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Abstract: Convolution is the most computationally intensive task of the Convolutional Neural
Network (CNN). It requires a lot of memory storage and computational power. There are different
approaches to compute the solution of convolution and reduce its computational complexity. In this
paper, a matrix multiplication-based convolution (ConvMM) approach is fully parallelized using
concurrent resources of GPU (Graphics Processing Unit) and optimized, considerably improving the
performance of the image classifiers and making them applicable to real-time embedded applications.
The flow of this CUDA (Compute Unified Device Architecture)-based scheme is optimized using
unified memory and hardware-dependent acceleration of matrix multiplication. Proposed flow is
evaluated on two different embedded platforms: first on an Nvidia Jetson TX1 embedded board
and then on a Tegra K1 GPU of an Nvidia Shield K1 Tablet. The performance of this optimized
and accelerated convolutional layer is compared with its sequential and heterogeneous versions.
Results show that the proposed scheme significantly improves the overall results including energy
efficiency, storage requirement and inference performance. In particular, the proposed scheme on
embedded GPUs is hundreds of times faster than the sequential version and delivers tens of times
higher performance than the heterogeneous approach.

Keywords: concurrent computing; general purpose GPU; unified memory; convolutional neural
networks; heterogeneous; matrix multiplication; CUDA basic linear algebra subroutines (cuBLAS);
embedded platform

1. Introduction

Convolutional Neural Network (CNN) exhibits unmatched performance in different computer
vision applications. CNN is the type of neural classifier that generates features hierarchically using
convolutions. Convolution is a computationally intensive task that can be accelerated and optimized
by exploiting the computational power and resources of a GPU [1]. Convolutional Neural Network
(CNN) is normally composed of convolutional layers, pooling layers, some normalization functions
and fully connected layers. However, high accuracy of neural classifiers is mainly dependent on
the number of stacked convolutional layers [2,3]. State-of-the-art deep classifiers are comprised of
tens or hundreds of these convolutional layers [3–5]. Where the increasing number of convolutional
layers boosts the accuracy of a classifier, this enlarged depth also increases the training/classification
time, arithmetical complexity and storage requirements. With the ongoing traction of embedded
computing, the efficiency of an algorithm is important. Therefore, the realization of deep architectures
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is critical on a single GPU of an embedded platform. A significant performance improvement can be
achieved by reducing the computational burden of these convolutional layers, making them realizable
on embedded GPUs.

There are several approaches to compute the Convolution operation [6–12]. Fast Fourier
transformation (FFT), Winograd minimal filtering algorithm, the look-up table and matrix
multiplication-based convolution are a few of them. In FFT-based convolution, signals
(images and filters) are transformed and multiplied pointwise in the frequency domain to reduce
the number of multiplications [6]. However, this transformation between the time and the frequency
domain is computationally intensive and limits the performance gain. Furthermore, FFT-based
convolution is fast for the large filters but state-of-the-art deep classifiers are using small filters in
convolutional layers [4]. For networks having small size filters, Winograd-based convolution shows
good results [7]. This algorithm reduces the arithmetic complexity of the convolutional layer by using
a minimal filtering technique. These approaches to compute the convolution can further be optimized
by using different techniques and schemes [12–14].

Convolution operations can also be computed using standard matrix multiplication.
Various software libraries provide matrix multiplication subroutines having near-optimal performance;
however, it still remains a challenge to utilize these libraries and the computational power of a single
GPU efficiently and provide an optimized framework for deep classification on embedded platforms.

In this paper, an accelerated and optimized scheme for object classification is proposed for the
embedded platforms. Results show that the proposed extensions enable a speedup of several orders
of magnitude over the heterogeneous and the sequential versions and can be used to perform the
real-time image classification on an embedded platform with lesser memory requirement, opening up
a whole range of applications. In order to achieve the optimized flow, first of all, the heterogeneous
matrix multiplication-based convolution (ConvMM) approach is parallelized using the concurrent
computational resources of the GPU [1]. This transformation is performed to eliminate the extra
memory transfers required by the Heterogeneous ConvMM approach [15]. Flow of this GPU-only
ConvMM layer and all CUDA-based required layers (pooling, Regularization Units etc.) is optimized
using Unified memory. By adopting this optimized data transfer scheme, the memory access latency
of CUDA-based deep architectures is reduced and overhead caused by the explicit data movements
is eliminated. Additionally, this flow is further optimized and accelerated using two different
hardware dependent matrix multiplication approaches for Convolution operation. The proposed
scheme is realized by reforming the flow of heterogeneously implemented image classification
architectures presented in [15]. Results are evaluated on two different types of embedded GPUs. The
experiments demonstrate that the proposed optimized scheme shows order of magnitude performance
improvements over the sequential and the heterogeneous versions for both platforms.

The remaining sections of this paper are arranged as follows: Section 2 reviews the related work
in the field of mobile phone-based image classification frameworks. Section 3 discusses the flow of the
Heterogeneous ConvMM layer and its transformation into the concurrent GPU-only ConvMM layer.
Section 4 explains the data transfer scheme used in this work to optimize the flow of the GPU-only
ConvMM layer. Two different Matrix multiplication approaches to accelerate the optimized flow of the
convolutional layer are described in Section 5. Section 6 reports the experimental results and discusses
the performance of proposed scheme. Finally, Section 7 concludes the research.

2. Related Work

Compared with desktop-based real-time image classification, which has been broadly studied
and addressed, there have been fewer studies contributing to mobile and embedded platforms-based
classifiers. There are many libraries such as Torch and Caffe for desktop and server platforms;
however, these optimized libraries cannot be directly used on mobile platforms due to hardware and
software constraints and dependencies. Furthermore, these libraries require installation of multiple
computational packages on an embedded device having limited storage capacity available. Realization
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of deep classifiers on a low-power mobile platform is still a challenge due to massive computational
and storage requirements.

An Open Computing Language (OpenCL)-based framework “DeepSense” is proposed for mobile
devices in [16]. Results show that the proposed scalable framework can execute a variety of CNN
models with no or marginal accuracy tradeoffs. However, optimization of this framework is suggested
to execute the large-scale models in real time along with lower power consumption.

A GPU-accelerated library “CNNdroid” is presented in [17]. This library is realized to execute
the trained deep CNNs on Android-based mobile devices. However, the proposed library does not
support all CNN layers required by the state-of-the-art deep architectures like Residual Network.

An efficient deep neural network (DNN) flow optimized for mobile GPU is presented in [18].
Different optimization techniques to achieve the higher performance and better power efficiency are
discussed. However, the hardware information that is presented is not sufficient to compare the results.

Some frameworks are also proposed to compress the convolutional neural networks for mobile
frameworks [19,20]. By quantizing the trainable parameters, computations are accelerated, and
power consumption and storage overhead are reduced at the cost of some loss in classification
accuracy. However, state-of-the-art deep architecture like ResNet-34 can be directly used for
mobile-based real-time classification, which has fewer parameters than other networks, yet provides
state-of-the-art accuracy.

Concluding, the contributions of the proposed scheme and improvements over the mentioned
references can be summarized as follows. First, the proposed scheme supports nearly all required
layers of deep architectures realized using CUDA computing framework. Intermediate frameworks
are avoided to resolve the problem of software dependencies and memory consuming computational
packages on the embedded platforms; only CUDA-based libraries and functions are used for the
realization of optimized flow. Second, optimized GPU-only flow and Unified memory transfer scheme
are proposed to avoid extra memory transfers and double allocation of parameters, resulting in
low power and storage consumption. Finally, hardware dependent selection of accelerated matrix
multiplication operation for the convolutional layer is employed to further optimize and accelerate the
deep architectures for the real-time object classification.

3. Heterogeneous and GPU-Only ConvMM Layers

One approach to compute the convolution operation is Matrix multiplication-based convolution
(ConvMM). Using this approach, first multi-dimensional input image and filters are transformed into
two-dimensional matrices and then multiplied to achieve the results equivalent to the traditional
convolution operation. The transformation step can be performed by copying the tiles of pixels from
original image/filter to the matrices in a specific order. This is an operation where the sequence has to
be considered and can be performed efficiently using the CPU [15]. Once transformed, these matrices
can be multiplied efficiently using concurrent resources of GPU. Using the heterogeneous resources
(CPU-GPU) of a system, an algorithm like this can benefit in terms of execution time [15,21,22].
However, extra memory transfers caused by the heterogeneous implementation can also break the
overall performance.

Figure 1 illustrates the flow of heterogeneous ConvMM layer where the transformation of data
(input maps and filters) is done using the CPU and multiplication of this transformed data is performed
using the GPU [15]. Before transformation, the input data is padded with zeros according to the
architecture of the trained network.

In this transformation step, multi-dimensional input maps and filters are converted to
2-dimeniosnal matrices. Data transformation is performed by copying the tiles from multi-dimensional
maps and placing them in a specific order in the matrices as demonstrated by Figure 2.
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There are four data transfers between the CPU and the GPU as depicted in Figure 1. Out of four,
two data transfers are made to perform the CPU-based transformation, which is a sequence-sensitive
operation and is performed using the high operational frequency of CPU [15].
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If this CPU-based transformation step is parallelized and performed using the GPU, so these
extra two transfers can be avoided and all tasks can be performed using the GPU as shown in Figure 3.
This multi-dimensional input map can be concurrently converted to the input matrix using following
formula. In this formula, k_h and k_w are representing the height and width of the filter. Number
of rows, columns and dimensions of the input image are represented by i_Row, i_Col and i_Dim
respectively. o_Row and o_Cols are representing the number of rows and columns of final output
after convolution.

Input_matrix(row,col) =
o_Row

∑
i=1

o_Col

∑
j=1

(
i_Dim

∑
k=1

k_h

∑
h=1

k_w

∑
w=1

Input_map(i+h,j+w,k)) (1)

where o_Row = i_Row − k_h + 1; o_Col = i_Col − k_w + 1; row = i × (o_Col) + j; col = (k × k_w × k_h + (h
× k_w) + w).

If input map is of size 3 × 3 (i_Row × i_Col) and size of the filter is 2 × 2 (k_h × k_w), so the
output map after convolution would be of size 2 × 2 (o_Row × o_Col) with padding and stride of 0 and
1 respectively.
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By parallelizing the transformation step, the number of data transfers between the host and the
device are minimized that can provide the substantial improvement in performance.

4. Optimized Data Transfers Scheme for GPU-Only ConvMM

In this section, different memory-based schemes are discussed and unified memory is proposed to
optimize the architecture of GPU-only ConvMM and other required layers for the image classification
on embedded devices.
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4.1. Pinned Memory Based Allocations

For CUDA-based realized layers, input images or data must be transferred from the host (CPU)
memory to the device (GPU) memory, and the final results must be copied back to the CPU memory
from the GPU memory. These transfers can occur several times depending on the architecture of a deep
classifier and may affect the overall performance of the system. By default, host allocations are pageable
and the GPU cannot copy data directly from the pageable host memory. So whenever a data transfer
is invoked, CUDA driver must allocate and copy host data into the pinned (page-locked) memory
from the pageable memory and then transfer it to the device memory via PCI-express (Peripheral
Component Interconnect-Express) bus as shown in Figure 4.
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The cost of this extra transfer between the pageable and the pinned memories can be avoided
by directly allocating the host data in the pinned memory as shown in Figure 5. CUDA provides the
feature of allocating the input data into the pinned memory.
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Use of pinned memory is a common practice in CUDA-based acceleration. However, there are
some constraints to be considered before using the pinned memory specifically on an embedded
platform (like size of trainable parameters to be imported). Pinned memory should not be
over-allocated because this can reduce the amount of physical memory (Random Access Memory
(RAM)) to the other programs and operating system, which can reduce the overall performance of the
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used system. Hence, the storage capacity of an embedded device is limited, so use of pinned memory
can affect the performance of deep classifiers.

4.2. Proposed Unified Memory-based Allocations for GPU-Only ConvMM and Other Layers

Typical desktop systems have the separate host (CPU) and device (GPU) memories as shown
in Figure 6. As discussed in the previous section, data transactions between the CPU and the GPU
memories are very frequent. The speed of these data transfers is dependent on the PCI express bus.
These transfers add the overhead and a lot of complexity to flow of an algorithm as can be compared
and visualized by the Figures 1–3. A programmer has to consider these separated memories to define
the flow of an algorithm.
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With CUDA 6.0, Unified memory (UM) is introduced which defines a pool of shared memory for
the CPU and the GPU as shown in Figure 7. This shared memory can be accessed by both CPU and
the GPU. The same allocated variable can be used by a CPU function and a GPU kernel according to
the requirement of the program. However, data synchronization is essential after kernel execution.
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Most of the embedded and mobile platforms have physically unified memories, so this includes
both GPU as well as CPU requirements. Prior to CUDA v6.0, two copies of data elements were
required, one in CPU memory and another in GPU memory. However, by using unified memory
scheme, a single copy of trainable parameters is required to be allocated in memory. This can be useful
for realization of deep architectures on embedded platforms having low storage capacity.

In this work, Unified memory is used to realize the optimize flow of deep architectures on
embedded platforms.

As depicted in Figure 3, at least two data transfers are essential for every layer to bring the input
data to the GPU for the computations and to move back the results from the GPU to the CPU for the
next operation/layer. Using unified memory, the flow of this GPU-only ConvMM and other required
layers can be further simplified and optimized as shown in Figure 8. This is done by allocating the
inputs and the outputs in the unified memory space from the main program. By using unified memory
in the ConvMM and other layers, the output of one layer can be directly fed to the next layer.
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5. Accelerated Matrix Multiplication for GPU-Only ConvMM

In this section, matrix multiplication operation required by the ConvMM layer is accelerated
for the real-time image classification. Depending on the different compute capabilities of the used
embedded platforms, two different approaches to compute the accelerated matrix multiplication
(AMM) are proposed as shown in Figure 9. Compute Capability (C.C.) of a GPU device defines its
available features and restrictions. By using accelerated matrix multiplication, proposed scheme is
further accelerated and optimized.



Appl. Sci. 2017, 7, 826 9 of 19Appl. Sci. 2017, 7, 826 9 of 20 

 

Figure 9. Flow of the accelerated matrix multiplication-based convolution with unified memory. 

5.1. cuBLAS Accelerated Matrix Multiplication Convolution (ConvCAMM) 

CUDA Basic Linear Algebra Subroutines (cuBLAS) library provides the high-performance 

functions for the numerical operations and shows the order of magnitude performance 

improvements over the other libraries [23,24]. This library also contains various General 

Matrix-Matrix Multiply (GEMM) routines for the different types of operands (like complex, single 

data type, double data type etc.) that can be useful to accelerate the ConvMM layer [25,26]. However, 

some constraints need to be considered before using the subroutines of cuBLAS. 

The first aspect to consider is the compute capability of the GPU platform because the cuBLAS 

library cannot be used on a GPU having compute capability less than 3.5. Next constraint is the 

memory storage layout of the cuBLAS library, which is in column-major order. Since C++ language 

follows the row-major order, applications written in C/C++ language cannot use the native semantics 

for the 2-dimensional arrays and data needs to be transformed from row to column-major order for 

the cuBLAS subroutines. This transformation between the row and the column-major order for 

every subroutine can break the performance of a program instead of accelerating it. 

In this work, single precision GEMM (SGEMM) routine of cuBLAS is used to accelerate the 

matrix multiplication of the input and the filter matrices (for GPU devices having compute 

capability greater than 3.5). This cuBLAS accelerated Matrix Multiplication (CAMM) is employed in 

the proposed GPU-only Convolution scheme. 

The problem of storage layout is resolved for the matrix multiplication subroutine. Since the 

cuBLAS always assume that the matrices are stored in the column-major order, so the matrices are 

transformed implicitly before passing to the multiplication subroutine and after getting back the 

resultant matrix. This does not cause a buffer overrun, but it effectively transposes the matrices 

without actually moving data around in the memory. Thus, the problem of memory layout is resolved 

by passing the matrices in reverse order (C′ = B′ × A′ instead of C = A × B), and the resultant matrix 

would be implicitly transposed before passing to main application that is the required result (C = (C′)′) 

in the row-major order for the ConvMM layer. 

Figure 9. Flow of the accelerated matrix multiplication-based convolution with unified memory.

5.1. cuBLAS Accelerated Matrix Multiplication Convolution (ConvCAMM)

CUDA Basic Linear Algebra Subroutines (cuBLAS) library provides the high-performance
functions for the numerical operations and shows the order of magnitude performance improvements
over the other libraries [23,24]. This library also contains various General Matrix-Matrix Multiply
(GEMM) routines for the different types of operands (like complex, single data type, double data type
etc.) that can be useful to accelerate the ConvMM layer [25,26]. However, some constraints need to be
considered before using the subroutines of cuBLAS.

The first aspect to consider is the compute capability of the GPU platform because the cuBLAS
library cannot be used on a GPU having compute capability less than 3.5. Next constraint is the
memory storage layout of the cuBLAS library, which is in column-major order. Since C++ language
follows the row-major order, applications written in C/C++ language cannot use the native semantics
for the 2-dimensional arrays and data needs to be transformed from row to column-major order for
the cuBLAS subroutines. This transformation between the row and the column-major order for every
subroutine can break the performance of a program instead of accelerating it.

In this work, single precision GEMM (SGEMM) routine of cuBLAS is used to accelerate the matrix
multiplication of the input and the filter matrices (for GPU devices having compute capability greater
than 3.5). This cuBLAS accelerated Matrix Multiplication (CAMM) is employed in the proposed
GPU-only Convolution scheme.

The problem of storage layout is resolved for the matrix multiplication subroutine. Since the
cuBLAS always assume that the matrices are stored in the column-major order, so the matrices are
transformed implicitly before passing to the multiplication subroutine and after getting back the
resultant matrix. This does not cause a buffer overrun, but it effectively transposes the matrices
without actually moving data around in the memory. Thus, the problem of memory layout is resolved
by passing the matrices in reverse order (C′ = B′ × A′ instead of C = A × B), and the resultant matrix
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would be implicitly transposed before passing to main application that is the required result (C = (C′)′)
in the row-major order for the ConvMM layer.

5.2. Shared Memory Based Accelerated Matrix Multiplication Convolution (ConvSAMM)

GPUs are equipped with different memory hierarchies which offer various performance
characteristics. For the GPU platforms having compute capability less than 3.5, shared memory-based
accelerated matrix multiplication (SAMM) is employed in the proposed flow of the deep architectures.
Shared memory is much faster than the global memory used by the current version of GPU-only
ConvMM layer. A profitable way to perform the computations on the GPU is to divide the data into
the subsets or the tiles that fit into the shared memory and copying these tiles from the global memory
to the shared memory. Using this technique, memory level parallelism can be achieved and the global
memory access can be reduced which is a performance bottleneck.

There are many redundant global memory accesses in the naive matrix multiplication approach as
shown in Figure 10a. It can be analyzed that the same row elements of matrix A are required for every
row element of resultant matrix C and similarly to compute the every column element of the resultant
matrix C, all the column elements of matrix B are required from the global memory. Therefore, shared
memory can be used to eliminate this redundancy and reduce the global memory accesses.
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Using the shared Memory, input matrices (A and B) are divided into the tiles (sub-matrices) to
assign to the thread blocks, and multiplication of these tiles is performed independently as shown
in Figure 10b. Shared memory based division of input matrices and resultant matrix into tiles is
represented by different colors. By summing up the results of these multiplications, elements of the
resultant tile (of matrix C) are computed. It can be noted that there is a lot of data redundancy within a
tile. To compute the all elements on the same row of the submatrix C, same data of the submatrix A
is required and hence it is in shared memory, so it can be accessed faster. Performance of this matrix
multiplication is depended on the appropriate selection of the tile size. This tile size should be kept
variable and selected according to size of matrices.

6. Experiments and Results

In this work, CUDA computing framework is used to realize the optimized GPU-only ConvMM
layer and its heterogeneous version for comparison. All required layers (like Pooling, Rectifier
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Linear Units) to construct a deep architecture are implemented and optimized using the discussed
Unified memory scheme. The performance of proposed flow is evaluated over three different image
classification networks (Alex Krizhevsky’s network for CIFAR-10, OverFeat and ResNet-34) [4,5].
These classification networks are constructed and trained using the Torch computing framework.
Alex’s CIFAR-10 is trained over the CIFAR-10 dataset while the ImageNet dataset is used to train the
other two networks. These neural classifiers ranging from smaller network to deeper architectures
are selected to verify the performance of proposed framework for the different type of architectures.
Trained parameters are imported in CUDA and utilized by the proposed scheme.

Experiments are performed on two different types of embedded platforms. The first platform
is the Nvidia Jetson TX1 development board. Jetson TX1 is an embedded platform with quad-core
ARM Cortex A-57 processor, 4 GB of RAM and a Maxwell GPU having 256 CUDA cores. The second
platform is the Nvidia Shield K1 tablet equipped with Kepler K1 GPU, which has a quad-core Cortex
A-15 CPU of 2.2 GHz, 192 CUDA Cores and 2 GB of shared RAM memory. Compute capability of
Jetson TX1 and Tegra K1 GPUs are 5.3 and 3.2 respectively.

6.1. Performance Evaluation of Proposed Scheme on Jetson TX1 (For GPUs having C.C. > 3.5)

First of all, comparison of different versions of ConvMM layers is performed on the Jetson TX1
embedded board. Table 1 presents the performance of different ConvMM layers for various image sizes.
Results show that the GPU-only ConvMM layer is approximately 2× faster than the heterogeneous
version. This gain in performance is due to the elimination of extra memory transfers required by the
CPU-based transformation step as discussed previously. In case of slower CPU hardware, this gain
can be significantly higher.

Figure 11 shows that the when GPU-only ConvMM layer is combined with the proposed memory
optimization scheme (Unified), there is a huge performance gain in terms of execution time.

Table 1. Comparison of different versions of ConvMM layers (Single convolutional layer), best results
are written in bold.

Size of Input Image Sequential
ConvMM (CPU)

Hetero ConvMM
(CPU + GPU)

GPU-Only
ConvMM

GPU-Only
Unified ConvMM

Double

(Milliseconds)

Cifar (32 × 32 × 3) 11.17 8.03 5.12 2.75

Imagenet (224 × 224 × 3) 348.67 89.39 35.6 13.13

VGA (480 × 640 × 3) 2048.63 375.02 215.7 75.03

SVGA (600 × 800 × 3) 3212.65 584.13 369.9 117.33



Appl. Sci. 2017, 7, 826 12 of 19Appl. Sci. 2017, 7, 826 12 of 20 

 

Figure 11. Comparison of different versions of ConvMM layers on Jetson TX1 Board. 

This GPU-only unified memory scheme also outperforms the all other versions for the deeper 

networks as shown in Table 2. This performance gain is more evident here because of large data 

transfers required in the deeper networks. 

Table 2. Performance of ConvMM layers on the deep classifiers (Jetson TX1 Board), best results are 

written in bold. 

Model Layers 

Sequential 

ConvMM 

(CPU) 

Hetero 

ConvMM 

(CPU + GPU) 

GPU-Only 

ConvMM 

GPU-Only 

Unified 

ConvMM 

  Double 

  (Milliseconds) 

Alex’s CIFAR-10 5 7814.25 129.9 107.03 49.76 

OverFeat 8 254,285.12 2492.94 1924.41 704.27 

ResNet-34 34 190,054.39 2361.18 1217.33 1092.23 

After this memory-optimized scheme, the cuBLAS library is used to accelerate the matrix 

multiplication. cuBLAS accelerated matrix multiplication (CAMM) is employed to compute the 

solution of matrix multiplication-based convolution algorithm. As the compute capability of Jetson 

TX1 board is greater than 3.5, cuBLAS library is best choice to access the computational resources of 

the Nvidia GPU. To use the cuBLAS API, the application must allocate the matrices in the device 

memory and as transformed input image and filters are already in the GPU memory, they can 

directly be used by the cuBLAS matrix multiplication subroutine as shown in Figure 9. 

It can be noted that all the trainable parameters imported from the Torch software are of double 

data type. These parameters and complete CUDA-based implementations discussed previously are 

reformed to use the single data type. This is done to reduce the size of the trainable parameters and 

to take benefit from the Single-Precision General Matrix-Matrix Multiply (SGEMM) routine of the 

cuBLAS library. 

Table 3 and Figure 12 depict the performance of this accelerated ConvCAMM layer. Results 

show that the cuBLAS-based ConvCAMM layer gains significant speedup over double and single 

precision GPU-only ConvMM layers. 

Figure 11. Comparison of different versions of ConvMM layers on Jetson TX1 Board.

This GPU-only unified memory scheme also outperforms the all other versions for the deeper
networks as shown in Table 2. This performance gain is more evident here because of large data
transfers required in the deeper networks.

Table 2. Performance of ConvMM layers on the deep classifiers (Jetson TX1 Board), best results are
written in bold.

Model Layers Sequential
ConvMM (CPU)

Hetero ConvMM
(CPU + GPU)

GPU-Only
ConvMM

GPU-Only
Unified ConvMM

Double
(Milliseconds)

Alex’s CIFAR-10 5 7814.25 129.9 107.03 49.76
OverFeat 8 254,285.12 2492.94 1924.41 704.27
ResNet-34 34 190,054.39 2361.18 1217.33 1092.23

After this memory-optimized scheme, the cuBLAS library is used to accelerate the matrix
multiplication. cuBLAS accelerated matrix multiplication (CAMM) is employed to compute the
solution of matrix multiplication-based convolution algorithm. As the compute capability of Jetson
TX1 board is greater than 3.5, cuBLAS library is best choice to access the computational resources of the
Nvidia GPU. To use the cuBLAS API, the application must allocate the matrices in the device memory
and as transformed input image and filters are already in the GPU memory, they can directly be used
by the cuBLAS matrix multiplication subroutine as shown in Figure 9.

It can be noted that all the trainable parameters imported from the Torch software are of double
data type. These parameters and complete CUDA-based implementations discussed previously are
reformed to use the single data type. This is done to reduce the size of the trainable parameters and
to take benefit from the Single-Precision General Matrix-Matrix Multiply (SGEMM) routine of the
cuBLAS library.

Table 3 and Figure 12 depict the performance of this accelerated ConvCAMM layer. Results show
that the cuBLAS-based ConvCAMM layer gains significant speedup over double and single precision
GPU-only ConvMM layers.
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Table 3. Comparison of cuBLAS-based ConvCAMM layer), best results are written in bold.

Size of Input Image GPU-Only ConvMM GPU-Only ConvMM ConvCAMM

Double Single

(Milliseconds)

Cifar (32 × 32 × 3) 5.12 3.2 2.1

Imagenet (224 × 224 × 3) 35.6 21.63 14.59

VGA (480 × 640 × 3) 215.7 119.17 92.65

SVGA (600 × 800 × 3) 369.9 169.8 131.69
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Table 4 list the performance of this single-precision ConvCAMM layer over three image
classification architectures. Results show that the cuBLAS-based ConvCAMM layer is approximately
3× faster than the double precision GPU-only ConvMM layer.

Table 4. Performance of the ConvCAMM layers on the deep classifiers (Jetson TX1 Board), best results
are written in bold.

Model Layers GPU-Only ConvMM GPU-Only ConvMM ConvCAMM

Double Single
(Milliseconds)

Alex’s CIFAR-10 5 107.03 76.36 35.53
OverFeat 8 1924.41 1212.7 496.83
ResNet-34 34 1217.33 887.53 577.66

Finally, the flow of this single-precision ConvCAMM layer is further optimized using unified
memory. Results are summarized in Table 5. Results show that the Unified ConvCAMM layer
is hundreds of time faster than the sequential version and gain tens of times speedup over the
Heterogeneous version.



Appl. Sci. 2017, 7, 826 14 of 19

Table 5. Performance comparison of Unified ConvCAMM layer with other versions on Jetson TX1
embedded Board, best results are written in bold.

Model Layers Sequential
ConvMM (CPU)

Hetero ConvMM
(CPU + GPU)

Unified
ConvCAMM

Speedup Over
Sequential

Speedup
Over Hetero

Double Single
(Milliseconds)

Alex’s CIFAR-10 5 7814.25 129.9 19.13 408 7
OverFeat 8 254,285.12 2492.94 122.9 2069 20
ResNet-34 34 190,054.39 2361.18 423.86 448 6

6.2. Performance Evaluation of Proposed Scheme on Mobile Tablet (For GPUs Having C.C. < 3.5)

The second platform used for the performance evaluation of proposed scheme is Nvidia Shield
K1 tablet. It has Kepler K1 GPU with 192 CUDA cores. Same experiments are performed to evaluate
the proposed scheme on this second embedded GPU having compute capability less than 3.5.

First of all, the GPU-only ConvMM layer is compared with its sequential, heterogeneous and
memory-optimized version and results are listed in Table 6 [15]. Figure 13 shows that the GPU-only
ConvMM layer is 2× faster than the heterogeneous version where the transformation step is performed
sequentially using the CPU and the multiplication is performed using the GPU. It can also be noted that
for smaller workload sizes, Unified memory-based GPU-only ConvMM layer is slower because of its
lengthy context initialization time while for the larger workloads, it outperformed the other versions.

Table 6. Comparison of different versions of ConvMM layers on a mobile device; best results are
written in bold.

Size of Input Image Sequential
ConvMM (CPU)

Hetero ConvMM
(CPU + GPU)

GPU-Only
ConvMM

GPU-Only
Unified ConvMM

Single
(Milliseconds)

Cifar (32 × 32 × 3) 37.21 4.20 3.95 12.52
Imagenet (224 × 224 × 3) 1570.98 62.27 28.01 26.59

VGA (480 × 640 × 3) 10,055.24 327.53 154.32 116.85
SVGA (600 × 800 × 3) 15,852.86 519.08 231.95 181.85
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As mentioned previously, the compute capability of Nvidia Shield K1 tablet is 3.2 and
cuBLAS-based matrix multiplication routine cannot be used on this platform. Therefore, shared
memory-based accelerated matrix multiplication (SAMM) is proposed for the devices having compute
capability less than 3.2. This shared memory-based ConvSAMM layer is further optimized using the
unified memory scheme. Results are listed in Table 7. Results show that the accelerated ConvSAMM
layer is faster than the GPU-only ConvMM layer for each case of workload and it can be further
accelerated using unified memory for larger workloads.

Table 7. Comparison of different versions of accelerated and optimized ConvMM layer, best results are
written in bold.

Size of Input Image GPU-Only ConvMM ConvSAMM Unified ConvSAMM

Single

(Milliseconds)

Cifar (32 × 32 × 3) 3.95 3.20 29.15

Imagenet (224 × 224 × 3) 28.01 19.91 34.75

VGA (480 × 640 × 3) 154.32 127.32 62.98

SVGA (600 × 800 × 3) 231.95 143.45 102.69

Tables 8 and 9 tabulate the performance of different versions of ConvMM layers over the
same classification models. Results show that the proposed Unified ConvSAMM layer boosts the
performance of deep classifiers on the mobile platform and outperforms the other versions for the
same classification problems.

Table 8. Performance of ConvMM layers on deep classifiers (Nvidia Shield K1 tablet), best results are
written in bold.

Model Layers Sequential
ConvMM (CPU)

Hetero ConvMM
(CPU + GPU)

GPU-Only
ConvMM ConvSAMM Unified

ConvSAMM

Single

(Milliseconds)

Alex’s CIFAR-10 5 10,449.21 419.67 144.23 74.20 38.57
OverFeat 8 440,631.27 5792.54 3899.43 1784.24 632.91
ResNet-34 34 252,955.27 3319.34 2545.83 1210.16 767.53

By accelerating the matrix multiplication function and using optimized memory flow, proposed
Unified ConvSAMM layer is 271×–696× faster than the sequential version and 4×–11× faster than
the heterogeneous version.

Table 9. Performance gain achieved by proposed scheme on Nvidia Shield K1 tablet.

Model Layers Speedup Over Sequential Speedup Over Hetero

Alex’s CIFAR-10 5 271× 11×
OverFeat 8 696× 9×
ResNet-34 34 330× 4×

Furthermore, battery life is a critical performance metric of the mobile devices. Android phones
are getting more powerful with time, and with that, energy consumption of them is gradually going
up. Unacceptable energy consumption can reduce the life of the battery. For this reason, energy
consumption is an important factor to consider when performing the real-time image classification
using a mobile phone. The Nvidia Shield K1 tablet has a battery of 5192 mAh and 19.75 Wh. A software
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profiler is used to measure the actual energy consumed by the android application through hardware.
Results are listed in Table 10 and represent the energy consumption per image frame.

Table 10. Comparison of power consumption on Nvidia Shield K1 tablet (joule); best results are written
in bold.

Model Layers Sequential
ConvMM

Hetero
ConvMM

Unified
ConvSAMM

Efficiency Over
Sequential

Efficiency
Over Hetero

Alex’s CIFAR-10 5 16 0.410 0.202 79× 2×
OverFeat 8 850.8 3.2 0.529 1608× 6×
ResNet-34 34 480 1.8 0.432 1111× 4×

Results show that the proposed scheme has a significant impact on the total amount of consumed
energy and heterogeneous approach is consuming up to 50% more energy than the proposed
accelerated flow.

6.3. Performance Comparison of Proposed Scheme with Torch Framework

All these experiments are performed on three classification networks (Alex’s CIFAR-10, OverFeat
and ResNet-34). These networks are trained in Torch framework and trainable parameters are imported
to utilize by the proposed scheme. Table 11 presents a comparison of Torch-based networks and
proposed scheme utilizing trained parameters from former networks. Jetson TX1 embedded board is
used to perform this comparative analysis. Jetson TX1 board has Maxwell GPU with 256 CUDA cores
and 4 GB of RAM. It provides 16 GB of embedded MultiMediaCard (eMMC) to store the operating
system, required frameworks, packages, and files.

Performance of cuDNN torch library is evaluated for the same three classification networks.
cuDNN is a wrapper of Nvidia’s cuDNN library for optimized GPU implementations of
Neural Networks.

It can be noted that for Alex’s CIFAR-10 and OverFeat models, the proposed flow shows the
comparable performance to the Torch-based library while the proposed flow is slower for ResNet-34
model having small filters. However, proposed flow can be accelerated for networks having small
filters using Winograd’s minimal filtering algorithms.

Table 11. Performance comparison of proposed flow with torch libraries (on Jetson TX1 embedded
board).

Model Input Image Size Layers Proposed Unified
ConvCAMM Flow Torch (cudNN)

(Milliseconds)
Alex’s CIFAR-10 (1, 3, 32, 32) 5 19.13 37.11

OverFeat (1, 3, 231, 231) 8 122.9 140.78
ResNet-34 (1, 3, 224, 224) 34 423.86 102.10

Because embedded devices have limited memory storage, so one constraint to consider is the
size of the trained model and installation of required packages on an embedded platform. Table 12
lists the sizes of trained models imported from torch and converted trained parameters for proposed
optimized models.

It can be noted that a complete trained model with installation of main framework (in this case
torch, consuming 828 MB of memory on Jetson TX1 board) require a significant amount of memory
storage. While just using trainable parameters, a comparable optimized scheme can be realized on an
embedded platform.
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Table 12. Size of Model/Parameters.

Model Layers Trainable Parameters (Float) Torch

Megabytes
Alex’s CIFAR-10 5 19 41

OverFeat 8 556 1190
ResNet-34 34 83 215

7. Conclusions

Exploitation of hardware capabilities plays a vital role to enhance the performance of an algorithm.
In this paper, a set of optimization techniques is proposed to accelerate the heterogeneous convolutional
layer to bridge the gap toward the real-time image classification on embedded platforms. The
effectiveness of this proposed flow is evaluated on two different type of embedded GPUs (Jetson TX1
development board and Nvidia Shield K1 tablet). The experimental results indicate that the proposed
flow can take benefits from the concurrent implementation of convolution algorithm, optimized data
transfer scheme, and hardware dependent matrix multiplication approach for better exploitation of
GPU resources. The performance results illustrate that the proposed optimized scheme can efficiently
perform image classification in real time on embedded platforms with less memory requirements and
is more power efficient than the heterogeneous and sequential versions.

This suggests promising future work towards the realization of useful real-time classification and
recognition problems on the embedded platforms [27–29]. This framework can be further accelerated
by exploiting the hardware capabilities and reducing the computational complexity of the convolution
operation. Embedded devices having Pascal architecture GPUs support 16-bit floating point (FP16) data
storage and arithmetic computations. By using FP16 data on an embedded platform like Jetson TX1
board, storage requirement and memory bandwidth can be further reduced for large neural network
models. Furthermore, the complexity of convolution operation over small tiles can be minimized by
using Winograd’s minimal filtering algorithm. This can provide significant performance improvement
for small filter and batch sizes as used by state-of-the-art deep architectures.
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