsystem weights obtained in Stage III and Stage IV, which aim to achieve the maximum product
reliability and minimum cost. The detailed operators can be seen in Section 3.4.

• Stage VI: achievement of the product optimized design solution with DMOPSO

Adopt DMOPSO to obtain the relative Pareto fronts and employ the fuzzy-based mechanism for
the optimal VAR dispatch problem to extract the best compromise solution [32]. The detailed operators
can be seen in Section 3.5.
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3. Detailed Operators

3.1. Subsystem Division Based on Failure Decoupling

This process corresponds to Stage II in Figure 1 and is described in Section 2. Reliability-based and
cost-oriented product optimization deserves enough attention. In practical engineering, the product
reliability optimization design only needs to be performed to the level of its subsystems because it will
call for too much time and cost to apportion the product reliability to its modules and components.
Hence, the reasonable subsystem division based on the function module classification is an effective
guarantee for the reasonable reliability optimization. As the tight connections between product failures
and reliability, the subsystem division is carried out on the module failure decoupling based on
reachability matrix.

Most of the product failures can be related to certain modules, but whether the product failure
is caused by the corresponding module or the connection between the corresponding module and
other modules is difficult to judge. Therefore, the failure decoupling is necessary to conduct subsystem
division which is used to put the function modules whose failures are related closely together to form
the subsystems. We perform the classification of function modules according to the composition and
working principle of products, and then conduct the data collection of module failures based on the
observation of sample products. The causal relationship between modules failures is analyzed and the
module failure-related mathematical model considering causal failure analysis is established.

F is the set of product module failures which consist of the collected data about module failures.
a and b are the subsets of F. If the module failures in the subset b are caused by the module failures in
the subset a and all the failures in subset b compose the set A(a), a is the root failure sets of A(a) and
A(a) is the relevant zone of a. Failure decoupling is the process to find the root failures according to the
collected failure data whose description is:

ξ = f [F; ∀x ∈ F, A(x); CF] (1)

where CF is the set of product module failure in practice, and ξ is root failure sets with the calculation
of function f.

The failure correlation diagram consists of a set of points V = {vi} (i = 1, 2, ..., M) and a set of
directed edges E = {eij} (j = 1, 2, . . . , N). The points represent the elements of the set F. There is a
directed edge from a to b if ∀a, b ∈ F, b ∈ A(a). Therefore, if the failure j is caused by the failure i,
there is a directed edge from i to j and there is a connection between failures i and j. These directed
edges and points form the failure correlation graph. Product failure correlation graph is drawn and
translated into an adjacency matrix A =

[
aij
]

N×M, and:

aij =

{
1, if there is a directed edge form the failure i to the failure j (i 6= j) or i = j

0, otherwise
(2)

Reachability matrix is defined to describe the extent from each connection point to another one in
a directed graph via a path, which can be obtained using the time characteristics and laws of Boolean
algebra. For a system consisting of n connection points which can be represented as pi (i = 1, 2, . . . , n),
its reachability matrix can be denoted as R =

[
aij
]

n×m, and

aij =

{
1, if pi can reach pj via a path (i 6= j) or i = j

0, otherwise
(3)

The reachability matrix has a significant feature which can be called as transfer characteristic.
It can be described as that if the point pi can reach the point pk and the pk can reach the point pj,
the point pi can reach the point pj. In the other words, if aik = akj = 1, aij = 1. Hence, there is a simple
calculation method for the reachability matrix:
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1. Build the adjacency matrix A =
(
aij
)

n×n based on the directed graph and its transposed matrix
AT =

(
aji
)

n×n.

2. Analyze the yth column of the adjacency matrix A and AT (k = 1, 2, . . . , n). If the element axy of A
is 1 and the ary of AT is 1, set the all the axr of A to be 1 with the adoption of permutation and
combination. Establish its derivative matrix represented as M.

3. Obtain the transposed matrix of M, denoted as MT.
4. Process the matrix M and the matrix MT according to the above iterative criterion. Stop the

iteration until the elements in M do not change as the number of iterations increases.
5. Replace all the elements in the leading diagonal of M by 1 to get the reachability matrix Φ.

The product subsystem division is obtained via module failure decoupling based on the
decomposition of reachability matrix. If Li (i = 1, 2, . . . , k) are the subsystems divided of the set
F =

⋃k
i=1 Li and Li ∩ Lj = �(i, j). Based on the reachability matrix, R(Mi) is the set consisting of the

modules that the module Mi can reach; the set A(Mi) consists of the modules which can reach the
module Mi; C(Mi) is the set consisting of the common elements of R(Mi) and A(Mi). B(Mi) is a set
decided by A(Mi) and C(Mi). B(Mi) = C(Mi) if A(Mi) = C(Mi), otherwise B(Mi) = �. The subsystems
divided can be got by the above failure decoupling, and the detailed operators can be found in
Section 4.

3.2. Subsystem Weight Considering the Failure Diagnosis Based on FRPN

This process corresponds to Stage III in Figure 1, and is described in Section 2. The FRPN model
considers the uncertainty of the connection between the failures of modules or subsystems in the
whole product by the adoption of the fuzzy reasoning algorithm. In this section, the knowledge
representation of the compound production rules based on confidence is introduced and an algorithm
based on matrix operation is adopted for the formalized fuzzy reasoning. The failure diagnosis based
on FRPN is good at the integration of knowledge representation with failure diagnostic reasoning so
that it fits to give a dynamic description for the product failure propagation.

3.2.1. Fuzzy Production Rules

Fuzzy production rules describe the relationship between two fuzzy propositions. E = {e1, e2,
. . . , em} denotes the set of fuzzy production rules. Confidence is the degree obtained by experiences
that a phenomenon could be true. The jth fuzzy production rule ej based on the corresponding cj is
represented as: ej (cj): if pi(ui), then pk(uk), where cj is the confidence of the fuzzy production rule ej
and it is within (0,1). pi and pk denote the propositions containing fuzzy variables which are difficult
to describe with accurate value. ui and uk are the true degree of the propositions pi and pk, and they
are also within (0,1). The truth degrees denote the fuzzy possibility of the events. A higher value
indicates that the event will break down more easily. During the iteration of the truth degrees, the faults
propagate in the system.

3.2.2. Definition of Fuzzy Petri Nets

The product fault tree analysis (FTA) model can be converted into the relevant FRPN model,
and Wu et al. [33] described the specific conversion methods and transformation rules which are
omitted in this section to make this paper more concise and compact. In brief, the AND gate in the
FTA model can be regarded as many places to one transition in the FRPN model. At the same time,
the OR gate in the FTA model can be regarded as many places to many transitions in FRPN model.
The work in [34,35] explains in detail the particular structure of the FRPN model which is described by
six elements as follows.

P = {p1, p2, . . . , pn} is the finite set of the fuzzy places, and they represent a series of
fuzzy propositions;
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Trans = {r1, r2, . . . , rn} is the finite set of the transitions, and they represent the implementation of
fuzzy rules;

I is the directed arcs matrix from propositions to rules. I (pi, rj) = 1 if there is a directed arc form
the proposition pi to the rule rj; otherwise, I (pi, rj) = 0. i = 1, 2, . . . , n; j = 1,2, . . . , m.

O is the directed arcs matrix from rules to propositions. O (pi, rj) = 1 if there is a directed arc form
the rule rj to the proposition pi; otherwise, O (pi, rj) = 0. i = 1, 2, . . . , n; j = 1, 2, . . . , m.

U is the true degree matrix of propositions, u = (u1, u2, . . . , un)T, and ui is within (0, 1) (i = 1, 2,
. . . , n).

C = diag {c1, c2, . . . , cm} is the confidence matrix of fuzzy production rules, and cj is the confidence
of the fuzzy production rule rj (j = 1, 2, . . . , n).

3.2.3. Fuzzy Production Rules with FRPN

The input place and the output place of PN denote the precondition and conclusion of fuzzy
production rules, respectively. Causal relationship between the propositions and rules is reflected by
directed arcs. If the proposition is true, the token of a place is with [0, 1], and the value denotes the
confidence of the proposition is true. The fuzzy reasoning process is represented by the transition
trigger with the confidence of fuzzy PNs.

Compared with the conventional PN, FRPN has some characteristic: (i) the token of place is
within [0, 1]; (ii) the transition trigger denotes the true proposition happens, but the confidence of
precondition remains; (iii) there is no collision which is common in the conventional PN; and (iv) there
is a confidence for each transition which is within [0, 1]. It can be seen, that the conventional PN is a
particular example of FRPN.

3.2.4. Compound Fuzzy Production Rules with FRPN

There are “and” and “or” in the precondition and conclusion of the compound fuzzy production
rules, and the inexact reasoning based on confidence is adopted. Compound fuzzy production rules
include four types. The related FRPNs of types 1, 2, and 3 can be seen in Figure 2a–c, respectively.
The fuzzy production rule of type 4 does not guarantee a deterministic conclusion. Hence, it is not
taken into consideration in FRPN.

Type 1:
ej
(
cj
)

: if p1(u1) and p2(u2) and · · · and pn−1(un−1), then pn(un)

un = min(u1, u2, · · · , un−1)cj

Type 2:
ej
(
cj
)

: if p1(u1), then p2(u2) and · · · and pn(un)

u2 = u1cj; u3 = u1cj; · · · ; un = u1cj

Type 3:
ej
(
cj
)

: if p1(u1) or p2(u2) or · · · or pn−1(un−1), then pn(un)

un = max(u1, u2, · · · , un−1)cj

Type 4: rj
(
cj
)

: if p1(u1), then p2(u2) or · · · or pn(un)
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3.2.5. Fuzzy Reasoning Algorithm of FRPN

Three operators are introduced to describe the fuzzy reasoning algorithm of FRPN.
Addition operator ⊕: If g = [g1, g2, . . . , gn] and b = [h1, h2, . . . , hn] are two vectors,

q = g⊕ h⇒ qi = max(gi, bi), i = 1, 2, · · · , n. (4)

Minimum multiplication operator ×: If G, H and Q are m × p, p × n and m × n dimensional
matrices, respectively,

Qij = G⊕ H ⇒ qij = min
1≤k≤p

(
gik × hkj

)
, i = 1, 2, · · · , n. (5)

Maximum multiplication operator ⊗: If G, H and Q are m× p, p× n and m× n dimensional
matrices, respectively,

qij = G⊗ H ⇒ qij = max
1≤k≤p

(
gik × hkj

)
, i = 1, 2, · · · , n (6)

Based on the definition of FRPN, the fuzzy reasoning algorithm is

uk+1 = uk ⊕
[
(O× C)⊗

(
IT × uk

)]
(7)

The reasoning process has three steps. Firstly, k = 0. Secondly, obtain uk+1 with uk. Thirdly,
k = k + 1 and repeat the second step if uk+1 6= uk The reasoning process is finished until uk+1 = uk.
The truth degree of the subsystem divided based on failure decoupling can be obtained. The product
has n subsystems which are denoted as S1, S2, . . . , Sn. The truth degree of the subsystem Si is denoted
as ui. The weight of the subsystem Si considering product failures can be denoted as w f

i (i = 1, 2, . . . , n).

The subsystem weight vector considering product failures is w f
i =

[
w f

1 , w f
2 , · · · , w f

n

]
.

{
w f

1 : w f
2 : · · · : w f

n = u1 : u2 : · · · : un

w f
1 + w f

2 + · · ·+ w f
n = 1

(8)

3.3. Subsystem Weight Considering Development Cost Based on Interval Expert Evaluation

This process corresponds to Stage IV in Figure 1, and is described in Section 2. The subsystem
weight considering the development cost w1 is influenced by many factors, and its calculation is a
multi-criteria decision making (MCDM) process. What should be emphasized are the difficulty and
impracticality in description of the relationship between different subsystems considering different
factors which have an influence on the subsystem weight considering the development cost, and there
are many uncertainties unavoidable in this process. Therefore, fuzzy expert evaluation based on the
interval numbers is adopted in this section. Assume the compromised variable on subsystem weight
considering the development cost for ith subsystem be an interval number, Zi, i = 1, 2, ..., n and n is the
total number of subsystems. Six factors are selected to enhance the feasibility of the expert evaluation.

• Complexity (K)

Complexity can be assessed according to the number of components in a subsystem.
The subsystem weight considering the development cost for a complex subsystem needs to be
improved for cost saving. Thus, if a subsystem is highly complex, its weight considering the
development cost tends to be high.

Hence, Zi ∝ Ki, where Ki is the complexity factor for the ith subsystem.

• State-of-the-art (S) factor



Appl. Sci. 2017, 7, 791 9 of 21

The novelty or technical maturity of a subsystem affects its development cost. The high technology
maturity of a subsystem corresponds to low development cost.

Hence, Zi ∝ 1/Si, where Si is the state-of-the-art factor for the ith subsystem.

• Criticality of failure (Cr)

The development cost of a subsystem with critical failure effects should be improved as much as
possible to prevent severe failure.

Hence, Zi ∝ Cri, where Cri is the criticality of the failure factor for the ith subsystem.

• Performance time (T)

If a subsystem is designed for a long performance time, its development cost is expected to be
high to avoid frequent failures and maintenance in the process.

Hence, Zi ∝ Ti, where Ti is the performance time factor for the ith subsystem.

• Maintainability (M)

The maintainability of a subsystem is inversely proportional to its development cost because low
reliability in a highly maintainable subsystem or components reduces product cost.

Hence, Zi ∝ 1/Mi, where Mi is the maintainability factor for ith subsystem.

• Environmental harshness (E)

The harshness degree of the working environment of a subsystem significantly affects subsystem
development cost. The higher degree of environmental harshness of a subsystem, the higher
development cost is needed to reduce frequent failures.

Hence, Zi ∝ Ei, where Ei is the working environment factor for the ith subsystem.
Therefore, the equation for interval values (Zi) is expressed as follows:

Zi = (Ki × Cri × Ti × Ei)/(Mi × Si) (9)

where Ki, Mi, Si, Cri, Ti and Ei are the interval assessment values of the ith subsystem for the
aforementioned factors. These variables are represented by interval numbers within [1–9] and
translated into crisp numbers with the interval algorithm [36].

(x1, y1) and (x2, y2) are two interval numbers, where x1 and x2, and y1 and y2 represent left-end
and right-end points, respectively. Four fuzzy fundamental operations are shown in Equations (5)–(8),
and the defuzzified value G of the interval number G# = [x, y] is obtained by Equations (9),

[x1, y1] + [x2, y2] = [x1 + x2, y1+ y2] (10)

[x1, y1] − [x2, y2] = [x1 − y2, y1 − x2] (11)

[x1, y1] [x2, y2] = [min (x1 x2, x1y2, y1x2, y1y2), max (x1x2, x1y2, y1x2, y1y2)] (12)

[x1, y1]/[x2, y2] = [x1, y1][1/y2, 1/y2], where 0
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𝐶2 =∑𝐵𝑖
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where fi is the feasible degree to improve the reliability of the ith subsystem; Ri,min is the minimum 

reliability of the ith subsystem after working for a while; Ri,max is the maximum reliability of the ith 

[x2, y2]s (13)

G = [(x + y) + (2s − 1)(y − x)]/2 (14)

where s represents the caution degree of decision maker. Its value is within [0, 1] which denotes the
attitude change from radicalization to caution.

The weight considering the development cost for ith subsystem wd
i (i = 1, 2, . . . , n) can be available

with the compromised interval number Zi. The subsystem weight vector considering the development
cost is wd

i =
[
wd

1, wd
2, · · · , wd

n

]
.

{
wd

1 : wd
2 : · · · : wd

n = Z1 : Z2 : · · · : Zn

wd
1 + wd

2 + · · ·+ wd
n = 1

(15)
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3.4. Mathematical Model of Reliability-Based and Cost-Oriented Optimization

This process corresponds to Stage V in Figure 1, and is described in Section 2. Reliability
optimization is an important guarantee for the correct progression of later product detailed design.
The generalized cost function is regarded as a starting point where other factors are considered.
The mathematical model of reliability-based and cost-oriented product optimization is established,
where the minimum product reliability allowable and the scope of subsystem reliability are regarded
as constraint conditions, and the product reliability and cost are set as optimization objectives. Product
cost C includes the development cost C1 and maintenance cost C2.

C1 =
n
∑

i=1
C1

i

(
Ri, fi, Ri, min, Ri, max, w f

i

)
=

n
∑

i=1
exp

w f
i (1− fi)(Ri−Ri, min)
(Ri, max−Ri)

(16)

C2 =
n
∑

i=1
B2

i

(
Ri, wd

i , C2
i , βi

)
=

n
∑

i=1
B2

i wd
i exp[βi(1− Ri)] (17)

where fi is the feasible degree to improve the reliability of the ith subsystem; Ri,min is the minimum
reliability of the ith subsystem after working for a while; Ri,max is the maximum reliability of the
ith subsystem; C1

i is the development cost of the ith subsystem; Ri is the reliability designed of the

ith subsystem which is within [Ri,min, Ri,max]; w f
i is the weight of the ith subsystem considering the

development cost; C2
i is the maintenance cost of the ith subsystem (all the subsystems are supposed

to be repairable); B2
i is the purchase cost of the ith subsystem; wd

i is the weight of the ith subsystem
considering the product failure which is calculated by the FRPN model; and β2

i is the difficulty
degree of the ith subsystem. The mathematical model of reliability-based and cost-oriented product
optimization is established: 

minC =
n
∑

i=1

(
C1

i + C2
i
)
,

maxR =
n
∏
i

Ri,

s.t.
n
∏
i

Ri ≥ R∗,

Ri, min ≤ Ri ≤ Ri, max

i = 1, 2, . . . , n (18)

where R* is the target reliability for the product.

3.5. Adoption of Cultural-Based DMOPSO Using Crowding Distance Sorting

This process corresponds to Stage VI in Figure 1, and is described in Section 2. Compared
with conventional algorithms, particle swarm optimization (PSO) is a simple and effective random
algorithm to solve constrained problems [37,38]. As shown in Equation (13), the reliability-based and
cost-oriented product optimization model has two optimization objectives, the maximum reliability
and minimum cost, but they are negatively correlated. DMOPSO has received extensive attention
by scholars in recent years [39]. The outstanding feature of DMOPSO is the combination of strong
convergence ability and prominent diversity of Pareto solutions, but it still has some defects. On the
one hand, the complexity of the diversity preservation for the Pareto set and global optimum update
strategy brings a high computational cost. On the other hand, DMOPSO often falls into a local
extreme because of its relatively scarce overall searching ability. To overcome these difficulties,
cultured-based DMOPSO was proposed with the elitism strategy and crowding distance operator
which brings the Pareto front closing to the accurate optimum in a more economical way [31]. Therefore,
cultured-based DMOPSO using crowding distance sorting is adopted for the mathematical model of
reliability-based and cost-oriented product optimization. Li et al. [31] elaborated the corresponding
concrete implementing process and properties of this arithmetic.

The Pareto front has been widely used in finding the Pareto-optimal solutions to double object
optimization problems. The Pareto front concept is derived from economics and engineering. It is a
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straightforward way to explore the trade-offs in double objective optimization. Given a set of choices
and a way of valuing them, the Pareto frontier or Pareto set is a set of choices that are Pareto efficient.
The Pareto frontier is particularly useful in engineering by restricting attention to the set of choices
that are Pareto-efficient. Designers can make tradeoffs within this set rather than considering the full
range of every parameter.

In this paper, the Pareto front is applied to the reliability-based and cost-oriented product
optimization model proposed in Section 3.4, which also has two optimization objectives: the maximum
reliability and minimum cost. This product optimization model has two kinds of parameters
represented by wd

i and w f
i (i = 1, 2, . . . , n, and n is the total number of subsystems of the target product

obtained by the subsystem division based on failure decoupling in Section 3.1). wd
i and w f

i represent
the weight considering the development cost of the ith subsystem and the weight considering product
failures of the ith subsystem, respectively. In fact, the values of wd

i and w f
i in the product optimization

model are computed by fuzzy logic and interval mathematics at first. Specifically, w f
i is calculated by

the fuzzy logic of FRPN in Section 3.2, and wd
i is calculated by the interval mathematics with the method

in Section 3.3. In this way, the mathematical model of reliability-based and cost-oriented optimization
model proposed in this paper can be regared as a traditional double objective optimization problem.
Then, the Pareto front can be adopted to find the best solutions. In this way, the Pareto front presented
in this paper is obtained with fuzzy logic. Therefore, the Pareto front in fuzzy logic is the same as the
traditional Pareto front in essence.

4. Numerical Example

The computer numerically controlled (CNC) machine tools are typical modern complex products,
and they are important guarantees for the sustainable development of national economy and national
defense construction [40]. As a high-precision and efficient automation equipment, the failure of the
CNC machine tools can cause huge loss, so it is imperative to improve the reliability of optimization
design [4]. The performance of CNC machine tools has been improved drastically in recent years.
At the same time, the problem of potential failures for CNC machine tools has become increasingly
noticeable. Therefore, the reliability-based and cost-oriented product optimization for CNC machine
tools is increasingly urgent. As shown in Figure 3, the target CNC machine tool is classified as
13 function modules according to the composition and working principle.
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4.1. Subsystem Division Based on Failure Decoupling of CNC Machine Tool

16 CNC machine tools are used to collect the module failure data, and 75 kinds of module failures
are considered, as shown in Table 1. The causal relationship between modules failures is analyzed so
that the failure correlation graph of the target CNC machine tool can be established, which is shown in
Figure 4.

Table 1. Data about module failures for 16 computer numerically controlled (CNC) machine tools.

Number of the CNC
Machine Tool Module Failure Number of the CNC

Machine Tool Module Failure

1

Overmuch wear of the belt

9

There is a taper in the head of the machine tool
Runaway speed Water is unable to flow into the cooling pump

Much noise of the hydraulic motor The lathe dose not run after programming
Noise of the main axis is abnormal The rotation of the main shaft is unstable

The tool holder cannot rotate Bad lubrication

2

Water leakage

10

Loss of coordinate data after power failure
Loose of the protective cover No input signal

Hydraulic chuck does not work The knife holder cannot change the knife
The crumbs cannot be ruled out Bad cooling of the air-conditioning
The monitor screen is not bright A short journey of the claw

3

Cooling water pump tripping

11

Z-axis stop suddenly
Oil filling pipe burst No Lubricating oil on the guide way

The main spindle does not work Low accuracy of the hydraulic chuck
No electricity can flow into the

machine tool X-axis stop suddenly

The tool holder is not located accurately The artifact has a convex plane

4

The lathe has no input signal

12

There is motor noise when the X-axis moves
The tool vibrates when the workpiece

is processed
The bed saddle does not move with the input of

location instruction
The noise of the main motor is abnormal The fuse is burned out frequently

The air conditioner does not work X-axis Slide down after power off
The oil pipe ruptures The servo alarm sounds the alarm

5

Automatic power off of the CNC
machine tools

13

The oil pipe ruptures

Black lines appear on the monitor The hydraulic chuck pressure cannot be raised
The tool will rotate automatically with

the electricity The rotation of the main shaft is unstable

The knife dish shakes The processed threads are not qualified
The CNC machine tools do not move

with the hand-cranking The Stretch Speed of the stage is too slow

6

The hydraulic chuck does not work

14

The machined artifacts have a taper
Water leakage of the machine tools The threading are not standard
The main transformer was burnt Crumbs cannot be ruled out quickly

The voltage of the system drops sharply
after changing the knife The oil pipe ruptures

The speed display is not accurate There is no brake when the main shaft
stops turning

7

Protective glass crushing

15

The program does not run after the change of
the knife

The knife cannot stop turning A blank screen of the computer’s display settings
The finished arc is not qualified The size of the sample workpiece is inconsistent

The hydraulic system cannot start The turning operation of Z-axis is not standard
A blank screen of the computer’s

display settings The blade cannot be accurately positioned

8

X-axis can not move to the zero point

16

No electric current can flow into the CNC
machine tools

Overmuch wear of the belt The workpiece processed have crow’s feet
Cutting vibration The revolving speed of the X-axis is unstable

The main shaft does not run after the
system is motivated Cutting vibration

The workpiece processed have crow’s feet Knives cannot be replaced at will
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The failure correlation graph is drawn and translated into an adjacency matrix based on the
reachability matrix that can be calculated. According to the method in Section 3.1, the subsystems of
the target CNC machine tool can be divided, as shown in Figure 5.
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4.2. Failure Diagnosis Based on FRPN of CNC Machine Tool

Based on the main collected data about module failures in Table 1 and expert analysis, the FTA
model about the CNC machine tool is available. By using the method in Section 3.2.2, which is
described in detail in [33–35], the corresponding FRPN model can be converted as shown in Figure 6.
In this process, the module failures listed in Table 1 that only reoccur at long intervals are removed to
simplify the FRPN model of the target CNC machine tool. The relevant data about the FRPN model
are collected in Tables 2 and 3 with expert evaluation and historical data analysis about the CNC
machine tool.
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Table 2. pi and θi of the fuzzy reasoning Petri Net (FRPN) model for the CNC machine tool.

pi Failure Denoted by pi θi pi Failure Denoted by pi θi

p1 Crush of the protective cover 0.46 p17
The rotation of the main shaft
is unstable 0.69

p2
Large vibration amplitude
with transmission 0.51 p18

The hydraulic pressure chuck sounds
the alarm -

p3 The tool holder is not located accurately 0.62 p19 The hydraulic tool holder is not flexible -
p4 Crumbs cannot be ruled out quickly 0.65 p20 Knives cannot be replaced at will 0.90
p5 Bad lubrication - p21 Too much noise of the main motor -

p6 The external voltage is unstable 0.68 p22
The sleeve does not stretch
scale automatically -

p7 NC hardware damage - p23
The hydraulic chuck is automatically
opened when the processing is stopped 0.68

p8 The feed speed is stable 0.82 p24
There is no electric current can flow
into the servo module 0.76

p9 Lack of driving force 0.61 p25 Bad cooling of the air-conditioning 0.80

p10 Low detection sensitivity - p26
The bed saddle does not move with the
input of location instruction 0.55

p11
Low accuracy of the
closed-loop feedback 0.58 p27 Failure of the S1 -

p12 Tool wear overmuch 0.70 p28 Failure of the S2 -
p13 Liquid coolant leakage 0.74 p29 Failure of the S3 -

p14
The pressure of the hydraulic chuck
cannot be raised 0.63 p30 Failure of the S4 -

p15
A blank screen of the computer’s
display settings 0.82 p31 Failure of the S5 -

p16 X-axis can not move to the zero point 0.75 p32 The CNC machine tool can not work -
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Table 3. tj, ej and γj of the FRPN for the CNC machine tool.

tj ej γj tj ej γj

t1 If p15, then p5 0.85 t14 If p17, then p28 0.85
t2 If p14, then p7 0.89 t15 If p18, then p29 0.82
t3 If p14 and p1 and p2, then p10 0.88 t16 If p19, then p29 0.87
t4 If p12, then p10 0.80 t17 If p8 and p20, then p29 0.90
t5 If p3 and p4, then p10 0.90 t18 If p21 and p22 and p4, then p30 0.91
t6 If p5 and p6, then p18 0.92 t19 If p23 and p3, then p31 0.84
t7 If p7, then p19 0.86 t20 If p24 and p25 and p26, then p31 0.87
t8 If p8 and p9, then p19 0.82 t21 If p27, then p32 ?
t9 If p10, then p21 0.91 t22 If p28, then p32 ?
t10 If p11, then p22 0.90 t23 If p29, then p32 ?
t11 If p12 and p13, then p27 0.84 t24 If p30, then p32 ?
t12 If p14 and p15, then p27 0.86 t25 If p31, then p32 ?
t13 If p16, then p28 0.93

Based on the methods in Section 3.2, the subsystem weight vector considering the failure diagnosis
based on FRPN is obtained as wf = [0.165, 0.257, 0.235, 0.137, 0.206].

4.3. Interval Expert Evaluation for CNC Machine Tool

A team of experts are invited to give interval evaluation for the five subsystems about the
six factors so that the subsystem weight considering the development cost w1 can be calculated.
The evaluation data are expressed as interval number within [0, 9], as shown in Table 4.

Table 4. Interval expert evaluation for subsystems about six factors.

Subsystem/Factor K S Cr T M E

S1 [2.5, 4.3] [3.5, 5.3] [2.1, 4.2] [5.0, 6.8] [6.2, 7.6] [4.9, 7.0]
S2 [4.3, 5.6] [5.8, 7.7] [4.8, 6.7] [3.9, 5.5] [5.6, 8.0] [3.9, 5.8]
S3 [6.0, 7.6] [5.9, 7.4] [5.3, 6.8] [2.9, 4.5] [4.7, 6.6] [4.1, 5.5]
S4 [5.9, 7.3] [4.9, 6.6] [3.8, 5.6] [4.0, 5.9] [6.3, 7.6] [3.9, 6.2]
S5 [5.8, 7.0] [7.0, 8.8] [6.2, 7.7] [4.1, 6.2] [4.9, 6.5] [7.3, 8.9]

In this section, s is set to be 0.5, which means the peaceful mind of decision makers. The subsystem
weight vector considering the development cost can be calculated as wd = [0.201, 0.260, 0.241,
0.188, 0.110].

4.4. Reliability-Based and Cost-Oriented Optimization and the Solution

With the calculated subsystem weights considering the failure diagnosis based on FRPN and
development cost based on expert evaluation, the mathematical model of reliability-based and
cost-oriented product optimization for the CNC machine tool is established. The relevant data needed
are shown in Table 5.

Table 5. Relevant data needed of the multi-objective mathematical model.

Si fi Ri,min Ri,max β2
i Bi (1000 dollars)

S1 0.7881 0.9100 0.9800 0.2781 6.4000
S2 0.7384 0.9300 0.9950 0.1668 6.5900
S3 0.7616 0.9300 0.9950 0.1854 8.5360
S4 0.8085 0.9200 0.9850 0.2356 4.3300
S5 0.8234 0.9300 0.9940 0.1541 5.6910
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Culture-based DMOPSO was carried out with the Matlab software. The related operating
parameters are determined as internal swarm size popnum = 100, external swarm size paretomax = 100,
iteration number maxgen = 200, global optimum step size cg = 2(cg is within [1, 3]), inertia weight
winertia = 0.4, mutation probability pmutate = 0.1 and float mutation index mum = 20. The redundant
particles are excluded according to the crowding distance sorting. The Pareto fronts acquired by the
culture-based DMOPSO are shown in Figure 7.
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5. Comparison and Sensitive Analysis

5.1. Comparison

In Figure 7, it can be seen that the product cost increases slowly when the product reliability
increases from 0.8500 to 0.9420, and the product cost increases sharply when the product reliability
increases from 0.942 to 0.9475. The best reliability is about 0.9475 with the cost increases from 14593.1573
to 63722.7969 and the best cost is 13.1923 with the reliability equal to 0.8500. Therefore, the optimal
reliability designed should within [0.8500, 0.9420]. For the sake of observation, part of the Pareto fronts
obtained in Figure 7 is magnified, and the multi-objective algorithm for the optimal reactive power
(VAR) dispatch is adopted to assess the solutions of the Pareto fronts so that the best compromise
solution can be available as shown in Figure 8. Hence, the reliability-based and cost-oriented product
optimization scheme for the target CNC machine tool is as follows:

R = 0.9090, C = 15009.2 dollars, R1 = 0.9705, R2 = 0.9846, R3 = 0.9865, R4 = 0.9776, R5 = 0.9863.
Based on Figures 7 and 8, it can be concluded that, when the product reliability and cost are

selected as two optimization objectives, it is reasonable to improve moderately the product reliability
from the minimum value allowed, but it is over-wasteful and meaningless to improve the product
reliability to the maximum value possible. This is because the product cost is the nonlinear monotone
increasing function of the product reliability, and the high cost is required to achieve high reliability.
The economic cost is unlimited high to achieve the ultimate reliability which means quite a lot of money
is needed to spend on the product manufacture and installation in engineering practice. In addition,
the cost to improve the high product reliability is higher than that to improve the low product reliability
at least to the same extent. Hence, the running results are consistent with the actual situation.
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5.2. Sensitivity Analysis

There is a subjective variable, the caution degree of decision maker, s, which is discovered in the
implementation process of the proposed method. Hence, the sensitivity analysis is proceeded to detect
the influence the subjective variable has on the results of the proposed method.

s is set to be different values to get a series of Pareto fronts which are within [0, 1]. The product
cost tends to be prohibitive when the maximum reliability possible is achieved, and this is of no
reference value for the actual product design. Therefore, it is only needed to observe the partial
Pareto fronts containing the best compromise solution, which are shown in Figure 10. The related best
compromise reliability optimization schemes for three different conditions are shown in Figure 11.
In Figures 10 and 11, it can be seen that the partial Pareto fronts containing the best compromise
solution are almost coincident as s changes, but the best compromise solution and the corresponding
reliability optimization schemes are obviously different. Hence, the proposed method is sensitive to
the change of s. Decision makers should put more emphasis on determining appropriate evaluation
attitudes to obtain reasonable schemes.
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6. Conclusions

This paper proposes a reliability-based and cost-oriented product optimization integrating FRPN,
interval expert evaluation and cultural-based DMOPSO using crowding distance sorting. Based on the
subsystem division with failure decoupling, it introduces FRPN to calculate the subsystem weight
considering the failure diagnosis. The interval expert evaluation is adopted to calculate the subsystem
weight considering development cost. Multi-objective optimization model is built with the two types
of subsystem weights obtained. Cultural-based DMOPSO using crowding distance sorting is employed
to get the Pareto fronts based on which the fuzzy-based mechanism picks out the best compromise
solution. Compared with the conventional reliability design methods, the proposed method can not
only take advantage of the uncertain expert evaluation for essential factors, but also take the dynamic
and uncertain propagation of product failure into account. In addition, subsystem division with failure
decoupling is performed at first so that consideration must be given to both the validity and the
efficiency of the product reliability optimization design proposed. A numerical example of a CNC
machine tool illustrates the practicality and efficiency of the proposed method. However, the proposed
method cannot provide an effective way to consider the experts’ caution degree in failure diagnosis
based on FRPN, and it also fails to offer an overall analysis on how the experts’ caution degree affects
the best compromise solution of the product reliability design scheme. More attention should be
paid to these issues in the future work of this paper. For example, a further exploration into a series
of the best compromise solutions of the product reliability design with different decision maker’s
caution degree is indispensable to find the mathematical relationships among decision maker’s caution
degree, the reliability and cost obtained by the optimization calculation proposed in this paper. If the
quantitative mathematical relationships can be extracted, the decision maker’s caution degree can be
regarded as an objective variable rather than a subjective variable. In this way, designers can invite
experts with particular mentality to give their evaluation information to get the best compromise
solution of the product reliability design scheme.
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