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Abstract: This paper reviews a few problems where continuous-medium theory specialized to
two-dimensional media provides a qualitatively correct picture of the mechanical behavior of
graphene. A critical analysis of the parameters involved is given. Among other results, a simple
mathematical description of a folded graphene sheet is proposed. It is also shown how the
graphene–graphene adhesion interaction is related to the cleavage energy of graphite and its C33 bulk
elastic constant.
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1. Introduction

Besides its many potential applications [1], including the improvement of polymer properties and
those of other host materials [2,3], graphene is an interesting model material for testing the prediction
of two-dimensional (2D) mechanics [4]. In linear elasticity, the simplest formulation of the elastic
energy of a 2D medium is the surface integral

E =
A
2

∫ ∫
[(ε11 + ε22)

2 + 2(1− ν)(ε2
12 − ε11ε22)] dS +

D
2

∫ ∫
[(κ11 + κ22)

2 + 2(1− ν′)(κ2
12 − κ11κ22)] dS (1)

involving the elements of the 2× 2 strain tensor ε and the 2× 2 curvature tensor κ. Equation (1) relies on
four elastic constants: the extensional stiffness A (N/m), the in-plane Poisson coefficient ν, the bending
stiffness or flexural rigidity D (J), and the “bending Poisson coefficient” ν′ (see Section 6). In a previous
paper [5], it was shown how experimental measurements together with atomistic calculations could
provide reliable values of the elastic constants (A = 365 N/m, ν = 0.20, D = 1.6 eV). These values are in
line with recent measurements of in-plane elastic constants of graphene: C ≡ A(1− ν2) = 342 N/m
(2D Young modulus) and ν = 0.19 [6]. The bending modulus D varies between 1.4 eV (ab-initio
calculations [7]) to 1.7 eV (mechanical properties of single-wall carbon nanotubes [8], see Section 7).
The eV unit used for this modulus refers to its purely atomistic origin: classically, a zero-thickness
medium has no rigidity.

With the accumulation of more and more data, it becomes possible to explore the remarkable
mechanical properties of graphene, revealed by microscopic manipulations. In most cases,
computer modeling based on semi-empirical or density functional theory (DFT) calculations
reproduces the experimental observations quite well. In some cases, continuum theory turns out to
provide a reliable picture when zooming out the structure from the atomic scale up to a few tens of
nanometers. Some examples are illustrated in what follows. In this paper, simple models are favored
over detailed calculations. The reader interested in the latter approach may refer to the cited literature
and to a recent comprehensive review on the mechanical properties of graphene [9].
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2. Mechanical Properties

Although unstable in free space, graphene is often considered as the strongest material ever found.
This assertion needs to be quantified by parameters such as breaking strength, fracture toughness,
covalent bond energy, and other mechanical data.

The theoretical tensile strength of graphite in directions parallel to the basal plane is
around 100 GPa. The strength of graphene can be estimated by multiplying the bulk value of graphite
by the Van der Waals thickness of a single sp2 carbon plane, to obtain 34 N/m. DFT calculations set
up the ultimate tensile strength of graphene along the zigzag and armchair directions at 36 N/m and
40 N/m, respectively [10]. By comparison, the ultimate uniaxial strength of graphene extracted from
nano-indentation amounts to 40 N/m [11,12]. This latter value is the result of fitting experimental
data with non-linear Hooke’s law γ = Cε + C2ε2, here applied to an isotropic medium subject to
uniaxial strain. In that expression, γ is the applied tension (N/m), ε is the strain, C is the first-order 2D
Young’s modulus introduced in Section 1, and C2 is a second-order coefficient [11]. With a negative C2,
the stress–deformation curve has a maximum—by definition the ultimate strength, equal to −C2/4C2.
This represents the largest possible tensile strength graphene can support before breaking. As reviewed
in Ref. [13], the introduction of defects (boundaries between large or small grains, vacancies, slits)
decreases the strength [12] from 40 down to 1 N/m [4]. By comparison, the tensile strength of a PET
(polyethylene terephthalate) film of 9 µm thickness (equivalent to a stack of about 26,500 graphene
planes) is 1800 N/m.

Indications exist that graphene undergoes brittle failure [10,14]. Consequently, Griffith’s model of
crack propagation [15] is more relevant than the theoretical maximum of the γ–ε curve to address the
breaking strength of a 2D material [4,16]. Griffith’s criterion states that a fracture of initial length l0
will propagate in the medium when the tension applied perpendicular to the crack length exceeds the
critical value γc =

√
2λC/πl0. In that formula, λ is the edge excess energy in the direction of the crack

(analog to the surface energy for a 2D material) and C is the 2D Hooke constant. The fracture
toughness is by definition Kc =

√
2λC. Its value measured on free-standing bilayer graphene

is 2.7× 10−3 Nm−1/2 [14]. In few-layer graphene, Kc should increase linearly with the number of
atomic planes, which means that the toughness of monolayer graphene can be estimated at about half
the reported value—1.3× 10−3 Nm−1/2 (1.2× 10−3 Nm−1/2 according to Ref. [4]).

From the energetics point of view, one may estimate the value of the bond breaking energy Eb from
the cohesive energy of graphene (7.91 eV/atom [17]). The simple formula Ec =

Z
2 Eb with Z = 3 the

number of nearest neighbors yields Eb = 5.3 eV, which corresponds to a breaking energy G = 3.4 nJ/m
to cut the bonds perpendicular to a zigzag direction. We note the excellent agreement with the
excess energy reported for the zigzag edge of graphene (half the breaking energy G), λ = 1.7 nJ/m [18].
Using this value of λ together with C = 350 N/m [5] yields Kc = 1.1× 10−3 Nm−1/2, in fair agreement
with the experimental value reported above for monolayer graphene.

All the above reasoning was based on the implicit hypothesis of flat graphene. Out-of-plane
distortions (ripples, wrinkles, etc.) are common features of mechanically transferred graphene [19].
How shape corrugation impacts the mechanical properties and the elastic constants of a 2D material is
a new and growing field of research [20–22].

3. Graphene Folding

Folding of graphene has often been observed in high-resolution electron microscopy
images [23–25]. It has been shown by electron nano-diffraction that graphene folds preferentially
along either the armchair or the zigzag direction [26]. The folded sheet forms a bilayer with continuous
curved connection. The elastic energy in the curved fold is a penalty that can be more then balanced
by the Van der Waals adhesion of the overlapping flat layers. When this happens, the adhesion energy
acts as a driving force to increase the area of the overlap. In the absence of pinning defect, the system
will evolve spontaneously until the overlapping area reaches a maximum. With a simple dimensional
reasoning, one may estimate the average curvature radius of the folded edge to be R ≈

√
D/σ, where



Appl. Sci. 2017, 7, 830 3 of 10

D is the flexural rigidity of graphene (1.6 eV) and σ is the interlayer binding energy. In the case of
graphite, the Van der Waals cohesion can be measured accurately from the cleavage energy (the energy
needed to separate two parts of graphite along a basal plane): σGr = 0.37 J/m2 [27]. Experimentation is
much more difficult to conduct for bilayer graphene. Electronic-structure calculations yield dispersed
values that may depend strongly on the particular AB, AA, or Moiré stacking [28]. To circumvent the
problem, we have used a relationship demonstrated in the Appendix within the Girifalco model [29]:
σ + σGr = hC33/20, where C33 is the elastic constant of graphite along the c axis and h is the
interlayer distance. Using the experimentally-measured value of σGr [27] and C33 = 38.7 GPa [30],
we obtain σ = 0.28 J/m2 for the graphene–graphene interaction (see also Table 2).

The folding mechanism can be examined with a simple continuous-mechanical
model [24,26,31–33]. Assuming a graphene ribbon of width L that is folded back along a line
perpendicular to its length, neglecting the in-plane strain energy, we simply have to minimize the
difference between the bending energy and the Van der Waals energy

∆E
L

=
D
2

∫
C

κ2 ds− σ

[
l0 −

∫
C

ds
]

(2)

where D is the flexural rigidity, σ is the interlayer binding energy, C is the curve drawn by the folded
edge (see Figure 1), l0 is the initial length of this curve, and κ is the local curvature. During the
evolution of the folding, the curve changes in such a way that its length l =

∫
C ds decreases, thereby

increasing the overlapping area and then the Van der Waals adhesion. At the same time, the bending
energy increases until an equilibrium is reached.

𝒞

ρ
φh

l0(a)

(b)

Figure 1. (a) Folding of a graphene sheet; (b) Folded edge according to Equation (3) for α = 0.86.

We have a variational problem to solve [25]. This problem can be further simplified by assuming
an a-priori mathematical form of the curve C , evaluating the right-hand side of Equation (2) and
minimizing the result with respect to the parameter(s) on which the curve depends. We have chosen a
one-parameter racket-like curve whose expression in polar coordinates (ρ, ϕ) is

ρ(ϕ) =
h

4 cos(απ/2)
cos(αϕ/2)
cos(ϕ/2)

− π < ϕ < +π (3)

where h is the Van der Walls spacing between two graphene planes, α is a free parameter in the
interval (0, 1). The shape of the curve is shown in Figure 1b. ϕ = 0 corresponds to the apex of the
folded edge where the local curvature radius is R = h/[cos(απ/2)(α2 + 3)]. The initial length l0 plays
no role in the minimization of Equation (2), because it is a constant term. For mathematical reasons,
l0 was chosen as the length of the curve defined by Equation (3) for α = 0.

Equation (3) transforms Equation (2) in a function of the curvature parameter α:

∆E
L

= σh
(

m
2

∫ +π

−π

[ f 2
α (ϕ) + 2 f ′2α (ϕ)− fα(ϕ) f ′′α (ϕ)]2

[ f ′2α (ϕ) + f 2
α (ϕ)]3

fα(ϕ)dϕ−
∫ +π

−π
[ f0 ϕ)− fα(ϕ)] dϕ

)
(4)
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where fα = cos(αϕ/2)
4 cos(απ/2) cos(ϕ/2) , the prime marks denoting derivatives with respect to ϕ. The first

integral involves the expression of the curvature κ in polar coordinates. The second integral is the
variation of length l0 − l of the curve. Both integrals require a numerical evaluation. The function
(Equation 4) depends on the dimensionless parameter m = D/σh2. The minimization of ∆E/L with
respect to α leads to the results listed in Table 1 (see Appendix).

Table 1. Variation of the dimensionless parameter m = D/σh2, folding parameter α (Equation 3),
curvature radius R of the folded edge at its apex, and the bending energy per unit length wb (first term
in Equation 2) versus graphene parameters (flexural rigidity D, interlayer binding energy σ, inter-sheet
distance h).

D (eV) σ (J/m2) h (nm) m α R (nm) wb/L (eV/nm)
1.6 0.28 0.335 8.16 0.855 0.400 6.37 a
1.4 0.23 0.335 8.60 0.861 0.413 5.44 b
35.5 0.35 0.67 36.2 0.944 1.95 37.72 c

[a] this work; [b] nominal parameters of ref. [32]; [c] bilayer (see text).

It is interesting to investigate how the geometry of the folded edge changes with the number of
layers. Due to the inter-layer interactions, the bending rigidity of bilayer graphene is expected to be
much greater than two times the bending modulus of an isolated graphene plane [34]. According to
first-principle molecular dynamics calculations [35], the bending modulus D of graphene is multiplied
by a factor of 60 on going from single-layer to double-layer and then scales with the cube of the number
of layers, in agreement with the continuum elasticity of plates that gives a flexural rigidity proportional
to the cube of the thickness. Whereas the flexural rigidity of graphite flakes with thickness above 2.4 nm
has been shown to follow the expected cubic law [36], a controversy exists. In case the atomic planes
slip over each other, continuum theory predicts that D for multilayer graphene is proportional to
the number of planes, which has been confirmed by some atomistic simulations [37,38]. On the
experimental side, atomic force microscopy (AFM) measurement of the deformation of convex-buckled
suspended graphene ribbons yielded D = 35.5 eV for bilayer graphene, with relative uncertainty of
50% [39]. The last row of Table 1 corresponds to this parameter; h has been doubled because the
inter-sheet distance must be measured from the plane at mid-thickness. The obtained curvature radius
R at the folded edge apex also refers to the surface at mid thickness. The value of σ used for the
bilayer–bilayer interaction was taken from Table 2.

Table 2. Binding energy per unit area of an n-layer graphite sheet deposited on another n-layer graphite
sheet for different values of n.

n 1 2 3 ∞

σn,n (J/m2) 0.28 0.35 0.36 0.37

4. Self - Folding of Graphene

The previous section was devoted to graphene in free space—a situation that is not of direct
interest. However, most of what has been predicted remains qualitatively correct for graphene
deposited on a substrate. Of course, the shape of the folded sheet changes from that of Figure 1b to
that of Figure 1a due to the underlying material [38]. The case of SiO2 is very frequent: the driving
force for folding is the difference σgr-gr − σgr-SiO2

. This difference can be small and even negative
according to recent accurate measurements: σgr-SiO2

= 0.45 J/m2 for monolayer graphene and 0.31 J/m2

for few-layer (2–5) graphene [40]. Accordingly, folding should be favorable for few-layer graphene,
but not for monolayer graphene (see Table 2).
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Nanoindentation of few-layer graphene on SiO2 by a triangular AFM tip gives rise to
interesting observations. When the tip has small-amplitude horizontal movements during the
punch, three graphene ribbons are peeling and growing away from the edges of the indentation [41].
The driving force is the difference between the graphene–graphene and graphene–silica adhesion
energies. While the fold moves away from its origin, the ribbon gets narrower so as to reduce the
bending energy of the fold. The tapering angle θ is given by the equation [41]

sin
θ

2
=

wb
G

(5)

where wb is the bending energy per unit width of the folded region and G is the bond breaking
energy introduced in Section 2. The value of θ measured experimentally for bi- to tetra-layer graphene
samples was 12◦ [41]. Assuming that the bond breaking energy scales linearly with the number of
layers, one obtains G ≈ 42 eV/nm for a bilayer. One therefore needs wb ≈ 4.5 eV/nm to obtain a
tapering angle of 12◦ for a self-folded bilayer. This value is a factor of 8.3 smaller than that given in
the last row of Table 1. However, the bending constant D of the self-folded bilayer could be around
3 eV—not 35 eV—if the atomic layers were bending without coupling, as predicted by molecular
dynamics [38]. This would bring wb close to the value estimated from the tapering angle.

Instead of making a single fold, a monolayer graphene can scroll, but this transformation works
only in solution with alcohol, which helps the graphene layer to detach from the substrate [42].
The gr–gr interlayer interaction is about a factor of two larger in a scroll than in a single fold, because
there is an interaction on both faces of graphene in most part of the scroll. Then, Van der Waals
interaction favors the scroll over the fold, the more so that the bending energy in a scroll is not a strong
penalty compared to a folded sheet [5,43].

5. Mechanical Tearing

Graphene flakes obtained by mechanical exfoliation have a complex shape [44] that sometimes
present triangular indentation of their edges. Such indentation can be obtained by applying a tearing
load parallel to the graphene layers so as to separate the planes. The tearing force propagates initial
cracks, with the consequence that ribbons are folded back during the peeling process and removed from
what remains on the substrate. At the same time, the width of the peeled-off ribbons gets narrower
until they reduce to nothing. The tapering angle predicted by continuum elasticity [45]—extrapolated
to graphene in the case of low adhesion—is governed by the equation [35]

sin
θ

2
=

√
Dσ

G
(6)

with D the flexural rigidity, σ the adhesion energy of the graphene layer on its substrate, and G
the bond breaking energy. The expression is different from Equation (5), chiefly because the torn
ribbon is stretched by the applied force. The latter must overcome the adhesion strength σ. Both D
and G depend on the number N of atomic planes, with a more or less linear dependence of G on N.
Experiments [35] reveal that θ is about 7◦ for a monolayer graphene and about 20◦ for a bilayer, both on
SiO2. Using the parameter values given above for monolayer graphene on SiO2 (σgr-SiO2

= 0.45 J/m2,
D = 1.6 eV, G = 3.4 nJ/m), one obtains θ = 9◦. For bilayer graphene, G can be multiplied by a factor of
two, σgr-SiO2

can be reduced to 0.3 J/m2, as reported in Section 4. Then, the observed value θ = 20◦

requires D = 30 eV—quite close to the value of 35 eV measured for the bending rigidity of bilayer
graphene [39]. In view of this result, mechanical tearing is likely to bend the atomic layers by keeping
them coupled, by opposition with self-folding where the apparent bending modulus was found to be
much smaller (Section 4).
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6. Gaussian Curvature

The bending contribution to the elastic energy of a 2D body (Equation 1) involves a “bending
Poisson coefficient” ν′ that enters the equation in front of the Gaussian curvature κ11κ22 − κ2

12.
The coefficient ν′ plays no role in nanotubes or in folded sheets, where the Gaussian curvature
is zero. Alternatively, a Gaussian bending modulus D′ ≡ −(1− ν′)D can be introduced. It is often
used in membrane theory [46], but remains difficult to measure or to evaluate numerically [47].
It has been demonstrated theoretically [48] that the coefficient ν′ of graphene differs from its in-plane
Poisson coefficient ν. Using the parameters of second-generation Brenner potential, Davini et al. [48]
arrived at ν′ = 0.42 and ν = 0.40, still quite similar. With the same set of parameters, the flexural
rigidity obtained is D = 1.40 eV, which according the the above definition yields D′ = −0.8 eV [49].
By comparison, DFT calculations for carbon nanotubes and fullerene structures give D′ = −1.52 eV
and D = 1.44 eV (ν′ = 0.47) [7] or D′ = −0.7 eV and D = 1.6 eV within the tight-binding formalism [46].
Recently, finite-temperature molecular dynamics has been performed for a graphene sheet containing
a free edge in order to have access to the Gaussian bending modulus D′ [47]. The numerical data
obtained could only be understood by attributing a small positive value to this modulus, D′ ≈ 0.03 eV
(ν′ > 1). This surprising result emphasizes the dominant role of entropic effects. At zero temperature,
both integrands in Equation (1) must be positive definite expressions. This condition imposes A > 0,
D > 0, and both ν and ν′ to be the interval (−1,+1).

7. Collapse of Nanotubes

Under hydrostatic pressure, an isolated single-wall carbon nanotube deforms first radially,
then flattens and eventually collapses [50]. For large diameter, the collapse is realized when two
opposite sides of the deformed nanotube come close to the Van de Waals distance of 0.34 nm.
Combining Raman spectroscopy of carbon nanotubes under hydrostatic pressure and atomistic
calculations, Torres et al. [8] were able to determine the deformation and the collapse of the cylindrical
structure. For each nanotube, two critical pressures were observed: the onset of ovalisation, P1,
which for most nanotubes corresponds to a bifurcation point in the radius versus pressure curve, and
the collapse pressure P2. The authors of this study have shown that the two pressures are both related
to a universal function

Pc(d) = D
1− β2/d2

d3 d > β (7)

where d is the nanotube diameter at 1 atm, D is the flexural rigidity of graphene, and β is an empirical
parameter. The relations between P1, P2, and Pc(d) are P1 = Pc(d) and P2 ≈ 1.5Pc(d). By fitting all the
available data, Torres et al. arrived at D = 1.7± 0.2 eV and β = 0.44 nm. According to Equation (7),
the critical pressure Pc(d) increases with increasing d, reaches a maximum at d =

√
5/3β ≈ 0.57 nm,

and then decreases. Asymptotically, Pc(d) ∼ 24D/d3, which is what continuous-mechanics predicts
for a thin-wall elastic ring (Lévy-Carrier law) [51].

8. Conclusions and Perspectives

Continuous mechanics specialized to two-dimensional bodies seems to work qualitatively well
for graphene, and most likely for related materials like boron nitride.. If the picture that emerges
from this approach is reasonably coherent with the observation, experimental measurements and
computed values of the relevant parameters may vary substantially. The quality of graphene [52],
the composition and corrugation of the substrate [53], the temperature [54], etc. all play a role in the
mechanical behavior of graphene. The presence of wrinkles or ripples [19] introduces an additional
complexity that may affect the picture [55]. In particular, thermal fluctuations in suspended graphene,
in addition to requiring a statistical approach, may amplify non-linear effects [56].

Among the linear-elastic constants, the flexural rigidity of graphene and especially the Gaussian
modulus remains the most difficult to measure mechanically. The situation is worse for few-layer
graphene, where it is difficult to appreciate to what degree the bent atomic layers are coupled. In the
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domain of mechanics, a full understanding of how graphene fails under tensile or bending strain is
another important topic [14,57]. Works devoted to these problems are on the increase, and there is no
doubt that important progress will be made in the coming months.
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Appendix A. Van der Waals Binding Energy between Few-Layer Graphite Sheets

Consistent with the continuous-medium theory used to describe the elastic properties of graphene,
the Girifalco model [29] is an interesting approach for addressing the Van der Waals cohesion of layered
materials. The central idea of the model is to treat each atomic layer as a continuous plane containing
N atoms per unit area with which an external atom interacts through a Lennard–Jones 6–12 potential.
If d is the distance, the interaction energy between the plane and the atom is V(d) = b/10d10 − a/4d4,
where a and b are two positive constants. Considering the external atom as belonging to a graphene
plane located at a distance h above another graphene plane, it follows from the expression of V(d) that
the binding energy per unit area between the two parallel planes is

σ1,1 = N
[

a
4h4 −

b
10h10

]
(8)

where the index 1, 1 means the interaction between a monolayer of graphene and another monolayer
of graphene.

The same procedure can be developed for the interaction energy between an n-layer graphite sheet
and another n-layer graphite, assuming a regular spacing h between the successive n+ n atomic planes.
Summing up the interactions over the 2n− 1 inter-plane distances yields the following expression of
the interaction energy

σn,n = N

[
a

4h4

(
2

2n−1

∑
j=1

1
j4
− 1− 1

(2n− 1)4

)
− b

10h10

(
2

2n−1

∑
j=1

1
j10 − 1− 1

(2n− 1)10

)]
(9)

At the limit n→ ∞, the Van der Waals binding energy of graphite is obtained:

σGr = N
[

a
4h4 (2ζ4 − 1)− b

10h10 (2ζ4 − 1)
]

(10)

with ζk the Riemann zeta function of power k. Using the parameters a, b, h, and N given in Ref. [5],
the values listed in Table 2 are obtained. The result for graphite agrees remarkably well with available
experimental data [27,58].

Equations (8) and (10) readily lead to the relation

σ1,1 + σGr = 2N
[

A
4h4 −

B
10h10

]
=

3
10

NA
h4 =

h
20

C33 (11)

with C33 the elastic constant of graphite along the c axis, where A = aζ4, B = bζ10, knowing that
B/A = h6 and C33 = 6NA/h5 [5].
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