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Abstract: This paper addresses the implementation of economic-oriented model predictive controllers
for the dynamic real-time optimization of the operation of wastewater treatment plants (WWTP).
Both the economic-optimizing controller (pure-EMPC) and the economic-oriented tracking controller
(Hybrid-EMPC, or HEMPC) formulations are validated in the benchmark simulation model (BSM1)
platform that represents the behavior of a characteristic activated sludge process. The objective
of the controllers is to ensure the appropriate operation of the plant, while minimizing the energy
consumption and the fines for violations of the limits of the ammonia concentration in the effluent
along the full operating period. A non-linear reduced model of the activated sludge process is used
for predictions to obtain a reasonable computing effort, and techniques to deal with model-plant
mismatch are incorporated in the controller algorithm. Different designs and structures are compared
in terms of process performance and energy costs, which show that the implementation of the
proposed control technique can produce significant economic and environmental benefits, depending
on the desired performance criteria.

Keywords: wastewater treatment plant; activated sludge process; dynamic optimization; economic
model predictive control

1. Introduction

In the management of a wastewater treatment plant (WWTP) operation, one of the most important
factors that determines economics is the energy used to provide oxygen to the aerobic processes
(aeration energy), and the pumping energy for the recycles of the plant. The appropriate adjustment of
the available manipulated variables is crucial for an optimum operation, especially in the activated
sludge process, where biological removal of nutrients and organic matter takes place [1–3].

The influent of the wastewater treatment plants exhibits an oscillating behavior, with daily
and seasonal patterns associated with the human activities during the day and the seasonal rainfall.
Weather conditions, such as rain and storms, produce significant changes in the influent flowrate
and load [4]. Due to the variable influent behavior, the pollution load to be treated is continuously
changing, and consequently, so are the energy and chemical requirements for the treatment. In such a
scenario, conservative operation regulating the critical variables around the nominal working point
might ignore the disturbances introduced by the influent. It is forecasted that significant energy
savings could be achieved with an operation based on dynamic optimization that accounts for the
influent conditions.
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A detailed description of the developments of instrumentation and control systems for WWTPs
can be found in Olsson [2]. Amand et al. [5] present a complete review of the aeration control strategies
considering instrumentation, control algorithms, and even a description of the aeration system. They
report that the most usual control solutions in the different WWTP control loops are based on simple
proportional integral (PI) controllers. Even the derivative term is rarely used in practice [2]. These
PI-based control loops (aeration, nitrate recirculation, cascade ammonia control, etc.) are usually based
on regulation of the key variables at a constant set point. The benefits of advanced control techniques,
such as model predictive control (MPC) for optimizing the operation of WWTPs, are pointed out in
Santín et al. [3] and Amand et al. [5]; interesting applications are found in [6,7]. Due to the demand for
solutions to improve the efficiency of WWTPs, particular attention is being paid to the application of
real-time optimization systems (RTOs) [8–12]. The typical RTOs are hierarchical control structures that
carry out the economic optimization of the set points in an upper level and send them the basic control
level [13,14]. Recently, the single-layer economic model predictive control strategy has emerged as an
alternative to the hierarchical RTO to perform the dynamic optimization of the operation improving
the effluent quality and the economic performance [15,16].

The economic-oriented model predictive controller (EMPC) approaches include economic
objectives in the cost function of the standard model predictive control (MPC) algorithm. It can be used
as an optimizer in a hierarchical structure, or directly in the control level, combining the optimization
and control tasks in the same algorithm [17]. The implementation directly in the control level is
promising, since the algorithm is able to capture the impact of fast disturbances over plant behavior and
process economics, thus providing the optimal control inputs, accounting for process restrictions [18].
Moreover, the use of single-layer structures reduces the computational effort, avoids communication
problems between layers, and also avoids the use of different models in the optimization and control
levels [13,19]. All of these characteristics make the single-layer EMPC an interesting solution to attain
an adequate compromise between energy costs and effluent quality in the operation of WWTPs. The
non-linear EMPCs have been successfully applied both in WWTPs in the upper layer of a hierarchical
structure [8,9], and directly in the control level [15,16]. The non-linear models are appropriated despite
their numerical complexity, because it is necessary to predict process behavior on a wide range of
operating conditions. However, those applications use the exact process model for predictions of
system behavior, which is an unrealistic assumption. In most cases, the model is not perfect, and it is
necessary to deal with modeling errors that affect the controller performance.

In this work, a single-layer economic model predictive controller (EMPC) is proposed to
perform the dynamic optimization of the operation of the activated sludge process of a WWTP.
A standard simulation platform, the benchmark simulation model (BSM1), is used to test the two
EMPC formulations, which are evaluated and compared in terms of the compromise between energy
consumption and effluent quality achieved along the evaluation period. The economic-oriented
controllers proposed in this work use an approximated non-linear phenomenological model of the
process for predictions. The use of the simplified model reduces the computing effort on each controller
execution, but produces plant-model mismatch problems while capturing its non-linear behavior. Here,
the measurements of the constrained and the controlled variables are used to update the constraints
and the cost function in the optimization problem, which is a technique commonly used to address
plant–model mismatch problems that can produce infeasibilities and suboptimal operation [20].

Two formulations of the EMPC are considered in this paper, which are distinguished by the use of
a pure economic cost function in the controller optimization problem, or a combination of a measure of
the deviation from the set point and an economic performance index. The formulation of the economic
performance indices is another important issue in the EMPC implementation. Here, the formulation
is oriented to obtain a compromise solution between operating costs and effluent quality in terms of
ammonium levels in the effluent. This trade-off is represented in the cost function by including an
energy consumption index (economic terms) [21], and an index that quantifies the deviation from a
desired legal value of the effluent ammonium concentration (quality term) [22].



Appl. Sci. 2017, 7, 813 3 of 21

A number of works addressing the implementation of single-layer EMCP approaches reflects
its possibilities as an alternative to hierarchical RTO structures [17]. Nevertheless, its application to
WWTPs is scarcely studied [15,16]. The goal of this paper is to show the suitability of the technique
to minimize energy consumption and improve effluent quality by taking advantage of the dynamic
behavior of the WWTPs. A novelty of the work with respect to previous works [8,15,16] is the execution
of the optimization in a scenario where plant–model mismatch can affect the feasibility and the quality
of the solution. Note that in the EMPC problem, the objective is the optimization of economics; then,
the correction of the mismatch between the predictions and the measurements is quite different from
set-point tracking problems [20].

The mathematical description of the proposed control strategies and the process description is
presented in Section 2. The particularization of the EMPC to the WWTP is presented in Section 3.
The simulation results and analysis are in Section 4, which also presents some conclusions.

2. Materials and Methods

This section presents the three elements involved in the proposed control problem. First of
all, the considered economic model predictive control strategies are presented. These strategies are
followed by the process description, which presents the wastewater treatment plant layout and process
model, as well as the WWTP control problem and performance indices, in order to evaluate the
performance of the plant operation. In the third subsection, the method by which the predictive
controllers are applied to the WWTP process is explained through describing how the manipulated
and controlled variables are used to specify the economic predictive controllers’ cost functions.

2.1. Description of the Proposed Control Strategies

The economic-oriented model predictive controller is a modification of the standard model
predictive controller (MPC) that introduces a measure of process profitability in the cost function.
In this section, first, the standard non-linear MPC is described briefly. Second, a general formulation
that integrates the two possibilities for the economic-oriented model predictive controllers considered
in this paper is presented.

2.1.1. Non-Linear Model Predictive Controllers

The MPC is an advanced controller that provides the optimal action for set-point tracking
and control movements by solving an optimization problem, usually with constraints. In the MPC
algorithm, the vector of manipulated inputs u is computed periodically and applied to the process
each certain time, named sampling time (τS), from the optimization of a control performance index
considering constraints on inputs, outputs and states. The typical performance index (cost function)
in the MPC is a quadratic penalization of the target (set point) deviations and the magnitudes of the
manipulated inputs adjustments that represent the rate of variation of actuators. The set point can be a
fixed value, or a computed value provided by an upper level optimization. A model of the process to
be controlled is used to predict the future behavior, in a given time horizon τN [23].

Different types of models can be used for predictions in the MPC algorithm, e.g., linear or
non-linear models expressed in discrete-time or in continuous-time [24]. In this work, a non-linear
model of the system is selected, which is stated as a continuous time state-space model:

•
x(t) = f(x(t), u(t), v(t))y = g(x(t)) (1)

where x ∈ X ⊆ Rnx is the state vector that contains the process variables that are relevant in the control
problem, and X is the set of admissible states; u ∈ U ⊆ Rnu is the vector of manipulated inputs, and U
represents the physical limitations of the manipulated variables; v ∈ V ⊆ Rnv is the vector of measured
disturbances, and V is the set of measurable disturbances, and

•
x denotes the time derivative of the

state. Note that only measurable disturbances are considered here.
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2.1.2. Economic-Oriented Model Predictive Controllers

The economic-oriented model predictive controllers follow a similar strategy to the standard MPC
controllers, but in this case, the cost function includes a term representing the economic performance,
the energy savings, or a measure of process performance associated to the economic profit. There
are several types of economic-oriented controllers with these characteristics [17], and in this work,
the economic optimizing controller (pure-EMPC) and the economics-oriented tracking controller
(Hybrid-EMPC or HEMPC) have been considered.

In the pure EMPC, the control actions are obtained considering a cost function that only includes
this economic term, without any other tracking or control-movement terms. On the other hand, the
economics-oriented tracking controller (HEMPC) cost function includes the economic term as well as
the other terms explained in the previous section [25,26].

Note that the HEMPC is more appropriated in the cases where some output variables must
be maintained around some reference values to ensure the desired process performance, while
also allowing for some deviation from the set point. This deviation is tolerable when economic
performance and the tracking of the reference are conflicting objectives or in contrast, the simultaneous
optimization of economics and control performance is possible because additional degrees of freedom
are available [26]. The tuning parameters have to be carefully selected to find an appropriated
compromise solution.

A generalized mathematical description that includes both alternatives is presented here.

min
u

τN∫
0

(wE · JECO(x̂(t), u(t)) + wC · JNMPC(x̂(t), u(t)) )dt (2)

subject to:
·
x̂(t) = f (x̂(t), u(t), v(t)) (2a)

x̂(0) = x(τk) (2b)

g(x̂(t), u(t)) ≤ 0, ∀t ∈ [0, τN) (2c)

JECO in (Equation (2)) is an economic performance index measuring the operating profits or
expenses, and JNMPC is the MPC cost function described in the previous section. The relative
importance of the objectives in the cost function is given by the weights wC and wE. They have to be
carefully selected to represent the desired compromise between economics and control performance.
The constraints and initial conditions are defined by Equations (2a)–(2c). Since both objectives are
represented as separate terms, the problem described results in a conventional MPC formulation when
the weight wE is set to zero (wE = 0, wC 6= 0), and in an economic-optimizing controller or pure EMPC
formulation, when wC is set to zero (wE 6= 0, wC = 0). If wE 6= 0, wC 6= 0, then it is the case of an
economic-oriented tracking controller or HEMPC, where the two terms have to be suitably weighted
to represent the desired compromise between economics and control performance.

The decision variables in Equation (2) are the manipulated inputs u, which are generally defined
as a trajectory along the prediction horizon u(t|τk). For each input trajectory u that the optimizer
proposes (note that the optimization is solved iteratively), the predicted states x̂ and outputs y are
obtained using the non-linear model (1). However, in the implementation of the controller in this
work, the trajectory u(t|τk) is considered to be a constant value u for simplicity, and this will be
the control action applied to the plant. Therefore, there is only one decision value in Equation (2),
and the problem can be solved easily by Sequential Quadratic Programming methods (SQP). This
assumption is analogous to the selection of a control horizon of 1 in a typical discrete MPC, because
the control horizon is defined as the number of discrete changes allowed for the control signal during
the prediction horizon before stabilizing. In any case, although the consideration of control horizons
greater than 1 is straightforward through considering more decision variables in the optimization
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problem (representing step changes in the control signal during the prediction horizon time), it has not
been implemented because it increases the computational times, and the improvement of the results is
not remarkable.

As for predictions and other magnitudes in the cost function [17], although a continuous model
is considered, a discrete update of the manipulated variable is performed because the optimization
problem is solved at each sampling time τs. More precisely, the problem is solved at the time instants
given by the sequence {τk = kτs}, where k = 0, 1, 2, . . ., and τk is the sampling time instance of the
continuous time model. Therefore, each time the optimization problem (2) is solved, the increments of
the manipulated variable are obtained considering u(τk−1) as starting value.

Finally, note that due to the use of a reduced model of the process for predictions, there is a
plant–model mismatch that is tackled here by applying a bias correction [23]. More precisely, it consists
of modifying the set point and output constraints using the difference between the measured output
and predicted output at each sampling time. This correction is equivalent to a Dynamic Matrix Control
(DMC) scheme that has been proved to be effective in these cases [23].

2.2. WWTP Process and Model Description

As the control problem statement used in this work is based on the use of a process model for
prediction purposes, it is convenient to separately present both descriptions: first, the description of the
WWTP process, based on the BSM1, and second, the simplified model used as the prediction model.

2.2.1. WWTP Process: BSM1

The benchmark simulation model 1 [21] is used to represent the activated sludge process in a
WWTP. The simulation platform (Benchmark simulation model, or BSM1) has been developed within
COST Actions 624 and 682. The schematic representation of the WWTP layout and default control
strategy considered in BSM1 is presented in Figure 1. The plant consists of five biological reactor tanks
connected in a series, followed by a secondary settler. The first two tanks have a volume of 1000 m3

each, and are anoxic and perfectly mixed. The remaining three tanks have a volume of 1333 m3 each,
and are aerated. The settler has a total volume of 6000 m3, and is modeled in 10 layers, with the sixth
layer when counting from bottom to top functioning as the feed layer. Two recycle flows, the first from
the last tank, and the second from the underflow of the settler, complete the system. The sludge from
the settler that is not recycled is led to be disposed, and is called wastage.
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The plant is designed for an average influent dry weather flow rate of 18,446 m3/day and an
average biodegradable chemical oxygen demand (COD) in the influent of 300 g/m3. Its hydraulic
retention time, based on the average dry weather flow rate and the total tank and settler volume
(12,000 m3), is 14.4 h. Qw is fixed to 385 m3/day, which determines, based on the total amount of
biomass present in the system, a biomass sludge age of about nine days.

The nitrogen removal is achieved using a denitrification step performed in the anoxic tanks,
and a nitrification step carried out in the aerated tanks. The internal recycle is used to supply the
denitrification step with SNO. The biological phenomena of the reactors are simulated by using the
Activated Sludge Process No1 (ASM1), which considers eight different biological processes. The
double-exponential settling velocity model simulates the vertical transfers between layers in the
settler [27]. No biological reaction is considered in the settler. The two models are internationally
accepted and include 13 state variables [28]. The full mathematical model, the physical parameters
and performance indices can be found in [22].

The default control strategy proposed in the BSM1 (Figure 1) consists of two PI loops: (1) control
of the dissolved oxygen concentration in the fifth reactor (SO5) manipulating the oxygen transfer
coefficient KLa5, and (2) control of the nitrates concentration in the anoxic zone (SNO2) manipulating
the internal recycle flow rate Qa.

The BSM1 also provides different influent profiles depending on the weather conditions (dry, rainy,
stormy) to evaluate the plant performance. For example, dry weather influent flow is shown in Figure 2.
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Figure 2. Influent profile for a four-day operating horizon.

2.2.2. WWTP Model for Prediction: Reduced BSM1

As told, the BSM1 uses the ASM1 to represent the behavior of the biological reactors. The use of
the complete BSM1 as a non-linear model for prediction would suppose an excessive computational
burden, as well as the unrealistic situation where the process is modeled perfectly and all the state
variables are accessible. Therefore, in this work, it is proposed to use a reduced version of the BSM1 as
the model for prediction [28]. This reduced model introduces simplifications at two levels: layout and
biological processes.

Regarding the layout of the model, it is reduced to one anoxic reactor and one aerobic reactor with
a volume equivalent to the anoxic and aerobic zones of the BSM1, respectively. The index i is used to
distinguish the units, with reactor 1 being the anoxic zone (i = 1), and reactor 2 the aerobic zone (i = 2).

Concerning the biological processes, ASM1 uses 13 state variables on each reactor and considers
eight biological processes. In the reduced model, only the faster biological processes are taken into



Appl. Sci. 2017, 7, 813 7 of 21

account. The influent variables considered in the reduced model are: the influent flow (Qin), the
organic matter concentration (SS,in), and the ammonium concentration (SNH,in). The manipulated
variables are the oxygen transfer coefficient (KLa), and the internal recycle flow (Qa).

The equations of the reduced model, the list of the model parameters, and the variables considered
in the reduced model used here are presented in Appendix A.

2.2.3. WWTP Control Problem

The control problem formulation is based on the influence of the activated sludge process variables
on the general performance of the WWTP. The effluent quality is given by the limits imposed by the
environmental regulation over nutrients and organic matter concentration of WWTP discharges. The
effluent quality limits considered here are those defined within the BSM1 in [22] and reproduced here
in Table 1.

Table 1. Effluent quality limits.

Variable Bound

Total Nitrogen (TN) <18 grN/m3

Chemical Oxygen Demand (COD,e) <100 grCOD/m3

Ammonium concentration (SNH,e) <4 grN/m3

Nitrate concentration (SNO,e) <10 grN/m3

The violations of the established limits over pollutants concentration in the effluent presented in
Table 1 has an impact on economics due to the fines imposed for off-specification discharges. In the
periods of lower load, the reduced levels of pollutants facilitate the treatment, and the effluent quality
standards can be achieved even with values of dissolved oxygen (DO, also denoted by SO2) below the
reference. The regulation of the dissolved oxygen concentration (SO2) and nitrates (SNO1) to reference
values that ensure the desired process performance implies the use of energy for aeration and pumping
purposes. In this situation, driving these variables to the set point using a conservative control strategy
may result in unnecessary energy consumption. On the other hand, during the periods of higher load,
it is necessary to increase the biological activity to reduce the excessive amount of pollutants. Then,
the attainment of the set points for SO2 and SNO1 is decisive to meet the effluent quality specifications
or minimize the violations of the imposed limits to avoid economic penalties.

The desired levels over COD in Table 1 are easily satisfied. The total nitrogen (TN) includes,
among others, the NH4

+ + NH3 compounds. These compounds are more damaging than nitrates
in the effluent (SNO,e). Therefore, in this work, the effluent quality is measured considering only the
concentration of NH4

+ + NH3 compounds in the effluent (SNH,e). A concentration of NH4
+ + NH3

compounds in the effluent below 4 mg/L is desired. A performance index that measures the economic
penalty for violations of the SNH,e as a function of the concentration of ammonium compounds in the
ASP (SNH) is [21]:

Cost_NHe f f =


0 f or SNH,e < 4

8.2
1000

t f∫
t0

(SNH(t)− 4) ·Qe(t) · dt
[

Kg
day

]
f or SNH,e ≥ 4

(3)

The index Cost_NHeff is a measure of the load in excess accumulated in the operating period.
In practice, the bound of 4 mg/L is applied over the daily mean concentration of the NH4

+ + NH3

compounds in the effluent (SNH,e).
In addition to the economic penalty for effluent limit violation, operating costs related to energy

consumption are also considered. They include the aeration energy and the pumping energy, which
are measured using the cost indices proposed in the BSM1 platform [22].
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In this case study, the Pumping Energy (PE) represents the energy use for the pumping of internal
recycle flow (Qa):

PE =
1
T

t f∫
t0

(0.004 ·Qa(t))dt
[

kWh
day

]
(4)

where t0 and tf are the initial and final times considered for the index evaluation and T = t f − t0.
The oxygen transfer coefficient KLa is a parameter that takes into account factors such as the

type of diffuser in the reactors, bubble size, and depth of submersion. The Aeration Energy (AE) is
calculated from KLa according to the following equation:

AE =
SO,sat

T · 1.8 · 1000

t f∫
t0

V2 · KLa(t)dt
[

kWh
day

]
(5)

The overall cost index (OCI) includes the pumping energy (PE) and the aeration energy (AE):

OCI =

w1 ·
1
T

t f∫
t0

(0.004 ·Qa(t))dt + w2 ·
SO,sat

T · 1.8 · 1000

t f∫
t0

V2 · KLa(t)dt

[EUR/day] (6)

w1 and w2 are cost factors that provide an economic interpretation to the OCI; they are chosen here as
w1 = w2 = 1 EUR/kWh.

2.3. Application of the Control Strategies to the WWTP

In the implementation of the controllers to the wastewater treatment plant represented by the
BSM1 platform, it is necessary to translate the variables of the reduced model that consist of one anoxic
reactor and one aerobic reactor, with a total volume equivalent to the two anoxic basins and the three
aerobic basins of the BSM1 plant. Moreover, some considerations related to process characteristics and
the model mismatch problem in the controller implementation must be clarified. These considerations,
as well as the correspondence between the variables, performance indices and constraints handled by
the proposed non-linear model predictive controller (NMPC) and economic-oriented MPC designs,
and the BSM1 plant, are described below.

2.3.1. Control Problem Formulation

At each sampling time, the controller receives information from the plant and translates this
information to the variables considered by the control algorithm.

The non-linear process model described by Equations (A1)–(A11) is used as a prediction model
(Equation (1) in Section 2). Then, the controller optimization problem is solved, taking into account the
reduced model variables and the computed manipulated variables that are sent to the plant. Therefore,
the control problems presented in Section 2 are written here in terms of the reduced model variables.
A schematic representation of the proposed control strategy in the BSM1 plant is presented in Figure 3.

The formulation of the control problem in this work considers a multivariable strategy, where
reference values of the nitrates concentration, SNO2_SP = 1 g/m3; and dissolved oxygen concentration,
SO5_SP = 2 g/m3; are provided manually or by an upper level optimization for a long time-operating
horizon. The manipulated variables are KLa and Qa.

Regarding the control variables, the control performance is expressed in terms of the vector of
output variables y(t) =

[
SNO1 SO2

]
and the set points ySP =

[
SNO1_SP SNO2_SP

]
.

Therefore, the MPC performance index JNMPC(x̂(t), u(t)) includes only the predicted values of
the controlled variables y(t), which are selected from the state vector x(t), and the manipulated inputs
u(t) =

[
Qa KLa

]
, considering that the control signal is constant along the prediction horizon.
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Moreover, the controller only receives measurements of the influent variables that are considered
in the reduced model and have a significant effect in the plant performance, which are the influent
flow, ammonium concentration, and organic matter concentration.
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Summarizing, the specific WWTP control problem variables considered in this application are:

• State vector: x(t) =
[

SNH1 SNH2 SNO1 SNO2 SS1 SS2 SO1 SO2

]
• Output variables (controlled variables): y(t) =

[
SNO1 SO2

]
• Measured disturbances: v(t) =

[
Qin SS,in SNH,in

]
• Vector of manipulated inputs: u(t) =

[
Qa KLa

]
• Set points: SNO1_SP = 1 mg/L and SO2_SP = 2 mg/L

The control performance index is the following equation, which includes a term for set-point
tracking error, control movements and a terminal penalization for set-point tracking:

JNMPC(ŷ(t), u(t)) = |ŷ(t)− ySP|
2
Wy + |u(t)− u(τk−1)|2Wu + |ŷ(τN)− ySP|

2
Wn (7)

where Wy is the weight matrix for the corresponding controlled states, Wu is a weight matrix for the
control efforts, and Wn is a weight matrix for the terminal penalization. The operator |·|2Q is used to
denote the square of a weighted Euclidean norm of a vector, where Q is a positive definite matrix.

The economic performance (JECO) is measured using the overall cost index (OCI) described by
Equation (6), which includes the pumping energy, aeration energy and fines for off-specification
ammonium concentration.

JECO = w1 · 1
T

(
t f∫
t0

(0.004 ·Qa(t))dt +
SO,sat
1800

t f∫
t0

V2 · KLa(t)dt

)
+ w2

8.2
1000

t f∫
t0

max(0, SNH,5(t)−NHmax) ·Qe(t) · dt (8)

where, w1 = w2 = 1 EUR/kWh and Qe is the effluent flow.
The JECO index (EUR/day) represents the compromise between the energy consumption (OCI),

weighted by w1 and computed as the sum of the pumping energy (first term) and the aeration energy
(second term), and the fines for off-specification ammonium concentration in the effluent weighted by w2.
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Process constraints are imposed over the manipulated variables KLa5 and Qa [22] and the
controlled variables SNO2 and SO5, which are expressed according with the reduced model variables.

180 ≤ Qa(t) ≤ 92, 000
[

m3

day

]
∀t ∈ [0, τN) (9)

1.5 ≤ Kla(t) ≤ 360
[

1
day

]
∀t ∈ [0, τN) (10)

0.1 ≤ SNO2(t) ≤ 5
[

grN
m3

]
∀t ∈ [0, τN) (11)

0.5 ≤ SO5(t) ≤ 5
[

grCOD
m3

]
∀t ∈ [0, τN) (12)

SNH5(t) ≤ 6
[

grCOD
m3

]
∀t ∈ [0, τN) (13)

In some cases, under strong disturbances, it may not be possible for the plant to satisfy all the
constraints. Then, Equations (11)–(13) are formulated as soft constraints. The constraints are imposed
over the reduced model states in order to meet the effluent quality limits presented in Table 1. These
values are selected from a preliminary study of the process behavior that allowed establishing an
approximated relation between the effluent characteristics and the reduced model outputs.

2.3.2. Particular Characteristics of the Controllers Implementation

The first issue to address when implementing the proposed controllers to the BSM1 plant is the
equivalence between the plant variables and the reduced model variables, and the model mismatch.
It is assumed that the organic matter concentration, ammonium concentration, nitrates and nitrites
concentration, and dissolved oxygen concentration in the second anoxic reactor and the fifth reactor,
as well as the heterotrophic and autotrophic biomass concentration, are measurable variables. Then,
these measurements are used to initially build the state vector for the reduced model, making the
following equivalence:

• Second anoxic reactor measures –> ammonium concentration (SNH1), readily biodegradable
substrate concentration (SS1), nitrates and nitrites concentration (SNO1), and dissolved oxygen
concentration (SO1).

• Fifth aerobic reactor measures –> ammonium concentration (SNH2), organic matter concentration
(SS2), nitrates and nitrites concentration (SNO2), and dissolved oxygen concentration (SO2).

The current values of the heterotrophic and autotrophic biomass concentration are used as
constant parameters in the model. The set points for the reduced model are SNO1_SP = 1 mg/L and
SO2_SP = 2 mg/L in the reduced model.

In order to deal with the plant–model mismatch problem (see Figures A1–A3), the difference
between the BSM1 plant measurements and the reduced model outputs (denoted ei) is computed
at each sampling time, and it is used for bias correction of the set points and constraints limits
in the optimization problem described above (Equations (2)–(2c)). For instance, see the following
constraint (13) modification, where the bound has been decreased by the difference between the plant
measurement and the model output: SNH5(t) ≤ 6− eNH2

[
grCOD

m3

]
∀t ∈ [0, τN).

Regarding the pure-EMPC implementation, performing an optimization of economic objectives to
obtain the manipulated variables might lead the operation to the limits of the constraints in long time
horizon, producing performance deterioration. In order to guarantee feasible solutions in the whole
operating period, a first attempt of the optimization of the economic function is carried out, and if
infeasibilities arise, a second optimization is executed using an HEMPC cost function (with a tracking
term introduced to recover feasibility). This is a particular characteristic of the proposed pure EMPC,
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but all the controllers implemented in this paper use the manipulated variables values obtained in the
previous sampling time when no feasible solutions are found in the current controller execution.

Regarding the HEMPC’s implementation, it is clear that this controller formulation has to deal
with competing economics and control objectives, whose importance in the hybrid cost function
is given by the weights wE and wC (Equation (2) with wE 6= 0, wC 6= 0). In order to maintain the
controlled variables at the desired reference value, it is necessary to consume energy, which increases
the operating costs. Then, the minimization of the pumping energy (PE) and aeration energy (AE)
produce a deviation respect to the desired set points, since not enough freedom degrees are available
to meet both requirements at the same time. This deviation is tolerated while the constraints required
for the effluent quality are fulfilled.

2.4. Algorithmic Implementation and Simulation Settings

The full BSM1 benchmark simulation model implemented in Matlab/SIMULINK has been
selected to test the controllers proposed. In the algorithmic implementation, the optimization problem
is solved, with each sampling time using the sequential quadratic programming method given by the
algorithm fmincon.

After some preliminary tests, the tuning parameters of the NMPC are adjusted. The prediction
horizon is τN = 5 h, and the weights of the different objectives of the controllers cost are:

Wy =

[
100 0

0 100

]
, Wu =

[
50 0
0 50

]
.

For all controllers, the sampling time selected is τ = 5 min, after some trial and error study of this
parameter. Some simulations have been performed with τ = 3 min, but this change does not improve
results and the computational time increases considerably. On the other hand, considering τ = 15 min,
which is an increment of the sampling time, might lead the control system not to capture the process
dynamics properly, such as nitrates stabilization after some influent disturbances affect the process,
for example.

The weights wC for control objectives and wE for the economic objectives are selected according
to the objectives of the different controllers. Then, wC = 0, wE = 1, for the pure-EMPC, and wC = 1,
wE = 10 for the HEMPC.

Both formulations of the economic oriented controllers are validated with three different sets of
weights of the economic cost function (Equation (8)): w1 = 1, w2 = 0 (EMPC-OCI/HEMPC-OCI); w1 = 0,
w2 = 1(EMPC-NH/HEMPC-NH); and w1 = 1, w2 = 1 (EMPC-OCI + NH/HEMPC-OCI + NH), and
compared with the traditional NMPC described in Section 2.1.

The influent profile described in the BSM1 for dry weather (Figure 2) is used to evaluate the
plant performance over an operation period of four days. The influent quality index defined in [22] to
measure the pollution load of the influent is IQ = 55,945.14 kg/day for all cases.

3. Simulation Results and Discussion

Several simulations are carried out to study the process behavior with the different controllers
and their effect on process economics and removal efficiency. The performance indices provided by
the BSM1 platform are used to evaluate the process performance, with the different controllers in the
operating period under characteristic dry weather influent variations.

The evolution of the most relevant process variables along the operating horizon is presented
in the following figures. First, the comparison between the standard NMPC, which is focused on
the set-point tracking, and the HEMPC (HEMPC-OCI: w1 = 1, w2 = 0, HEMPC-NH: w1 = 0, w2 = 1)
is presented. The controlled variables are shown in Figure 4, and the corresponding control signals
(manipulated variables) are shown in Figure 5. The NMPC exhibits an acceptable set-point tracking
even though an offset is observed, especially in the nitrates concentration (SNO2). Although better
set-point tracking could be attained using more elaborated techniques to deal with the plant–model
mismatch problem, it is not a critical issue because the objective of the proposed control strategies is to
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improve the economic aspects in the operation. In the operation under HEMPC-OCI, the SNO2 and
SO5 responses present higher variation between the operational limits than the NMPC and HEMPC.
The evolution of the control inputs with the different controllers is presented in Figure 5, where it
is possible to see that the weights given to the economics in JECO (Equation (8)) in the controller
algorithm significantly affect the control signal. The recycle flow (Qa) is especially affected, showing
more intensive movements in the NMPC in order to reach the set point than in the hybrid controllers.
In the case of the HEMPC-OCI, a lower recycle rate minimizes the pumping energy. In the case of
HEMPC-NH, it could be interpreted in the sense that the lower values of the recycle are favorable for
ammonium elimination. A similar trend is appreciated in the aeration energy, but in lower magnitude.

In the case of the pure-EMPCs (Figures 6 and 7), the effect of the weighting of the energy costs
and the penalization for off-specification ammonium concentration in the effluent in the economic
cost function is more notorious than in the hybrid controllers, since the values of the manipulated
variables are uniquely determined by the optimization of the economic performance index JECO.
Then, significance differences can be observed in the response of the controlled variables when using
each controller. Particularly, the oxygen concentration increases with the EMPC-NH to improve the
ammonium elimination, and decreases with the EMPC-OCI due to the minimization of the aeration
energy. The minimization of the pumping and aeration energy carried out by the EMPC-OCI produces
lower values of both manipulated variables, as expected. On the other hand, it can be seen that
the minimization of the off-specification ammonium concentration in the effluent performed by the
HEMPC-NH requires more aeration (KLa), but minimum values of the recycle flow (Qa).

The instantaneous values of the aeration energy and the pumping energy along the operation
period are presented in Figure 8 for the most representative EMPC and HEMPC designs, and the
corresponding ammonium concentration in the effluent is presented in Figure 9. In general, higher
weights of the OCI (EMPC-OCI, HEMPC-OCI) improve economics, but increase the violations of the
limit of ammonium in the effluent, since SO5 levels are reduced to minimize aeration costs. On the other
hand, the minimization of the violation fines of the required effluent quality (HEMPC-NH, EMPC-NH)
increases the OCI. However, that increase in the OCI is associated with the aeration energy to reduce
the levels of ammonium, since the internal recycle flow decreases when ammonium concentration is
minimized, as observed in the figures.
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The performance indices calculated for the overall operation period with the proposed controllers
are presented in Tables 2 and 3, respectively. The influent profile described in the BSM1 for dry
weather (Figure 2) is used to evaluate the plant performance over an operation period of four
days, the first day with constant influent. The influent quality index defined in [22] to measure
the pollution load of the influent is IQ = 55,945.14 kg-pollutants/day. The indices computed for the
default BSM1 strategy are included also for comparison. Table 2 contains the indices associated with
the variables considered in the economic-oriented model predictive controller optimization, to show
that performance indices vary according to the relative importance given to each objective in the
optimization. In general, all the EMPC designs improve the pumping energy with respect to the
NMPC and PI default strategies based on set-point tracking. A reduction in the energy costs (AE + PE)
of 13% with respect to the NMPC is achieved, with the pure EMPC focused on the optimization of
the energy costs (EMPC-OCI). Ammonium concentration in the effluent reduces by 21% when the
EMPC is focused on the minimization of the off-specification ammonium concentration in the effluent.
Comparing with the default BSM1 PI strategy, a reduction of the energy costs of 13% is achieved also
with the EMPC-OCI, produced especially by a decrease in the pumping energy of up to 23%.
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Table 3 is presented to show that additional process variables are affected by the economic
optimization, and it is possible to include them in the optimization. The OCI index reported in Table 3
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corresponds to the BSM1 performance index, which includes aeration energy, pumping energy, mixing
energy and sludge production costs.

Table 2. Performance indices associated with variables of the plant optimized in the economic oriented
model predictive controllers cost function (computed for a four-day operation period under dry
weather disturbances). NMPC: non-linear model predictive controller; HEMPC: economic-oriented
tracking controller; OCI: overall cost index penalization; NH: off-specification ammonium load in the
effluent penalization; EMPC: economic-oriented model predictive controller.

Controller
Average SNH in

the Effluent
(mg/L)

EQ
(kg/Day)

AE
(kWh/Day)

PE
(kWh/Day)

PE + AE
(EUR/Day)

SNH Violations
(Days)

Default PI 2.79 6587.7 3785 268.0 4053.0 0.84
NMPC 3.00 6573.8 3802 276.6 4078.6 0.96

HEMPC-OCI 3.21 6783.9 3796 252.8 4048.8 1.00
HEMPC-OCI + NH 2.74 6584.7 3830 246.8 4076.8 0.88

HEMPC-NH 2.55 6698.0 3855 224.8 4079.8 0.73
EMPC-OCI 6.05 8289.0 3310 206.0 3516.0 3.34

EMPC-OCI + NH 3.47 7617.0 3841 167.2 4008.2 1.15
EMPC-NH 2.37 7315.3 4277 166.0 4443.0 0.74

In order to compare with the previous work of Zeng and Liu [16], Table 4 presents the changes
in the performance indices, with respect to the operation with the BSM1 default PI strategy in the
same simulation scenario. The comparison is made with selected designs with analogous tuning
parameters. The EMPC proposed in this work enhances the economic performance mainly by reducing
the pumping energy in all the cases, and the aeration energy in the EMPC-OCI design, which are the
operation costs considered in the economic function. In the Zeng and Liu [16] formulation, the BSM1
overall cost index (OCI) is optimized; it includes aeration and pumping energy, but also the mixing
energy and the costs of sludge disposal. Then, an operation with small energy consumption with
respect to the default PI strategy is achieved in general, but pumping aeration costs are larger than
those obtained with the methodology proposed here. On the other hand, since the effluent quality
index is included as an optimization objective in the Zeng and Liu [16] formulation, the improvement
in this index is notorious, while the advantages of the EMPC formulation proposed in this paper are
associated with the economic performance. In the current work, it has been preferred to not work
directly with the overall effluent quality index as part of the cost function, because it involves several
concentrations not available for measurement. Instead, here, it has been preferred to keep the two main
variables of interest (oxygen and nitrate) around desired values, while attempting to keep effluent
ammonia under the established limits.

Table 3. Performance indices of the mean operating variables of the plant that are different from the
variables included in the optimization problem (computed for a four-day operation period under dry
weather disturbances).

Controller
Average SNH in

the Effluent
(mg/L)

TN
(mg/L)

Sludge Produced
(kg/Day)

OCI
(EUR/Day)

SNH Violations
(Days)

TN Violations
(Days)

Default PI 2.79 17.2 2747.0 18,031 0.84 0.98
NMPC 3.00 16.7 2747.3 18,055 0.96 0.73

HEMPC-OCI 3.21 17.4 2746.6 18,021 1.00 0.94
HEMPC-OCI + NH 2.74 17.3 2747.0 18,052 0.88 0.87

HEMPC-NH 2.55 18.2 2748.0 18,064 0.73 1.47
EMPC-OCI 6.05 19.5 2741.9 17,466 3.34 3.60

EMPC-OCI + NH 3.47 21.2 2748.0 17,988 1.15 3.80
EMPC-NH 2.37 21.8 2750.0 18,434 0.74 3.95

Regarding this reduction in energy consumption, as the work conducted here is based on the
BSM1 benchmark scenario, no specific WWTP was used. However, the BSM1 protocols define influent
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characteristics featuring a load of around 100,000 person equivalents (PE) (80,000 from households,
and 20,000 from industrial origin). This helps to provide an idea of the repercussion of the mentioned
energy savings. Of course, in order to get concrete monetary figures of actual order, there will
be the need to link the cost indexes to actual energy costs. This may be highly dependent on the
WWTP location. However, just to point to some figures, according to HUBER Technology (http:
//www.picatech.ch/solutions/energy-efficiency), power consumption of state-of-the-art wastewater
treatment plants should be around 45 kWh/(PE.a) for plants serving >100,000 PE, where pumping and
aeration are recognized primary power consumers.

Table 4. Performance indices variation respect to the BSM1 PI default strategy.

Controller % AE Variation % PE Variation % OCI Variation

EMPC-OCI −12.55 −23.13 −3.13
EMPC-OCI + NH 1.47 −37.61 −0.24

EMPC-NH 13.00 −38.06 2.24
Zeng and Liu EMPC-NH 3.73 3.30 −9.78

Zeng and LiuEMPC-OCI + NH −3.40 6.75 −11.18

4. Conclusions

In this paper, a successful implementation of a single-layer economic oriented model predictive
control approach for the optimization of the operation of wastewater treatment plants (WWTPs) in a
simulation environment is presented. Even though this study used empirical models based on data
gathering and the adequate software and communication systems, the technique could be implemented
in real plants.

An OCI reduction of 13% with respect to the standard NMPC focused on set-point tracking is
achieved, with the pure EMPC focused on the optimization of the energy costs (EMPC-OCI), and
ammonium concentration in the effluent reduces by 21% when using the EMPC focused on the
minimization of the off-specification ammonium concentration in the effluent. Those improvements
are achieved by performing a dynamic optimization of the operation, taking advantage of the variations
in the load to find more favourable operating conditions on a given operating window.

The results demonstrate that the implementation of novel advanced control techniques as
single-layer EMPCs can produce significant energy savings and improvements in WWTP performance.
The single-layer strategy has the advantage of being simpler than other strategies, e.g., [9], which
obtain further reductions in costs but with a more complex hierarchical framework for nitrate and
oxygen control. On the other hand, in the pioneering implementation of EMPCs to the BSM1 model
presented in [16] the full model is used for predictions, therefore, a novel feature presented in this work
is the implementation of techniques to face modeling errors. It is also encouraging the potential use of
a reduced model with partial information with prediction purposes. Alternative formulations oriented
towards the increase of model quality should be investigated, as they will have a direct repercussion
on the final quality of the obtained control.

Future work is oriented to exploit these characteristics in different scenarios, and introduce
additional optimization objectives in the economic-oriented controller formulation. It is encouraging
to promote continuing research in the application of these advanced control strategies to improve
WWTP operation.

Acknowledgments: The authors wish to thank the support of the Spanish Government through the Ministerio
de Economía y Competitividad (MINECO) projects DPI2015-67341-C2-1-R, DPI2016-77271-R also with FEDER
funding. The Samuel Solórzano Foundation through project FS/21-2015 and the IWA Task Group from the
Department of Industrial Electrical Engineering and Automation (IEA), Lund University, Sweden (Ulf Jeppsson,
Christian Rosen) for the BSM1 models.

Author Contributions: Pastora Vega and Ramón Vilanova conceived and designed the experiments;
Silvana Revollar performed the experiments and Silvana Revollar and Mario Francisco analyzed the results; all the
authors have contributed to write the paper.

http://www.picatech.ch/solutions/energy-efficiency
http://www.picatech.ch/solutions/energy-efficiency


Appl. Sci. 2017, 7, 813 17 of 21

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The BSM1 platform uses the Activated Sludge Process No1 (ASM1) to represent the behavior of the
biological reactors. It uses 13 state variables on each reactor, and considers eight biological processes such
as heterotrophic and autotrophic biomass growth in anoxic and aerobic conditions and biomass decay,
ammonification of soluble organic nitrogen, hydrolysis of entrapped organics, and hydrolysis of entrapped
organic nitrogen. In the reduced model used in this work, only the faster biological processes are taken
into account: the growth of heterotrophic biomass in aerobic conditions (ρ1i), the growth of heterotrophic
biomass in anoxic conditions (ρ2i), and the growth of autotrophic biomass in aerobic conditions (ρ3i). The
plant is reduced to one anoxic reactor and one aerobic reactor, with a volume equivalent to the anoxic and
aerobic zones of the BSM1, respectively. The concentration of autotrophic and heterotrophic biomass in
the reactors is assumed to be constant (XB,H = 2500 mg/L, XB,A = 150 mg/L). These constant values are
taken from [17] and correspond to the steady state values at the biological reactors. The influent variables
considered in the reduced model are: the influent flow (Qin), the organic matter concentration (SS,in), and
the ammonium concentration (SNH,in). The index i is used to distinguish the units, with reactor 1 the anoxic
zone (i = 1), and reactor 2 the aerobic zone (i = 2). The states associated to the faster biological processes are:
the concentration of ammonium compounds (SNHi), the concentration of nitrates (SNOi), the organic matter
concentration (SSi) and the oxygen concentration (SOi). The inputs are the oxygen transfer coefficient (KLa)
and the internal recycle flow (Qa).

Regarding the comparison with real plants measurements, although the BSM1 model variables
and reduced model variables differ from the variables typically measured in real wastewater treatment
plants, it is possible to form a relationship between their values. Some equations to compute
COD (chemical oxygen demand), BOD (Biological oxygen demand) and other typical wastewater
measurements from the BSM1 variables are presented in Alex et al. [22].

A list of the process parameters and variables considered in the reduced model used here are
presented in Table A1.

Table A1. Reduced BSM1 model variables and parameters for a temperature close to T = 15 ◦C.

Description Name Values

Process variables

Anoxic reactor volume (m3) V1 2000
Aerobic reactors volume (m3) V2 3999
Active heterotrophic biomass concentration (gr COD/m3) XB.H 2500
Active autotrophic biomass concentration (gr COD/m3) XB,A 150
Dissolved oxygen concentration (gr COD/m3) SO 0.1–5
Nitrate and nitrite concentration (gr N/m3) SNO 0.1–5
NH4

+ + NH3 concentration (gr N/m3) SNH 0–14
Readily biodegradable substrate concentration (gr COD/m3) SS 0–40
Influent flow rate (m3/h) Qin 45–2500
Effluent flow rate (m3/h) Qe 45–2500
Readily biodegradable substrate concentration in the influent (gr COD/m3) SS,in 45–140
Ammonium compounds concentration in the influent (gr N/m3) SNH,in 8–55
Internal recycle flow (m3/h) Qa 180–2000
Oxygen transfer coefficient (1/h) KLa 0–10

Biological processes parameters

Oxygen saturation concentration (gr/m3) SO,sat 8
Heterotrophic max. specific growth rate (1/day) µH 4
Half saturation coefficient for heterotrophs (gr COD/m3) Ks 10
Oxygen saturation coefficient for heterotrophs (gr COD/m3) KO,H 0.2
Ammonia saturation coefficient for heterotrophs (grN/m3) KNH 1
Oxygen saturation coefficient for autotrophs (gr COD/m3) KO,A 0.4
Heterotrophic yield (gr cell COD formed/gr COD oxydized) YH 0.67
Autotrophic yield (gr cell COD formed/gr N oxydized) YA 0.24
Nitrogen fraction in biomass (gr N/gr COD) iXB 0.08
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The equations of the mathematical model are the following:
Biological processes:

ρ1i = µH ·
(

SSi

Ks + SSi

)
·
(

SOi

KO,H + SOi

)
XB,H (A1)

ρ2i = µH ·
(

SSi

Ks + SSi

)
·
(

KO,H

KO,H + SOi

)(
SNOi

KNO + SNOi

)
ngXB,H (A2)

ρ3i = µA ·
(

SNHi

KNH + SNHi

)
·
(

SOi

KO,A + SOi

)
XB,A (A3)

Differential equations given by the mass balances:

dSNH1
dt = 1

V1
[Qin · SNHin + QaSNH2 − (Qin + Qa) · SNH1]− iXb · ρ11 − iXb · ρ21 −

(
iXb +

1
YA

)
· ρ31 (A4)

dSNO1

dt
=

1
V1

[QaSNO2 − (Qin + Qa)SNO1]−
1−YH

2.86YH
ρ21 +

1
YA
· ρ31 (A5)

dSS1

dt
=

1
V1

[Qin · SSin + QaSS2 − (Qin + Qa)SS1]−
1

YH
ρ11 −

1
YH

ρ21 (A6)

dSO1

dt
=

1
V1

[Qa · SO2 − (Q0 + Qa)SO1]−
[

1−YH

YH
ρ11 +

(
4.57
YA

+ 1
)

ρ31

]
(A7)

dSNH2

dt
=

1
V2

[(Qin + Qa)SNH1 − (Qin + Qa)SNH2]− ixb · ρ12 −
(

ixb +
1

YA

)
· ρ32 (A8)

dSNO2

dt
=

1
V2

[(Qin + Qa)SNO1 − (Qin + Qa)SNO2]−
1−YH

2.86YH
ρ22 +

1
YA
· ρ32 (A9)

dSS2

dt
=

1
V2

[(Qin + Qa)SS1 − (Qin + Qa)SS2]−
1

YH
ρ12 −

1
YH

ρ22 (A10)

dSO2
dt = 1

V2
[(Qin + Qa) · SO1 − (Qin + Qa)SO2]−

[
1−YH

YH
ρ12 +

4.57−YA
YA

ρ32

]
+ KLa(SO,sat − SO2) (A11)

Appendix B

The comparison between the reduced model responses and the BSM1 model responses of the
most relevant variables for the controller optimization, namely, nitrates concentration at the end of the
anoxic zone (SNO2 in BSM1, SNO1 in reduced model), oxygen concentration at the end of the aerobic
zone (SO5 in BSM1, SO2 in reduced model), and ammonium concentration at the end of the aerobic
zone (SNH5 in BSM1, SNH2 in reduced model), is presented in Figures A1–A3.

The model behavior is similar to BSM1 response in the evaluated conditions; however, a significant
difference in the magnitude of the variables is observed. However, in the evaluation of model for
predictions in the controller executions, the difference is lowered, since an initial state given by the
measured BSM1 states is provided.

It is important to highlight that the objective of the work is not the development of an accurate
reduced BSM1 model. The objective is to evaluate the performance of the single-layer EMPC for
optimizing economics in the presence of modeling errors.

The reduced model represents the variables with the faster dynamics, which are directly affected
by control actions, and are optimized each sampling time (5 min in this implementation). Even
though the hydrolysis of particulate matters is relevant in the biological processes that take place
in the activated sludge process, its dynamics can be neglected in these applications. A sensitivity
analysis of an accurately reduced model considering the different dynamics of the biological processes
is presented in [29].
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Figure A1. Comparison of the reduced model and BSM1 evolution of the nitrates concentration in the 
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Figure A1. Comparison of the reduced model and BSM1 evolution of the nitrates concentration in the
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produce the nominal set points.
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Figure A2. Comparison of the reduced model and BSM1 evolution of the oxygen concentration in the
fifth reactor (aerobic) obtained in the open loop operation, using the manipulated variables values that
produce the nominal set points.
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Figure A3. Comparison of the reduced model and BSM1 evolution of the ammonia concentration in 
the effluent obtained in the open loop operation using the manipulated variables values that produce 
the nominal set points.  
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