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Abstract: In this work, we present experimentally obtained limits for the values of the neutral copper
gas electrical resistivity as a function of the temperature. When a current of about ≈ 103 A or
larger flows through a metallic wire in a microsecond or shorter time, the wire performs a phase
change from solid to plasma, through intermediate states of metallic liquid and vapor. If the wire
is surrounded by a non-conductive dense medium that inhibits the circulation of current outside
the wire (e.g., air at room temperature and standard pressure, as in our experiments), the electric
current stops when part of the metallic wire becomes gas. This process is known as dark pause,
and it has a duration that depends on the experiment parameters. By means of a suitable choice
of parameters, we achieved a duration of the dark pause of ≈1 µs, which allowed us to determine
the limits of the electrical resistivity of the metallic gas. The range of measured values starts from
the resistivity of liquid copper at boiling temperature, and goes up to ≈0.01 (±20%) Ohm·m at the
maximum measured temperature.
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1. Introduction

In exploding wire experiments, a large current on the order of 10 3 A flows through a metallic
wire, typically with a diameter of micrometers and centimeters length, causing the transformation
of the metal into liquid, gas, and finally plasma by the fast heating due to the Joule effect [1]. It is
a phenomenon long-known to science [2], and has subsequently been used in multiple scientific
investigations [3–5]. Electrical energy absorbed by the exploding wire system until its transformation
into plasma is a key characteristic in the further development of the phenomenon, as it influences the
initial plasma state, prior to its last expansion [6] . Indeed, the state of an expanding wire in vacuum
and its homogeneity are determined by the absorbed electrical energy [7] and the current rate [8].
Shortly after the beginning of the current discharge, when part of the wire material has become gas,
its electrical conductivity is so small that the current is almost halted until further gas heating allows
for the plasma formation [3,9], provided that the wire is surrounded by a non-conducting medium,
in order to avoid coronal plasma formation [10]. This current interruption is commonly known as dark
pause. In experiments with a small current rate (under 20 A/ns) and with a wire of large enough mass,
the dark pause becomes a very noticeable feature of the wire explosion.

Plasma constitutive properties can be measured indirectly through the appropriate treatment
of the electrical signals, for example, as in [11]. Among these properties, plasma electrical conductivity
has been measured with an exploding wire setup for different materials and plasma conditions [12–15].
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Exploding wire setups had previously been used to confirm theoretical models of the conductivity
in warm dense matter (WDM) studies [16], and to improve previous models [17]. Both models and
experimental works have large error factors (at least a factor of two in the case of Lee [18]) due to the
difficulty of obtaining matter in clear and defined reproducible conditions, and due also to the problem
of performing the measurements. These difficulties can be overcome with the use of more direct
methods, such as the short pulsed laser used for the measurement of the resistivity of aluminum under
solid density conditions and a broad range of temperatures [19].

As all those measurements and calculations are made in WDM conditions, more classical phases
(e.g., a metallic neutral gas) have not been addressed. Specifically, in the classical limit, during the
evolution from solid to plasma the wire must previously pass through a gas state that is reached during
the dark pause. Usually, this pause is short and difficult to analyze, and therefore the measurement
of the resistivity of the metallic gas—the main state during the dark pause—has not previously been
conducted. Here we present the first measurements for the limits of neutral copper gas resistivity,
using an exploding wire configuration, tailored such that the dark pause is long enough to allow for
the measurement of the gas phase characteristics.

Experimental parameters were chosen in order to explore the classical states of matter, in contrast
with more usual exploding wire experiments that explore WDM conditions. The adequate conditions
to this purpose requires: (a) a skin depth larger than the wire diameter; (b) a dark pause duration
larger than 1 µs; (c) a uniform discharge along the wire length without re-strikes or large instabilities;
(d) a sufficient amount of mass so that the heating rate is not so fast; and (d) that the wire impedance
is large enough to control the current discharge until the plasma formation. To meet these conditions,
the carefully adjusted experimental parameters were: the wire diameter (50 µm) and wire length
(5.1 cm) to provide an adequate amount of mass, a slow current ratio of a maximum of 10 A/ns or less
(to be compared with values higher than 50 A/ns in other exploding wire experiments [8]), and the
low value for the high voltage, with a maximum of 25 kV.

2. Experiment and Physical Model Description

Experiments were performed with the ALEX (ALambre EXplosivo, exploding wire in Spanish)
system, shown schematically in Figure 1.

ALEX is formed by two capacitors in parallel, 1.1 µF each, connected to a high voltage source,
maximum charging voltage 60 kV, which discharges the capacitors through a metallic wire surrounded
by open air when the spark gap is closed by a high-voltage trigger pulse.

In order to perform the measurements of the resistivity limits described here, it is necessary
to know the radial expansion of the metallic gas. In this work, the radial expansion was obtained
from direct shadowgraphy images recorded with a streak camera, a Hamamtsu C7700. Voltages from
probes 2 and 3 and the Rogowski coil signal, along with the photodiode signal, were also recorded in
an oscilloscope enclosed in a Faraday cage room. Voltage and Rogowski coil probes were designed,
mounted, and calibrated (3% error) in the laboratory to the frequencies of interest in these experiments.
The high-voltage trigger pulse was synchronized with the streak camera unit as depicted in Figure 1
with the use of a DG-535 delay generator. The photodiode signal was used to synchronize the streak
camera photographs with the electrical signals with a precision of ±20 ns. Copper wires with fixed
length of 5.1 cm and diameter of 50 µm were used in these experiments. As was already written, these
parameters were chosen to ensure a long dark pause, ≈1 µs, which allows for a better study of the
metallic gas produced by the exploding wire.

A typical result of the shadowgraphy streak images of the exploding wire with the associated
voltage and current traces is shown in Figure 2, where the dark pause is clearly visible in either
the image or the electrical traces. The first small peak of the current at 2 µs corresponds to the
transformation of the solid wire into liquid due to the Joule heating. The dark pause that begins when
the current reduces its value is the next step of the exploding wire process in our experiments, and the
moment when the gas forms from the liquid central core and expands is evidenced in the streak image
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by a dark radial expansion (the metallic gas absorbs the backlight). The later appearance of the plasma
by neutral gas heating due to the electrical current is marked in the voltage signal by the negative
slope; meanwhile, the presence of plasma at the expansion outer surface is marked by the maximum
in the current signal. This plasma presence in the outer expansion surface is also in coincidence with
the maximum illumination in the shadowgraphy image, as can be observed in Figure 2.

Figure 1. Exploding wire setup. PH1 signals the photodiode, C the capacitors bank, and L0 and R0 the
lumped inductance and resistance of the setup, respectively.

Figure 2. (a) Exploding wire shadow streak image; (b) Voltage( ) and current( ) signals for a copper
wire. The dark pause is clearly seen in the streak image, the dark region that expands prior to the
plasma formation, and in the current and voltage traces. At 7 µs, the whole wire has been ionized,
as indicated by the maximum value of the current. Inset in (a) shows the beginning of the wire
expansion, shortly after some vapor is formed. Charging voltage was 10 kV.

Notice that the streak image is not able to resolve the structure of the gas expansion and its central
liquid core, as only the external surface of the expansion is visible. Therefore, as is explained in the
next section, only data of this external surface can be measured, independently of the initial energy of
the exploding wire system.



Appl. Sci. 2017, 7, 829 4 of 12

Different charging voltages—10, 15, 18, 21 and 25 kV—were employed to ensure that
measurements of the resistivity limits (later explained in this section) were independent of the initial
electrical energies, and therefore of the dynamical behavior of the metallic wire [5].

The voltage across the wire, Vwire, was measured by means of the mentioned two voltage dividers,
as shown in Figure 1. Probe 2 measures the voltage drop, V2, which includes part of the anode,
the wire, the cathode, and the returning path to ground. Instead, probe 3 measures the voltage drop,
V3, that only includes the cathode and the returning path to ground. Therefore, the measured voltage
difference, Vmeas, is

Vmeas ≡ V2 −V3 = Vwire + Vanode, (1)

where Vanode is the voltage drop in the part of the anode included in the voltage measured by probe 2.
During calibration, the wire was removed and the electrodes were displaced until they were

in electrical contact, in which case the measured voltage difference corresponds only to the anode.
Voltage on the anode can be modeled by a lumped element model; that is

Vanode = Lanode
dI
dt

+ Ranode I, (2)

where the current derivative dI/dt is measured with the Rogowski coil and its numerical integration
gives the current I, while the lumped parameters Lanode and Ranode are obtained using a multiple linear
regression analysis of the dependent variable Vanode and the independent variables I and dI/dt.

Note that during the last stage of the exploding wire discharge, after the plasma is formed, it holds
that Vwire << Vanode due to the high conductivity of the plasma. Therefore, the measured signal during
the last part of the discharge corresponds to the voltage drop in the anode, as in the short circuit
configuration. This means that this last part of the signals can also be used to determine the lumped
parameters of the anode.

Once the lumped parameters of the anode are known, the voltage drop across the wire is obtained
from the measurements of voltage, current, and its derivative as

Vwire = Vmeas − Lanode
dI
dt
− Ranode I. (3)

The voltage across the wire is composed of resistive and inductive parts. Integrating the Faraday
law of induction using a loop through the lumped elements of the circuit and the border of the wire,
indicated by subindex b, we get

Vwire =
dΦb
dt

+
∫

b
E′ · dl, (4)

where Φb is the magnetic flux and E′ the electric field in a system locally fixed to the wire.
Since the magnetic flux is calculated over the area enclosed by the whole circuit, and taking into

account that there is no electrical current circulating by the atmospheric air beyond the border of the
expanded wire, the first term on the right side in (4) can be written as

dΦb
dt

=
d (Lb I)

dt
, (5)

where Lb is a geometrical function equivalent to an inductance. In our circuit, the returning conductor
is a plane plate placed at a distance d from the wire, much smaller than the distance to the rest of the
circuit; therefore, Lb can be approximated by

Lb =
µ0l
2π

cosh−1
(

d
rb

)
, (6)

with l being the length of the wire and rb its radius (which varies with time).
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Then, according to (3)–(6), the integral of the electric field along the border can be obtained from
measurements as ∫

b
E′ · dl = Vmeas − Ranode I − Lanode

dI
dt
− d (Lb I)

dt
≡ Vres. (7)

Assuming an Ohm’s law for the wire, E′ = ρj, being ρ the electrical resistivity and j the current
density, we can define the resistive voltage drop in the boundary layer of the wire as∫

b
ρj · dl = Vres. (8)

3. Resistivity Limit Values

Although the resistive voltage Vres may be obtained experimentally, it is not simple to calculate the
resistivity of the wire from (8), unless the current density is known. Unfortunately, there are no simple
probes that are able to measure the current density inside radially expanding wires. Therefore, we will
discuss what valuable information can be extracted when the electrical current density distribution
is unknown.

If the whole current is circulating through the wire, the integration of j across a section of the wire,
dS, gives the total current ∫

j · dS = I. (9)

So, it is possible to define a mean current density as

〈j〉 = I
S

, (10)

where S is the section of the wire. Assuming a uniform current density in the radial direction, a naive
estimate of the mean resistivity is obtained from (8) as

〈ρ〉 = RS
l

, (11)

where R = Vres/I is obtained from the electrical signals (7).
This value will represent the resistivity of the wire, and R its resistance, as long as a relatively

uniform current density flows in the wire, which is not always the case in the dark pause—for example,
during the transient stage at the very beginning of the discharge or when different states coexist [20].

When diffusion of the current is the dominating phenomenon inside the wire, a large variation of
the current density can be produced. This can also be seen by using an integration loop that goes by
the border and returns by another different path inside the wire (e.g., path a). According to Faraday’s
law of induction, the variation of the enclosed magnetic flux inside the wire, Φab, is

dΦab
dt

= −
∫

a
ρj · dl +

∫
b

ρj · dl. (12)

This means that even in a region of uniform resistivity, the current density may vary considerably
depending on the time derivative of the magnetic flux in that region. This occurs in a time interval
smaller than diffusion time, or when the skin depth is smaller than the radius of the wire.

In the case in which the variation of the magnetic flux inside the wire is negligible (usually
expected in time scales larger than the diffusion time), that is

dΦab
dt
≈ 0, (13)
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the ohmic voltage drop becomes independent of the path∫
a

ρj · dl =
∫

b
ρj · dl. (14)

Such is the case of the experiments here presented for most of the dark pause, because its duration
is much larger than the diffusion time, and the skin depth value for copper at the circuit frequency is
on the order of 120 µm—more than two times the wire radius. In order to use (14) in a general case,
care should be taken in identifying the period of time where the magnetic flux variation inside the
system is negligible.

When two states coexist in the wire system, although the voltage drop is the same in both states,
the current density will be larger in the state of smaller resistivity. This fact is observed in the numerical
simulations mentioned below, where a liquid inner core surrounded by a gaseous outer layer is present
during the dark pause, and the current density is not uniformly distributed between the gas and liquid
states.

Using cylindrical symmetry, i.e., only dependence on radius r, as it is was observed during the
dark pause, from (14) we can write

ρ(r)j(r) = constant, (15)

where the constant in space varies with time. Evaluating the constant at the boundary, the variation of
the current density along the radius depends on the resistivity as

j(r) =
ρb jb
ρ(r)

. (16)

From this, the current is obtained by integrating on the cross-section of the wire

I =
∫

2πrj(r)dr = 2πρb jb
∫ rdr

ρ(r)
. (17)

Again, considering cylindrical symmetry, (8) can be written as

Vres = lρb jb; (18)

then, from (17) and using R = Vres/I we can write

1
R

=
2π

l

∫ rdr
ρ(r)

. (19)

Assuming that the inner liquid and outer neutral metallic gas regions have
uniform—although different—resistivity values, the above becomes

1
R

=
2π

l

∫
liquid

rdr
ρ(r)

+
2π

l

∫
gas

rdr
ρ(r)

, (20)

or in a more compact form,
1
R

=
1

Rliquid
+

1
Rgas

, (21)

where Rliquid and Rgas are the resistance of each phase defined as in (19). Notice that the total resistance
of the wire corresponds to a parallel of the resistance of the liquid and the gas phases, but from the
electrical signals it is not possible to determine the relative contribution of each state to the total
resistance. Anyway, the total resistivity represents a limit to each individual resistance:

Rliquid > R, and Rgas > R . (22)
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Then, a mean resistivity for each state, 〈ρ〉liquid/gas, is defined as

〈ρ〉liquid =
RliquidSliquid

l
(23)

〈ρ〉gas =
RgasSgas

l
, (24)

where Sliquid is the cross-section of the inner core, and Sgas the cross-section of the outer core.
According to (22), a lower limit for the resistivity can be determined as

〈ρ〉liquid >
RSliquid

l
(25)

for the liquid, and

〈ρ〉gas >
RSgas

l
(26)

in the case of the neutral metallic gas.
Note that the gas expands much more than the liquid, then its cross section is much larger than

the one of the liquid. Therefore, the section of the gas can be taken as the total section of the expanded
wire; that is

Sgas ≈ πr2
b . (27)

By measuring the dependence of the boundary radius, rb, with time and also the electrical signals,
the lower bound of the mean gas resistivity is given as

〈ρ〉gas >
Rπr2

b
l

=
Vresπr2

b
l I

. (28)

In principle, a similar procedure may be used to obtain a lower bound for the resistivity of the
metallic liquid. The problem is that, from the measurements, there is no simple way to determine the
physical limit between liquid and gas phases, and therefore the section of this region, Sliquid, cannot be
estimated in our present experiments.

In order to estimate an upper limit for the gas resistivity, it is necessary to consider the energy
transfer from the electrical circuit to the exploding wire during the dark pause.

During the dark pause, which starts when the neutral gas is formed in the outer layer and lasts
until the ionization begins, the metallic neutral gas is heated from the boiling point to the ionizing
point by Joule heating. Because the gas resistance limits the current in the circuit, Joule heating in
the gas state will be larger than in the liquid phase. In such a case, vaporization of the liquid will
progress from the liquid/gas interface to the center of the liquid cylinder, creating a vaporization
wave. This process is similar to the one described in [21] for the liquefaction of a solid metallic wire.
So, the energy received by the gas due to Joule heating also provides the energy for vaporization of the
inner liquid core by means of this vaporization wave.

The power for the Joule heating of the gas is

Ẇ =
∫

gas
ρj2dV, (29)

which—again using the cylindrical symmetry of the wire expansion and (18)—can be rewritten as

Ẇ = (ρb jb)
2
∫

gas

1
ρ(r)

dV. (30)
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In our geometry, dV = 2πlrdr, and recalling the definition of Rgas, the above becomes

Ẇ =
(lρb jb)

2

Rgas
=

V2
res

Rgas
. (31)

The energy provided to the gas up to a given time t should be at least the difference of enthalpy
between the gas at that temperature and the same amount of mass in liquid state at boiling temperature;
that is, ∫ t

tboil

Ẇdt ≥ nCp (T − Tboil) + nQvap, (32)

where T is the gas temperature at time t, n the number of moles in the gas state, Cp the molar heat
capacity at constant pressure, Tboil the boiling temperature, and Qvap is the latent heat of vaporization.
Note that the last term on the right side of the equation accounts for the liquid vaporization in
the interface.

As a matter of fact, from the experiments we find that Vres ≈ const during the dark pause, except
for a few hundred of nanoseconds at the beginning of the discharge. On the other hand, the gas
resistance is expected to be relatively constant, because as the wire is heated, the resistivity increases
but the section also increases because of the expansion. Therefore, the integration in time of the joule
power from the instant when the boiling starts, tboil , up to a given time instant t, can be estimated as

V2
res

〈R〉gas
(t− tboil) ≥ nCp (T − Tboil) + nQvap, (33)

where 〈R〉gas is a mean value of the resistance of the gas. This relationship provides an upper limit for
the gas resistance as a function of time up to the beginning of the ionization phase, tion (e.g., tion ≈ 6 µs
in Figure 2). Using (24), this upper limit for the resistivity is obtained as

〈ρ〉gas ≤
πr2

bV2
res (t− tboil)

nlCp (T − Tboil) + nlQvap
. (34)

In order to evaluate this limit, and considering that both temperature and gas number of moles
increase monotonically with time, a first approach is to use a linear dependence with time of both
number of moles and temperature:

n
n0

=
T − Tboil

Tion − Tboil
=

t− tboil
tion − tboil

, (35)

where n0 is the total number of moles, and Tion is the gas temperature at the beginning of the ionization.
This relation was confirmed, within 20%, by simulations explained below. Although Equation (34)
represents a limit, it should be used carefully at the beginning of the discharge, because the current
density is not uniform due to its diffusion, and (15) is not valid.

In the electrical signals, it is possible to identify the time when the boil starts and that of the
ionization. Therefore, (34) can be evaluated in these extreme points (extreme in the sense of the start
and end of the dark pause). Because the duration of the dark pause depends on the initial voltage, in
order to compare different experimental measurements at different voltages, we decided to measure
the resistivity limits as a function of the absorbed energy, rather than the time coordinate.

In Figure 3, the values of the two previously deduced limits, (28) and (34), averaged over all
different voltages are plotted as a function of absorbed energy. Measurement error is statistical, mainly
due to the oscillations in the radial expansion along the longitudinal coordinate. Since only an axial
slice of the radial expansion is visible with the streak camera, results are sensible to small variations
produced from shot to shot in the longitudinal coordinate.
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Figure 3. Mean copper gas resistivity experimental limits ( upper, lower) as a function of the
absorbed energy for all measured voltages. Errors bars represent the statistical error among all cases.
The lower scale indicates a mean gas temperature of a copper gas with a heat content equal to the
measured electrical energy absorbed by the wire.

From the radial expansion of the gas obtained with the streak camera, it is possible to estimate
the pressure and the density in the gas. Using the Rankine–Hugoniot relationship for the shock
into the air at atmospheric pressure and ambient temperature, the pressure ranges between 10 and
100 atm. From the radius of the expanded gas at the end of the dark pause, a density of 5× 1018 cm−3

is estimated for the metallic gas. The absence of radiation coming from the expanding gas is also
noticeable, indicating a very low or null degree of ionization. These values show that the metallic gas
can be considered as a classic gas.

In order to check the hypotheses and the values of the limits of the resistivity presented
here, the experiment was simulated using a simplified 1D version of a full 3D multi-component
(neutrals, ions, and electrons), two temperature, arbitrary, Lagrangian–Eulerian, finite volume code [22].
The coupling with the exploding wire experiment is described in [23].

Using a mean value between the upper and lower resistivity limits, many features of the electrical
signals are well reproduced. As Figure 4 shows, simulated and experimental values of the initial peak
of the voltage are in very good agreement. Time length of the dark pause—marked both by the voltage
and current plateau and the slope of rise up (down) of the current (voltage) at the end of the dark
pause—is also very well reproduced by the calculations. Similar observations can be made about the
values of the radial border of the plasma expansion, as shown in Figure 5. It is worth mentioning that
changes in the mean resistivity value used in the code as small as 10% lead to durations of the dark
pause which are noticeably different from those experimentally registered. Additionally, changes of
similar magnitude in the slope of the resistivity meant different peak shapes as compared to those
observed in the electrical signals.
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Figure 4. Wire voltage ( experimental, calculated), and current ( experimental, calculated)
signals for a charging voltage of 18 kV during the dark pause. In both calculations, R2 ≈ 0.8 and
p-value < 10−3.

Figure 5. Radial expansion of the metallic neutral gas ( experimental values, calculated) and
calculated current values ( ) for a charging voltage of 18 kV. Radial expansion resolution is ±0.1 mm.
Notice the low values in the current scale.

4. Conclusions

A sufficiently long dark pause was obtained by means of an exploding wire experiment with
properly chosen parameters, where a neutral copper gas was heated from the boiling temperature up
to its ionization.

From the electrical signals and the radial expansion of the gas, limits for the electrical
conductivity of copper gas were measured for the first time in this range of temperatures and energies.
These measurements were contrasted with numerical simulations, showing a good agreement.

The error of the measured average resistivity was 20%—a factor of 10 less than other
measurements of resistivity corresponding to other regimes, as, for example, under WDM conditions.

The present work presents measures of an ample range of the resistivity limits of a classical
neutral copper gas as a function of its internal energy. These limits suggest a linear relation of the
neutral gas copper resistivity with its internal energy, and therefore with its temperature.
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