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Abstract: Navigating a robot in a dynamic environment is a challenging task, especially when
the behavior of other agents such as pedestrians, is only partially predictable. Also, the kinodynamic
constraints on robot motion add an extra challenge. This paper proposes a novel navigational strategy
for collision avoidance of a kinodynamically constrained robot from multiple moving passive agents
with partially predictable behavior. Specifically, this paper presents a new approach to identify the set
of control inputs to the robot, named control obstacle, which leads it towards a collision with a passive
agent moving along an arbitrary path. The proposed method is developed by generalizing the concept
of nonlinear velocity obstacle (NLVO), which is used to avoid collision with a passive agent, and takes
into account the kinodynamic constraints on robot motion. Further, it formulates the navigational
problem as an optimization problem, which allows the robot to make a safe decision in the presence
of various sources of unmodelled uncertainties. Finally, the performance of the algorithm is
evaluated for different parameters and is compared to existing velocity obstacle-based approaches.
The simulated experiments show the excellent performance of the proposed approach in term
of computation time and success rate.

Keywords: collision avoidance; multiple passive agents; Mobile Robot Navigation; pedestrian
environment; kinodynamic planning; velocity obstacle

1. Introduction

Motion planning in dynamic environments has become central to the operations of robots.
Most modern applications require navigation of robots among humans, vehicles and other robots.
Almost all of the mobile robots in the real world applications are subjected to kinodynamic constraints
like differential driven or car-like robots [1,2]. Many different kinds of motion planning algorithms
have been developed for such robots facing static environment, and then they were further extended
for dynamic environments. In [3], a motion planning approach for the car-like robots was presented,
and it was proved that the path for holonomic robots lying in an open configuration space could
be transformed into an equally useful path for nonholonomic robots. Particularly, an algorithm
was proposed to generate a useful path for nonholonomic systems based on the path obtained for
holonomic robots. However, that transformation was not smooth for car-like robots. It was first
proposed in [4] and their idea was further improved in [5]. However, instead of using a steering
function, authors presented a method based on computing clothoid curves. Although their method
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improved transition and smoothness, authors did not address complete trajectory planning for dynamic
environments. For this propose many authors have proposed different algorithms focusing on complete
trajectory planning , such as [6–8]. In some of these works, the problem of robot motion planning in
a dynamic environment was decomposed into hatching an achievable path for nonholonomic systems,
and designing a velocity profile by which such vehicles could maneuver safely [9–11]. However,
these approaches do not perform well for navigating a robot in a dynamic environment with multiple
moving agents, like pedestrian environment, due to following reasons. (1) These approaches do not
take into account the future prediction of obstacle motion thus robot being blinded to a potential
collision. (2) When planning in such dynamic environment the time available to compute solution is
limited, it is the function of nature and dynamicity of the environment. Therefore, in a highly dynamic
environment there is a high probability that a complete path to the goal cannot be computed in the
available time.

In [12,13], the problem of kinodynamic motion planning for a robot in a dynamic environment
was addressed. The proposed approaches explore the state-time space of the robot to find a collision
free path to the goal, while it was assumed that the entire path of the passive agents is known.
However, this assumption restricts their application when extending them to pedestrian or multi-agent
environment. In most of the applications of navigating an agent, the moving obstacles has free will,
and their future behavior is only partially predictable (if at all). When facing such situation, obstacle’s
path must be predicted using prediction techniques such as the ones presented in [14–17]. When the
on-line path prediction is used to plan motion, it is likely that the model of the future that is obtained
will have limited time duration. In addition, such on-line prediction is noisy. Therefore, a planner is
required that takes into account the validity duration of the model of the environment and allowable
time for computing a solution. Also, it is necessary to consider various sources of uncertainties
present, e.g., passive agents unpredictability, uncertainty in resulting state under a given control action,
and localization error.

Some of the principal work that considers the future behavior of pedestrians or other kind
of agents is focused on the concept of velocity obstacle (VO) [18]. The original formulation of VO
was designed for an agent with simple-agent dynamics to avoid a collision with a passive agent
moving along a known straight path. In [19], authors proposed an optimal reciprocal collision
avoidance strategy (ORCA) for multiple active agents, considering similar behavior for all agents.
More specifically, the work assumes that each agent employs a similar collision avoidance strategy.
Instead of complete motion planning, their approach was to plan local motion directed towards the
next (sub) goal extracted from a global way point plan. Several efforts have been made to extend the
concept of ORCA to more complex dynamic systems ranging from the single integrator, differential
driven, car-like robot and arbitrary linear equation of motion in [20–25]. However, these approaches
require every agent in a collision to run a similar collision avoidance algorithm. In [26], authors
examined the issue of navigating car-like agent in the dynamic environment with multiple passive
agents. They extended the concept of VO to consider the constraint of the kinematic car-like agent
to avoid collision with passive agents moving along the linear path. The approach was designed for
specific agent dynamics and cannot be simply extended for avoiding passive agents moving along an
arbitrary path, probably nonlinear.

1.1. Contribution

This paper addresses the problem of navigating a kinodynamically constrainted robot, among
multiple passive agents with partially predictable behavior. In order to solve the problem, this paper
develops the following two contributions.

• First, it generalizes the concept of Nonlinear velocity obstacle (NLVO) [27] to develop a new
approach to identify the set of control inputs to robot that will lead the robot towards collision,
named control obstacle. It seeks to address the issue of navigating a robot with kinodynamic
constraints while considering that a passive agent is moving along an arbitrary path, probably
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non-linear. The original approach of NLVO does not consider the robot model, and thus is limited
to the agent with dynamics as of single integrator.

• Secondly, a novel collision avoidance strategy is proposed, that allows the robot to make a safe
decision for avoiding a collision with the passive agents. The safe navigation decision is based
on the concept of minimum safety margin which is the measure of how safe the path is in the
presence of various sources of unmodeled uncertainties.

This paper presents the implementation of the proposed approach for a car-like agent and a double
integrator. The performance of the proposed algorithm is evaluated for dynamic environment
considered in [26], where the predicted trajectory of passive agents change frequently. The simulated
experiments show better performance of the proposed approach compared to current VO based
approaches, in terms of computation time and success rate.

1.2. Limitations

As this work extends the concept of velocity obstacle that increases its applicability, it inherits
some limitations of VO method. First, it requires the passive agents to be of circular shape. It is
a logical assumption for pedestrians or mobile robots, as it simplifies the problem. For a non-circular
passive agent, collision avoidance is achieved by selecting a circle enclosing geometry of a passive
agent. Second, this work proposes a local navigation approach. Thus it requires a global motion
planner to converge to goal in the presence of the large static obstacles. The paper presents one possible
implementation of the global navigational plan in Section 5, which results in model predictive partial
motion planning framework.

Finally, the presented approach is probabilistic in nature. It is possible that in some cases the
solution may not be found even if one exists. However, simulation results show that the presented
approach has much higher success rate compared to existing VO based approaches.

1.3. Organization

The rest of this paper is organized as follows. Section 2 discusses the previous work done
relating to VO based navigation. Section 3 reviews the nonlinear velocity obstacle and the issue that
appears when applying it to navigate a kinodynamically constrained agent. Section 4 introduces
the idea of a control obstacle and describes the safe margin input space. Section 5 presents the
proposed navigation approach. Section 6 presents the implementation of the proposed approach for
robot dynamics as of the double integrator and a car-like robot. Further, this section evaluates the
performance of the algorithm for a set of parameters and compares the performance of the proposed
approach with current approaches. Finally, Section 7 concludes the paper.

2. Previous Work

One of the early development in collision avoidance is of velocity obstacle (VO) [18]. VO is a cone
in the velocity space of agent, which represents the set of velocities that will lead an active agent
towards a collision with a passive agent. To avoid the collision, active agent has to select its velocity
outside VO. The early approach was developed for simple agent dynamics to avoid collision with
a passive agent which is moving along a straight path with constant velocity. In [27], authors proposed
NLVO algorithm, which expands the concept of VO to allow an agent with linear equation of motion
to avoid collision with a passive agent with known, possibly nonlinear trajectories. The generalized
velocity obstacle (GVO) algorithm proposed in [26] does principally the opposite of NLVO. It considers
a problem of car-like agent avoiding passive agents moving along linear paths.

In contrast of avoiding passive agents in [19], authors examined the issue of collision avoidance
among active agents and proposed the concept of reciprocal collision avoidance. The approach was
based on dividing the responsibility for collision avoidance among agents involved in a collision.
Their approach generates collision free piecewise paths for active agents. Efforts have been made
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to extend the applicability of this approach to consider the kinodynamic constraints of agents.
In [23], authors proposed the concept of Acceleration-Velocity Obstacle, (AVO), that takes into account
the acceleration constraints of the robot. In [24], authors proposed the idea of continuous control
obstacle, to generate a continuous collision free path rather than piecewise linear path. All these
reciprocal collision based approaches require that all dynamic objects should employ the same
algorithm to avoid a collision. Thus, these approaches cannot easily be extended for avoiding a collision
with passive agents moving along an arbitrary path, possibly nonlinear and only partially predictable.

3. Background

This section will review the concept of nonlinear velocity obstacle proposed in [27] and discuss its
application for a robot with kinodynamic constraints.

3.1. Nonlinear Velocity Obstacle

For a disc-shaped robot Ra and moving obstacle Ob of radii ra and rb, respectively, the nonlinear
velocity obstacle (NLVO) induced for Ra is a set of its velocities that will result in its collision with Ob
at some time in the future. NLVO is defined in terms of its temporary components. Let at current time
t = 0, the center of the robot represented by pa(0) is at origin. In a robot configuration space, let set B
represent the obstacle’s circular geometry with radius equal to the sum of radii ra and rb, and the robot
geometry is represented by a point, as shown in Figure 1a. For an obstacle following a generalized
trajectory c(t), the temporary velocity obstacle induced for a robot due to obstacle’s position at time
instant ti+n is as follows:

NLVO(ti+n) =
c(ti+n)⊕ B

ti+n
(1)

where c(ti+n)⊕ B denotes the Minkowski sum of vector c(ti+n) and set B. NLVO(ti+n) is a set of all
absolute velocities of a robot that will result in a collision of pa with a point in B at time instant ti+n.
The set of robot velocities that will result in collision of pa with B within time horizon [0, τ] can be
defined in terms of NLVO(ti+n) as follows:

NLVOτ =
⋃

0<t≤τ

NLVO(t) (2)

Geometrically, NLVOτ is a warped cone, such as the one shown in Figure 1b.

Figure 1. For a robot with current position pa(0) at origin and obstacle following trajectory c(t),
(a) shows the temporary velocity obstacle, NLVO(ti+n) induced for a robot due to the position of
an obstacle at time ti+n. It is a disc of radius (ra + rb)/ti+n and its center is at c(ti+n)/ti+n in the robot
velocity space. If the velocity of a robot is such that va ∈ NLVO(ti+n), then pa(ti+n) ∈ c(ti+n)⊕ B.
In (b), NLVOτ is shown as the union of its temporary components over time horizon [0, τ]. If a robot
velocity va is in NLVOτ , then the collision will occur within time horizon [0, τ]. NLVO: Nonlinear
Velocity Obstacle.
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Collision avoidance is then achieved as follow: Robot Ra selects its new velocity at time t = 0
such that va /∈ NLVOτ to remain safe for at least τ seconds into the future. The new velocity is usually
selected that minimize the Euclidean distance to velocity vpre f , which in turn points to next sub goal
extracted from global waypoint plan. va is then applied for short time horizon until a next control
loop begins.

3.2. Robot with Kinodynamic Constraints

For a known, possibly nonlinear trajectory of a passive agent, NLVO defines the set of velocities
that may lead the robot towards a collision with a passive agent into the future. For an arbitrary
starting point, a new velocity outside NLVOτ cannot be attained instantly by a mobile robot under
kinodynamic constraints. For example, the robot with car-like dynamics, as shown in Figure 2,
has feasible velocity in a single direction, specifically in the direction of rear wheels. If the current
velocity of robot is in NLVOτ , a new velocity outside NLVOτ can only be attained over some finite
time, and there is no guarantee that a robot can attain that new velocity into the future without having
a collision.

Figure 2. Kinematic model of the car-like robot. States are given by the center position of rear
wheel axle pa, the orientation angle θ, the steering angle φ. L represents the wheelbase of the car.
Robot velocity v is in the direction of rear wheels. ICR: Instantaneous Center of Rotation.

4. Safe Margin Control Space

This section presents a new concept of temporary control obstacle. It is the generalization
of temporary velocity obstacle. It seeks to address the problem of computing collision free motion
by taking the kinodynamic constraints of the robot into account. Secondly, it introduces the idea of safe
margined control space to select the safest trajectory in the presence of various sources of uncertainties.

4.1. Passive Agent Representation

This work assumes that there is a system other than a robot, like the one presented in [16,17],
that tracks passive agents, predicts their future behaviors, and presents them in a general format,
used in this paper. We are given a list of the passive agents and each passive agent is considered
to be a disc or sphere having a radius and a trajectory. The future behavior of a passive agent
is represented in the form of set points that represent predicted future states of the passive agent,
specifying its position and time.

4.2. Notations and Assumptions

Let the state space of robot A be Xa ⊂ RN. The dimension of robot workspace is typically either
d = 2 or d = 3. It is assumed that the position of the robot pa in configuration space can be obtained
from its states xa(t), potentially by some nonlinear projection function f : Xa −→ Rd.

pa(t) = f (xa(t)) (3)
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Let the control space of robot has the same dimension as the workspace. A constraint c defined
on the robot states by constraint function qc(xa(t), t) bounded in [C−, C+] (C−, C+ ∈ R) will constraint
the allowable control inputs in the robot control space. It is assumed that this constrained control
region is convex. In the case of multiple constraints defined on robot states an admissible control space
represented by Uad is obtainable by taking the intersection of allowable control regions induced by
each constraint.

Lets the continuous time state transition is given by some potential nonlinear function
g: Xa ×Uad −→ RN

ẋa(t) = g(xa(t), u(t)) (4)

where xa(t) is the state of the robot and u(t) is the control input given to it. For the current state
xa(t) = xa(0) and constant control u(t) = u(0), the state of the robot at t > 0 is given by:

xa(t) = h(xa, u, t) (5)

where h : Xa × Uad × R −→ Xa is the solution of (4) which is considered to be obtainable
by its integration.

4.3. Control Obstacle

Consider a mobile robot that shares its workspace with multiple other passive agents. Let A
and Bj are the geometry of the robot and the jth passive agent respectively. The robot and passive
agent geometries are considered as their bounding circles, similarly as in the original formulation of
VO [18]. Let Oj is the Minkowski sum of robot’s and jth passive agent’s geometries, Oj = A⊕ Bj.
The current position of passive agent is cj(0) and its position at t > 0 is given by cj(t). To avoid
collision with a passive agent within time horizon τ, their relative position should remain outside the
Minkowski sum of their geometries.

pa(t)− cj(t) /∈ Oj, ∀t ∈ [0, τ] (6)

Therefore, the temporary control obstacle induced due to the state of the jth passive agent at
a future time instant ti+n ∈ [0, τ], denoted by UOj(ti+n), is defined as follows:

Definition 1. (Temporary Control Obstacle) It is a set of control inputs for which the relative position vector
is inside Oj at time ti+n

UOj(ti+n) = {u| f (h(xa, u, ti+n))− cj(ti+n) ∈ Oj} (7)

where f (h(xa, u, ti+n))− cj(ti+n) is a relative position vector at time ti+n, for control input u given to a robot.

Now, the control obstacle induced for a robot due to the predicted motion of jth passive agent
over the time horizon [0, τ] can be defined as follows:

Definition 2. (Control Obstacle) The control obstacle induced due to the states of a passive agent over time
horizon [0, τ] is the union of temporary control obstacles over that horizon.

UOτ
j =

⋃
0<ti+n≤τ

UOj(ti+n) (8)

UOτ
j is the set of control inputs to a robot, that will lead it towards collision with a passive

agent in time horizon [0, τ] into the future. In another words, the collision will not occur between the
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robot and passive agent Bj with in time horizon [0, τ] into the future, if robot selects its control input
such that u /∈ UOτ

j .
In case of avoiding collision from multiple passive agents, we can extend the given approach as

follows. Let N = {1, ..., m} is the index of passive agents to be avoided. Then the control obstacle can
be given as:

UOτ =
⋃

j∈N
UOτ

j (9)

Robot selecting its control input outside UOτ will lead it to move without collision with m passive
agents within time horizon [0, τ] into the future.

4.4. Safe Control Inputs

All control inputs in admissible control space that are not in control obstacle are considered as
safe control inputs. The definition of safe control space is as follows:

Definition 3. (Safe control space) It is the relative complement of UOτ in Uad.

Uτ
sa f e = Uad \UOτ (10)

Although all control inputs in Uτ
sa f e are considered safe, but each control input has a different

level of proximity to the control obstacle. One possible metric defining the closeness of a safe control
input us ∈ Uτ

sa f e to a control obstacle is defined in below definition.

Definition 4. (Margin) The margin of safe control input us is its minimum weighted distance to the
control obstacle.

mrg(us, UOτ) = min
u∈UOτ

√
(u− us)T M(u− us) (11)

where M is a positive definite diagonal weighted matrix whose values are assigned based on the importance of jth
dimension of control space.

The maximum margined control input is considered to be the safest control input to a robot,
considering the various sources of unmodeled uncertainties.

4.5. Example: Robot as Single-Integrator

To illustrate the concept of safe control space, take an example of a simple robot RA that was
considered in [27]. The position of the center of a disc-shaped robot RA, at time t, for a given control
input u, is given as

pa(t, u) = pa(0) + tu (12)

where pa(0) is the current position of robot. Similarly to [19], consider the constraint on robot states
as follow: √

ẋ(t)2 + ẏ(t)2 ∈ [0, vm] (13)

where vm is the maximum speed of the robot. For system in (12), the control input directly corresponds
to the velocity of the system ṗa(t, u) = u; therefore, Uad is a set of control inputs to a robot such that
||u|| ≤ vm. Geometrically, Uad is a disc of the radius vm with its center at the origin in the control space.

The temporary control obstacle UOj(ti+n) is the set of control inputs for which
pa(ti+n, u)− c(ti+n) ∈ B. For the single integrator, temporary control obstacle is equivalent to
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temporary velocity obastcle, NLVO(ti+n) defined in [27], and is shown in Figure 1a. Geometrically,
it is a disc of the radius (ra + ra)/ti+n with its center at (c(ti+n)− pa(0))/ti+n in robot control space .

Consider the following situation of the robot:

• current position at pa(0) = (0, 0), radius ra = 0.4, and maximum linear speed limit of 1unit/s.
• disc shaped static obstacle of radius rb = 0.4 centered at (2, 0).
• temporary control obstacle considered at every time step of 0.1 s up to time horizon of τ = 5 s.

Figure 3 shows the obtained safe velocity space and the path undertaken by a robot for selected
velocities with different margins.

Figure 3. The green region in (a) is a safe control space Uτ=5
sa f e obtained by taking the complement

of control obstacle UOτ=5 in Uad. In (b), the paths undertaken by a robot for selected control inputs
in Uτ=5

sa f e are shown. The velocity in red lies is in control obstacle and its associated path leads robot
to penetrate into obstacle within 5 s. Velocity in yellow lies on the boundary of control obstacle thus,
have margin zero. It leads the robot to graze the obstacle within 5 s. Velocity in blue has margin greater
than zero and it leads the robot to navigate from a distance to the obstacle.

5. Navigational Approach

This section will address the problem of navigating a robot among multiple passive agents.
It further discusses a possible global navigation plan for navigating a robot among large static obstacles.

5.1. Avoiding Multiple Passive Agents

We will present the optimization procedure to navigate a robot among multiple passive agents,
from a random start point to next (sub) goal pg, in an open environment. This paper refers the goal as
a point extracted from some global way point plan. For the considered environment, the algorithm
should be able to quickly re-plan motion for an arbitrary starting point. Instead of conforming to any
specific path, it requires the robot to avoid collision with passive agents while moving towards the
goal. The proposed approach is based on computing optimal control input that brings robot closer
to goal, while its margin should be greater than or equal to some allowable minimum safety margin,
represented by β.

The control input u∗s that is actually given to a robot has margin greater than or equal to β, (14)
and it minimizes the cost in (15) :

mrg(u∗s , UOτ) ≥ β (14)

u∗s = arg min
us∈Uτ

sa f e

|| f (h(xa, us, τ))− pg|| (15)

That is, the navigation problem can be formulated as the problem of finding us ∈ Uτ
sa f e for which

position f (h(xa, u, τ)) is closest to pg in terms of Euclidean distance, and the margin mrg(u∗s , UOτ)

is greater than or equal to minimum safety margin β. In case, if no control input in Uτ
sa f e satisfies (14)

then control input with the biggest margin is selected, thus giving priority to safety. In this optimization
problem, the interaction time horizon τ can be set equal to time horizon over which the behavior
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of obstacles is predicted, that is typically in the range of 3 to 10 s. The computed control input is applied
for a short time step unless a new control loop begins. It results in continuous sense-plan-act navigation
framework. The rest of the section will present the procedure of solving the optimization problem.

Explicit construction of control obstacle and safe control space is computationally challenging.
We can earn computational savings by adopting a sampling based optimization procedure. Algorithm 1
summarizes the procedure for obtaining a set of safe control inputs and a set of inputs in the control
obstacle. The sampling function on line 4 generates uniformly distributed samples in admissible
control space for simplicity. However, more intelligent sampling procedure can be used. Each sampled
control input is tested against temporary control obstacle at discrete time steps to obtain a set of safe
control inputs and a set of control inputs in the control obstacle.

Algorithm 1 Sample Control Space

1: Uτ
sa f e ←− ∅

2: UOτ ←− ∅
3: for i = 0 to n do
4: ui ←− Sample(Uad)

5: for t = 0 : δt : τ do
6: if ui ∈

⋃
j∈N UOj(t) then

7: UOτ = UOτ ⋃
ui

8: break loop
9: end if

10: end for
11: if ui /∈ UOτ then
12: Uτ

sa f e = Uτ
sa f e

⋃
ui

13: end if
14: end for

Algorithm 2 summarizes the procedure used for selecting a best safe control input to be given
to a robot. A sampling based margin of us can be computed, which will be the weighted Euclidean
distance of us to the nearest sampled control input within control obstacle. It is the overestimate of
the actual margin, as shown in Figure 4. Margin function on line 4 returns overestimated margin
if it is less than β, else it returns β as the margin of tested control input. For computing margin of
us, only those samples are visited that are within a distance β from us in control space. In line 6,
the function max(m) returns largest margin found for the tested control inputs. Lines 7 to 17 mention
the procedure of finding control input, that minimize the cost given in (15), and have overestimated
margin greater than or equal to β. If all the tested control inputs have margin less than β then the one
with the biggest margin is returned.

Figure 4. A sampling-based estimate of us margin , mrg(us, UOτ) is the weighted Euclidean distance
of us to the nearest tested control in control obstacle. It is the overestimate of actual margin of us.
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Algorithm 2 Find Best Safe Control Input

1: β←−minimum margin for inputs
2: min←− ∞
3: for all ui ∈ Uτ

sa f e do
4: m[i]←− mrg(ui, UOτ , β)

5: end for
6: ma = mb = max(m)

7: if max(m) ≥ β then
8: ma = max(m); mb = β

9: end if
10: for all ui ∈ Uτ

sa f e do
11: if m[i] ∈ [ma, mb] then
12: if || f (h(xa, ui, τ)− pg))|| < min then
13: min←− || f (h(xa, ui, τ)− pg)||
14: argmin←− ui

15: end if
16: end if
17: end for

5.2. Global Navigation

As other VO based approaches, the above presented approach is also subjected to a local minimum
in the vicinity of large static concave obstacles. In such environment, the proposed framework can
be incorporated into a global navigation plan. The key insight is that the admissible control space
represents system compliant trajectories. By considering these trajectories up to time horizon τ, a tree
of depth one can be obtained. This tree can be searched and expanded based on margin of segments
using a graph search method as one presented in [28]. During the search, all those segments that lie
in control obstacle or are in collision with a static obstacle are considered as forbidden control inputs
and are discarded. By running these components in a loop, a model predictive partial motion planning
framework is obtained.

6. Implementation and Results

The previous sections have presented the framework of defining safe control space
for a generalized agent dynamics. This section applies the framework to two types of kinodynamic
model of the robot, namely the double integrator, and a car-like robot. Further, this section evaluates
the performance of the proposed navigational approach for different parameters and presents its
comparison with current approaches.

6.1. Considered Kinodynamic Model of Robot

6.1.1. Car-Like Robot

As illustrated in Figure 2, the states of the car-like robot can be given by the center position of the
rear wheel axle pa = [xa ya]T , its orientation θ and steering angle φ. Its state-transition equations are
given by:

ẋa(t) = vs cos θ(t)

ẏa(t) = vs sin θ(t) (16)

θ̇(t) = vsk



Appl. Sci. 2017, 7, 903 11 of 18

where vs is the speed control input, k is the curvature control input. As in [26], curvature is directly
taken as a control input, and the steering angle φ is computed as φ = tan−1(kL) , where L represents
the wheelbase of the car. We will denote the control input vector [vs k]T by u. The states of the car-like
robot are constrained as follow: √

ẋa(t)2 + ẏa(t)2 ∈ [0, vm] (17)

θ̇(t)/
√

ẋa(t)2 + ẏa(t)2 ∈ [−km, km] (18)

where vm and km are the maximum velocity and curvature constraints on robot states, respectively.
For these constraint, Uad will be a rectangular region in control space such that |k| < km and
|vs| < vm. The expression for the position of the robot at a time t is obtained by integrating (16)
under the assumption that the control inputs will remain constant over the time horizon t, and it is
given as follows:

• if k 6= 0,

pa(t, u) = pa + R(θa) ∗
1
k

[
sin(vskt)

1− cos(vskt)

]
(19)

• if k = 0,

pa(t, u) = pa(0) + R(θa)[tvs 0]T (20)

where pa and θa are the current position and orientation of the robot, respectively and R(θa) is a rotation
matrix equal to (cos θa − sin θa; sin θa cos θa).

6.1.2. Double Integrator

Consider a robot with dynamics as of double integrator and its states are constrained as follows:√
ẋa(t)2 + ẏa(t)2 ∈ [0, vm] (21)√
ẍa(t)2 + ÿa(t)2 ∈ [0, am] (22)

where vm and am are the maximum velocity and acceleration constraints of robot, respectively.
Similar to work in [23], we let the robot to choose a velocity u instead of acceleration. Due to
constraints on its states, the new velocity cannot be adopted instantaneously. A proportional control
for acceleration is used for the robot, that is the acceleration applied at time t is equal to the difference
between new velocity u and velocity ṗa(t) at that time.

p̈a(t, u) =
u− ṗa(t)

η
(23)

where η is a control parameter whose unit is time. By integrating (23) we obtain:

ṗa(t, u) = u− e−t/η(u− ṗa(0)) (24)

where ṗa(0) is the current velocity of the robot. By integrating (24) we obtain:

pa(t, u) = pa(0) + tu + η(e−t/η − 1)(u− ṗa(0)) (25)
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where pa(0) is the current position of a robot. The admissible velocities space due to acceleration
constraints is a disc in velocity space, its radius is equal to ηam and its center is at ṗa(0). The admissible
velocities space due to speed constraints is a disc in velocity space, its radius is equal to vm and its
center is at the origin. The intersection of these two convex spaces will give us an admissible velocity
space Uad.

6.2. Implementation Details and Simulation Setup

This section will describe the implementation of the proposed algorithm and discuss its
performance based on a set of simulated experiments. The experiments are conducted for a car-like
robot and a double integrator, governed by the kinodynamic model described in Section 6.1. For each
experiment, the interaction time horizon τ is set to 3.5 s. The weighted matrix M defined in Definition
04 is set to identity matrix. The following constraints are considered on robot states in the simulations:

• Car-like robot: Maximum velocity vm = 1.5 unit/s, Maximum curvature km = 1.5 unit−1.
• Double integrator: Maximum velocity vm = 2 unit/s, Maximum acceleration am = 1 unit/s2.

The algorithm is implemented in C++, on a computer running Windows 10. The timing results
are generated on Intel i5-3550 PC with 4-GB RAM. Although it is possible to build Uτ

sa f e and UOτ

using multiple cores, we use single-core to produce timing results.
Figure 5 shows the trajectory undertaken by the car-like robot to reach the goal while

avoiding a collision with a static passive agent for different selected β. Figure 6 shows the same
for the double integrator.

Figure 5. It shows the paths taken by a car-like robot to reach the goal at (20,10) from its initial position
at (5,10), for selected β, while avoiding collision with a static passive agent at (12,9).

Figure 6. It shows the paths taken by a double integrator to reach the goal at (20,10) from its initial
position at (5,10), for selected β, while avoiding collision with a static passive agent at (12,9). The control
parameter η was set to 3.
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6.3. Collision Avoidance with Multiple Passive Agents

Each experiment is conducted in an open environment. Robot initial position is set to (5, 10),
and it has to move towards a goal at (20, 20). Several circular obstacles representing passive agents
are randomly distributed in a square region bounded by (0, 0) and (22, 22). All passive agents and
robot have radii equal to 1 unit. Similar to [26], passive agents are assigned arbitrary velocities and
the maximum upper limit on their speeds is set to ±1 unit/s. The probability that the passive agent
will change its velocity within 1 s is 0.2. Figure 7 shows multiple snapshots at different time instances
of the car-like robot, in green, avoiding collision with multiple passive agents, in red, while moving
towards the goal marked in yellow.

An empirical test showing the performance of the algorithm is presented in the following
subsections, where each experimental value is the mean of 10 trials.

Figure 7. Avoiding multiple passive agents. Multiple snapshots at different time instances show
a car-like robot, in green, navigates among multiple passive agents, in red, while moving towards
a goal pg, in yellow. The passive agents are moving with arbitrary velocities. The probability that
a passive agent will change its velocity within one second is 0.2. {β = 0.4 is set for the simulation}.

6.3.1. Performance Results

In Figure 8, the performance of the proposed algorithm for a car-like agent is presented for the
set of three parameters, the number of passive agents present, minimum saftey margin β, and the
length of the time step. The effect on computation time, success rate, and elapsed time are investigated.
The computation time is the time required to compute optimal control input. A successful run is a trial
in which agent successfully reaches the goal without a collision. A collision might occur when a passive
agent changes its direction and traps the robot. In a successful trial, elapsed time is the amount of time
passed, starting from the point in time when the robot was at its initial position, to the point in time
when robot reaches the goal position. Figure 8a shows an average computation time taken when the
number of obstacles present grows. The computation time increases approximately linearly with the
increase in a number of passive agents, while Figure 8b shows the success rate drops with the growth
in the number of passive agents. For these experiments the step time was set to 5 ms, the margin was
set to 0.4, and 256 samples was taken in Uad. In Figure 8c, the success rate is shown for selected values
of β, when 20 passive agents are present. It shows that the success rate increases with the increase in β,
while Figure 8d shows that the elapsed time also increases with the increase in β. For larger value of β,
the robot takes comparatively longer time to reach the goal because it selects a more safe path to the
goal rather than a direct path to it. Finally, Figure 8e shows the success rate when β is set equal to 0,
and 0.4, for varying step time. It shows that the increase in step time will lead to a drop in success rate,
whereas the success rate is comparatively higher for β = 0.4 than that for β = 0.
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Figure 8. In this graph, the performance of the proposed algorithm for a car-like robot is presented for
the set of three parameters, the number of passive agents present, minimum saftey margin β, and the
length of the time step. The effects on computation time, success rate, and elapsed time, are shown.

The results in Figure 8c,d show that the car-like robot reaches the goal with relatively high success
rate when β = 0.4 is selected, while the elapsed time is comparatively reasonable. The next subsection
will compare the performance of the proposed approach (Usa f e) with β = 0.4 to that of GVO.

6.3.2. Comparison with GVO

In Figure 9, a comparison of performance is shown for the proposed Usa f e approach and GVO
approach. The comparison is made regarding the effect on computation time, success rate, and elapsed
time, for varying number of passive agents present. In this comparison 256 control inputs are sampled
in admissible control space. In Figure 9, (a) shows average computation time for the two approaches,
where computation time for GVO is much higher compared to Usa f e. (b) shows the comparison
of average success rate. The success rate of GVO is much lower compared to Usa f e, as for GVO
approach the robot is frequently trapped by the passive agents. Finally, Figure 9c compares the elapsed
time for the two approaches. For Usa f e, the robot takes a safer path rather than a direct path to reach
the goal. Thus, the robot takes a comparatively longer time to reach the goal. In summary, we can
conclude that the performance of Usa f e is much better than GVO.
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Figure 9. It shows the performance of GVO algorithm and the proposed Usa f e approach. The effect
on average computation time, success rate, and elapsed time, are shown against varying number of
passive agents. GVO: Generalized Velocity Obstacle.

6.3.3. Comparison with AVO

In order to make a comparison with AVO [23], the robot with kinodynamic model as of double
integrator is considered. We have modified AVO by removing its reciprocal collision avoidance aspect
and keeping the linear programming optimization. The control parameter η is set to 3 for these
experiments. For Usa f e, β is set to 1.2. The graphs in Figure 10 presents the performance of proposed
Usa f e approach for selected values of β. The experiment results in Figure 11 show the performance of
AVO algorithm and the proposed Usa f e approach. It shows the effect on average computation time,
success rate, and time elapsed, against varying number of passive agents. In Figure 11, (a) shows the
average computation time for the two approaches, where AVO takes slightly lesser time on average
for computing the solution. (b) shows the comparison of average success rate, the success rate
for AVO is much lower as compared to Usa f e. (c) shows that the elapsed time is almost same
for the two approaches.

Figure 10. In this graph, the performance of the proposed algorithm Usa f e for double integrator is
presented for the scenario when 20 passive agents are present. (a) show the success rate for selected
values of β. (b) show the elapsed time for different values of β. The robot takes comparatively longer
time to reach goal when the larger value for β is set, as robot take the safer path to the goal rather than
a direct path to it. Results show that robot reaches the goal with relatively high success rate when
β = 1.2 is selected, while the elapsed time is comparatively reasonable.
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Under AVO approach, the velocity obstacle induced due to each passive agent is approximated by
a half plane in velocity space, this leads to a computed collision free control space which is frequently
empty, thus give rise to the number of the failures in computing the solution.

Figure 11. It shows the performance of AVO algorithm and the proposed Usa f e approach. The effect
on average computation time, success rate, and elapsed time, are shown against varying number of
passive agents. AVO: Acceleration-Velocity Obstacle.

6.4. Global Navigation

The real world environment usually has static obstacles in addition to passive agents. These static
obstacles are usually concave, and the VO based approaches are subjected to a local minimum in such
environments. The presented concept of safe control space allows us to integrate the control space
in a graph search fashion. Figure 12 shows the framework where multiple snapshots at different time
instances are shown. In this simulation, the interaction time horizon τ is set to 4 s and 256 control
inputs are sampled in an admissible control space. All samples that lie in the control obstacle or collide
with static obstacles are discarded to obtain a tree depth of one. In this experiment, the graph search
terminates at the depth of one, the point at which f (h(xa, u, τ)) connects to Dijkstra heuristic function.
The trajectory that is executed for one control cycle is the one that minimize the Dijkstra heuristic
function and has a margin greater than or equal to 1.2. As a result, we obtain a global optimization
criteria for navigating the agent. However, in case if all tested samples has margin less then β, than the
sample with the biggest margin is selected.

Figure 12. Global navigation plan. Robot employs a heuristic graph search strategy. The color gradient
shows the Dijkstra heuristic field for the maze. The interaction horizon is τ = 4 s. The safe control
inputs are computed, which are neither in control obstacle nor did they lead to a collision with the static
obstacle. At the same time, Dijkstra heuristic function computes the cost for reaching the goal. A safe
control input is executed which minimizes the cost and has margin greater than or equal to β = 1.2.

7. Conclusions

This paper presented a fast navigation approach for a dynamic environment where the behavior
of passive agents is partially predictable. The concept of safe control space is presented by generalizing
the nonlinear velocity obstacle, which makes it possible to consider the robot model for computing the
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system compliant collision-free trajectories. The safety margin defined for safe control inputs allows
the robot to make a safe decision in the environment where the predicted trajectories of passive agents
change frequently. The ability of the proposed algorithm to compute a safe decision in real-time is
demonstrated. The comparative study validates that under the proposed approach the robot reaches
the goal with high success rate. The proposed approach can be incorporated into a waypoint plan for
global navigation. One possible implementation of a global navigation plan is presented in the paper.

In future, authors will attempt the problem of dynamically adapting the minimum safety margin
parameter based on the circumstances. Also, an interesting direction for future work will be the
extension of the proposed approach to the environment with multiple active and passive agents.
In addition to this, the authors are interested in planning for situations with dynamic obstacles have
deterministic behavior.
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