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Abstract: In this paper, we propose an inverse optimal design method for the position control of
a quadrotor. First, we derive the dynamics of a quadrotor using the Newton-Euler formulation.
Second, we present the state transformation technique to derive the position dynamics from the
kinematic and dynamic models of a quadrotor. Then, we present the nonlinear inverse optimal
position control of a quadrotor. The stability analysis based on Lyapunov theorem shows that the
proposed control method can realize a quadrotor system that is exponentially stabilized. In addition,
we show the inverse optimality of the proposed inverse optimal controller for the position control of
a quadrotor. The inverse optimality can simply and clearly be shown using the state transformation
technique. Finally, we present some simulation results to verify the effectiveness of the proposed
control method.
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1. Introduction

Over the past few years, the field of unmanned aerial vehicles (UAVs) has rapidly expanded.
In addition, because of the advantage of UAVs, there has been an increase in their applications, such as
aerial reconnaissance, where life-saving operations are risky for pilots, and disaster surveillance and
monitoring. In particular the quadrotor, one type of UAV, has many advantages. It has the advantage
of easy implementation compared to other aerial vehicles. In addition, it has vertical take-off and
landing (VTOL) ability, high agility and maneuverability.

Recently, there has been significant interest in the application of quadrotors, so there has been
much attention on the studies that focus on the control of a quadrotor. In the field of a quadrotors,
the problem of control design has focused primarily on typical quadrotor missions including attitude
stabilization and movement from one position to another position. Linear control methods such
as proportional-integral-differential (PID) control and the linear quadratic regulation (LQR) control
methods are proposed in [1,2]. However, linear control methods simplify the model and focus only on
the local behavior of the system.

In practice, quadrotors have complicated dynamics with coupled states that cause nonlinearities.
Furthermore, the dynamics of a quadrotor are not only nonlinear, but they are also difficult to
characterize because of the complexity of the aerodynamic properties.

For these reasons, various nonlinear control methods have been proposed including nested
saturations [3], dynamic inversion control approach [4], sliding mode control methods [5,6], feedback
linearization method [7], backstepping control approaches [8–10], integral predictive nonlinear H∞
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control [11], and neural network based output feedback control method [12]. Meanwhile, using optimal
control techniques, research for battery operation and missions to consider the optimality have been
performed [13,14]. In other words, researchers are interested in realizing the optimality of controllers
other than the stability.

The optimal control problem for nonlinear systems is usually attributed to the solvability of
the Hamilton-Jacobi-Bellman (HJB) equation. Because the HJB equation involves partial differential
equations, optimal control design is generally too difficult to be solved analytically, with the exception
of a few special cases. An alternative method is the so-called inverse optimal control method, which
does not require a solution to the HJB equation [15]. In this case, the minimization of the performance
index is determined a posteriori according to the given controller, so the aforementioned difficulty can
be alleviated.

In [16], the author proposed an inverse optimal control of a quadrotor by employing the
backstepping technique. However, it involves controlling only the attitude of a quadrotor. Moreover,
to the best of the authors’ knowledge, there have been no reports on the application of inverse optimal
based position control for quadrotor systems.

Most of the research into the position control of quadrotors use the small-angle assumption to
simplify the position of the dynamic equation of a quadrotor [1,3,17], and they derive the reference roll
and pitch angles that are outputs from the position controller. Unlike the aforementioned methods,
in this paper, we derive the reference roll and pitch angle caused by the modified dynamics of the
position of a quadrotor using the state transformation technique without any assumption. Furthermore,
we employed the state transformation technique to simplify the design process of the inverse optimal
controller. In addition, it can make the proof of inverse optimality simple.

In this paper, we propose an inverse optimal position control of a quadrotor. First, we derive
the dynamics of the quadrotor using the Newton-Euler formulation. Then, we present the state
transformation technique to derive the position dynamics from the kinematic and dynamic models of
a quadrotor. Our proposed design of the nonlinear inverse optimal position control of a quadrotor is
based on the work in [18], where Movric and Lewis suggest the algebraic Riccati equation (ARE)-based
inverse optimal controller design for general time-invariant systems. The stability analysis based
on Lyapunov theorem shows that the proposed control method result in a quadrotor system that is
exponentially stabilized. Further, we show the inverse optimality of the proposed inverse optimal
controller for the position control of a quadrotor. The inverse optimality can simply and clearly
be shown using the state transformation technique. Finally, we perform simulations to verify the
effectiveness of the proposed method.

The remainder of the paper is as follows: In Section 2, we describe the dynamics of the quadrotor,
which is derived using the Newton-Euler formulation. In Section 3, we propose an altitude controller
based on inverse optimal position control method. We show the stability and inverse optimality of the
proposed inverse optimal controller for the position control of a quadrotor. In Section 4, we present the
simulation results, and conclude the paper in Section 5.

2. Dynamic Model of a Quadrotor

A quadrotor has a cross configuration with four motors, each of which is attached to each end
of a cross-shaped body. The four motors are equipped with propellers whose axes of rotation are
all parallel to each other. The behavior of a quadrotor can be controlled by adjusting the rotational
velocities of these four propellers. The equations describing the position and attitude motions of
a quadrotor are those of a rotating rigid body with six degrees-of-freedom (DoFs).

To derive the equation for the movement of a quadrotor, we should to consider the coordinates of
a quadrotor system. The generalized coordinates of a quadrotor system is shown in Figure 1, where B
and E denote the body-fixed and earth inertial frames, respectively.



Appl. Sci. 2017, 7, 907 3 of 24

Figure 1. The coordinates and thrusts of a quadrotor.

Let us assume that the generalized velocity vectors with respect to the earth inertial and body-fixed

frames are in the form of ξ̇ =
[

Γ̇E Θ̇E
]T

and ν =
[
VB ωB

]T
, respectively. Here, ΓE = (X, Y, Z)

represents the position of the center of mass of a quadrotor and ΘE = (φ, θ, ψ) are the Euler angles
representing the orientation of a quadrotor, namely roll-pitch-yaw, with respect to the earth inertial
frame. Similarly, VB = (u, v, w) and ωB = (p, q, r) represents the linear and angular velocity of the
quadrotor with respect to the body-fixed frame, respectively.

Now, we describe the kinematics of a generic six-DoF rigid-body as follows:

ξ̇ =

[
R 03×3

03×3 T

]
ν, (1)

where, 03×3 is a 3 by 3 submatrix filled with all zeros, R is the coordinate transformation matrix from
the body-fixed frame to the earth inertial frame, and T is the angle-rates transformation matrix from
the body-fixed frame to the earth-inertial frame. Here, matrices R and T are defined, respectively,
as follows:

R =

cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ sφcθ cφcθ

 , (2)

T =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 , (3)

where ck = cos(k), sk = sin(k), and tk = tan(k).
To describe the dynamic model of the position of a quadrotor, we use the Newton-Euler formalism.

The dynamics of a generic six-DoF rigid-body takes into account the mass of the body. The dynamics
of the position is described by

m · V̇B + ωB ×
(

mVB
)
= FB, (4)

where m is the mass of a quadrotor, I3×3 refers to a 3 by 3 identity matrix, VB is the linear velocity
vector, V̇B is the linear acceleration vector of the body-fixed frame, ωB is the angular velocity vector of
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the body-fixed frame, and FB is the force vector of the body-fixed frame. However, it may be useful to
express the dynamics of the position using the earth-inertial frame.

The nonlinear dynamics of a quadrotor can be described by

Ẍ =
(
cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ)

)u1

m
,

Ÿ =
(
cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

)u1

m
,

Z̈ =
(
cos(θ)cos(φ)

)u1

m
− g.

(5)

where g is the gravitational acceleration, and u1 is the attitude control input represented by

u1 = b(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2). (6)

Here, Ωi(i = 1, 2, 3, 4) is the propeller speed of the i-th rotor and b is the thrust factor of
a quadrotor.

3. Design of Inverse Optimal Position Controller

In this section, we design an inverse optimal position controller to converge the position states of
a quadrotor to the reference values.

For the position control, inverse optimal based altitude controller is designed. Next, the reference
roll and pitch angles are calculated through altitude control based position control. Finally, the position
control of the quadrotor is performed through attitude tracking control. The overall control scheme is
expressed by the block diagram as Figure 2.

Figure 2. The overall control scheme for the quadrotor position control.

In (5), the (x, y) positions dynamics of a quadrotor can be represented, using the states P = [X Y]T

and V = Ṗ, as follows: 
Ṗ = V

V̇ = u1

[
ux

uy

]
/m

(7)

where ux = cosφsinθcosψ + sinφsinψ, and uy = cosφsinθsinψ− sinφcosψ.
Using the redefined control input U and the input-coupling transformation matrix T∗, which is

invertible, (7) can be rewritten as follows: {
Ṗ = V
V̇ = T∗U

(8)
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We analyze the position control problems of a quadrotor from two perspectives. The first one is
the exponential stability, while the other one is the inverse optimality.

The position of a quadrotor converges to the reference position. In other words, the position state
P of a quadrotor satisfies the following equation related to the position control of a quadrotor:

‖P(t)− Pd‖ ≤ αe−βt‖P0 − Pd‖, (9)

where P0 and Pd are the initial and reference positions, respectively.
In this paper, we also show the inverse optimality of the proposed control input. The control input

U, which makes the position error zero, minimizes the following objective functional:

J(δ(0), U) :=
∫ ∞

0
(δTΘδ + UT ΓU)dt, (10)

for a positive definite matrix Θ and Γ. Here, the position error is defined as δ := P− Pd.
Using the position dynamics of a quadrotor, as expressed in (5), we can find the altitude control

input u1 of a quadrotor, which is presented as the dynamics of its (x, y) position. In this paper, using
the characteristics of the position dynamics, as explained above, we design the (x, y) position control
input using the altitude control input u1.

In this paper, to design an inverse optimal position controller, we use the following assumption:

Assumption 1. In the control system, the position and attitude values of the quadrotor can be
perfectly estimated.

3.1. Altitude Control of a Quadrotor

In this paper, we propose an altitude control input based on the inverse optimal position control
method. To do this, the altitude dynamics in (5) can be rewritten in state-space form using the
following states:

x5 = Z, x6 = Ż.

We have the altitude state-space equation of a quadrotor as follows:{
ẋ5 = x6

ẋ6 = cos φ cos θ
m

(
u1 − g m

cos φ cos θ

)
= T1(φ(t), θ(t)) · v1

(11)

where v1 is the pseudo altitude control input defined by

v1 :=
(

u1 − g
m

cos φ cos θ

)
, (12)

and T1(φ(t), θ(t)) is the first transformation variable given by

T1(φ(t), θ(t)) =
cos φ cos θ

m
. (13)

The states x5 and x6 related to the altitude of a quadrotor can be rewritten by the state χz,
as follows:

χz =

[
x5 − zd
x6 − żd

]
, (14)

where zd is the reference value of the altitude.
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Differentiating χz with respect to time, we obtain

χ̇z = Az χz + Bz(φ(t), θ(t)) v1, (15)

where Az and Bz(φ(t), θ(t)) are defined as Az :=

[
0 1
0 0

]
and Bz(φ(t), θ(t)) :=

[
0

T1(φ(t), θ(t))

]
,

respectively.

For the invertibility of T1(φ(t), θ(t)), throughout the paper, we use the following assumption.

Assumption 2. The attitude angles φ, θ, and ψ satisfy the following conditions:

‖φ, θ, ψ‖ < π

2
(∀φ, θ ∈ R)

The parameters, φ(t) and θ(t) are function of time, so we can express (15) as (16):

χ̇z = Az χz + Bz(t) v1. (16)

where we denote Bz(t) := Bz(φ(t), θ(t)) with a slight abuse of notation.
For the system (16), we propose the following inverse optimal pseudo altitude control input v1 of

a quadrotor:

v1 = −kz(φ, θ) · χz, (17)

where kz(φ, θ) is given by

kz(φ, θ) = γ−1
alt (φ, θ) · BT

z (t) · Pz. (18)

where we denote γalt(t) := γalt(φ(t), θ(t)) with a slight abuse of notation.
Here, the γalt(t) is given by

γalt(t) = T2
1 (φ(t), θ(t)) · γz, (19)

and Pz =

[
P11z P12z
P12z P22z

]
is the solution of the ARE

AT
z Pz + Pz Az −

1
γz

PzBz,0BT
z,0Pz + Qz = 02×2, (20)

where Az :=

[
0 1
0 0

]
, Bz,0 :=

[
0
1

]
, and a positive definite matrix Qz :=

[
qz,1 0
0 qz,2

]
, qz,1, qz,2 > 0,

respectively.
Therefore, based on the definition of v1 in (17) and (11), we can derive the actual altitude control

input as follows:

u1 = v1 + g
m

cos φ cos θ
. (21)

Theorem 1. Consider the transformation variable T1(φ(t), θ(t)), as shown in (13), and the altitude system (16)
of a quadrotor using the pseudo altitude control input (17). Then,
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(i) Stability: The pseudo altitude control input (17) asymptotically stabilizes the altitude system (16) of
a quadrotor. In addition, the state χz in (14) decreases exponentially with regard to the initial value, i.e.,

χz(t) ≤ αχ−κt
z , lim

t→∞
χz(t) = 0,

with positive constants α and κ.

(ii) Inverse Optimality: The pseudo altitude control input (17) of a quadrotor minimizes the objective functional

J
(
χz(0), v1(.)

)
=
∫ ∞

0

(
χT

z (t)Qzχz(t) + γalt(t)‖v1(t)‖2
)

dt,

for a positive definite matrix Qz and the γalt(t) > 0.

Proof of Theorem 1.
(i) Stability: Substituting (17) into (16), we obtain the altitude system (16) of a quadrotor as follows:

χ̇z = Azχz − γ−1
alt (t)Bz(t)

(
BT

z (t)Pzχz

)
=
(

Az − γ−1
alt (t)Bz(t)BT

z (t)Pz

)
χz

=
(

Az − γ−1
alt (t)Bz,0T2

1 (φ, θ)BT
z,0Pz

)
χz. (22)

By using (19), (22) can be rewritten as follows:

χ̇z =
(

Az −
1

γz
Bz,0BT

z,0Pz
)
χz. (23)

Consider the positive definite function V(χz) = χT
z Pzχz as a Lyapunov function candidate.

Differentiating V(χz) with respect to the time and substituting (23), we obtain

V̇(χz) = χ̇T
z Pzχz + χT

z Pzχ̇z

=

{(
Az −

1
γz

Bz,0BT
z,0Pz

)
χz

}T

Pzχz + χT
z Pz

(
Az −

1
γz

Bz,0BT
z,0Pz

)
χz

= χT
z

(
AT

z Pz −
1

γz
PT

z Bz,0BT
z,0Pz

)
χz + χT

z

(
Pz Az −

1
γz

PzBz,0BT
z,0Pz

)
χz.

Since Pz is a symmetric matrix satisfying Pz = PT
z , we obtain

V̇(χz) = χT
z

(
AT

z Pz + Pz Az − 2
1

γz
PT

z Bz,0BT
z,0Pz

)
χz

= χT
z

(
−Qz −

1
γz

PT
z Bz,0BT

z,0Pz

)
χz

= −χT
z

(
Qz +

1
γz

PT
z Bz,0BT

z,0Pz

)
χz

≤ −χT
z Qzχz

≤ −αV(χz).

Therefore, we have V
(
χz(t)

)
≤ V

(
χz(0)

)
e−αt, which implies the exponential stability of the

system. When the time becomes infinity, the state χz(t) related to the altitude of a quadrotor
becomes zero.
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(ii) Inverse Optimality: In order to prove the inverse optimality, we use the comparison Lemma [19].
Then, we have

0 < V
(
χz(t)

)
≤ V

(
χz(0)

)
e−αt < ∞.

Therefore, we can check that V(χz(t)) has a finite value. In addition, using (17)–(19), V̇(χz) can
be rewritten as follows:

−V̇(χz) = χT
z Qzχz + γalt(t)vT

1 v1. (24)

From the definition of V(χz) = χT
z Pzχz, we can show that limt→∞ V

(
χz(t)

)
= 0 is satisfied.

Therefore, integrating (24) with respect to time from zero to infinity, we have

V
(
χz(0)

)
= −

[
lim
t→∞

V
(
χz(t)

)
−V

(
χz(0)

)]
=
∫ ∞

0

(
χT

z (t)Qzχz(t) + γalt(t)‖v1(t)‖2
)

dt. (25)

Because Qz and Pz are positive definite matrices, the matrices Qz, Pz, γalt(t), Az, and Bz(t) satisfy
the matrix-type HJB equation

AT
z Pz + Pz Az − γ−1

alt (t)PzBz(t)BT
z (t)Pz + Qz = 02×2. (26)

Then, v1 = −kz(φ, θ) · χz is the optimal solution for the objective functional (25).
By using (19), (26) can be changed as follows:

AT
z Pz + Pz Az −

1
γz

PzBz,0BT
z,0Pz + Qz = 02×2. (27)

Therefore, the inverse optimal pseudo altitude control input (17) is the optimal solution for the
objective functional (25), because (27) has the same form as that of the HJB equation.

Therefore, the pseudo altitude control input v1 is the optimal solution for the objective
functional (25) and the altitude system (16) of a quadrotor. This result thus solves the problem of
inverse optimality.

Remark 1. In the system expressed by (16), for input coupling matrix Bz(t) given in (15) and the γalt(t) given
in (19), are satisfied the following equation:

1
γalt(t)

Bz(t)Bz(t)T =
1

γz
Bz,0BT

z,0 (28)

Specially, if γalt(t) is set appropriately like (19), the time varying matrix term, such as the left side of (28),
is replaced by a constant matrix term like the right side of (28). Meanwhile, (28) is used to demonstrate stability
and inverse optimality.

Remark 2. For the following objective functional J subject to system (16), and the given attitude trajectory
φ(t) and θ(t), the input v1(t) is the optimal solution to minimize the following objective functional J.

J
(
χz(0), v1(.)

)
= lim sup

t f→∞

{
χT(t f )Q̄zχ(t f ) +

∫ t f

0

(
χT

z (t)Qzχz(t) + γalt(t)‖v1(t)‖2
)

dt
}

,

=
∫ ∞

0

(
χT

z (t)Qzχz(t) + γalt(t)‖v1(t)‖2
)

dt,
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v1(t) = −γ−1
alt (t) BT

z (t) Pz χz(t). (29)

The Pz is the solution of the ARE (20), and it is the convergence value of the solution Pz(t) of the following
differential Riccati equation when t f goes to infinity.

Ṗz(t) = −Pz(t)Az − AT
z Pz(t)−Qz + γ−1

alt (t)Pz(t)Bz(t)BT
z (t)Pz(t).

This is equivalent to the optimal solution of matrix-type HJB (26) mentioned in the proof of this paper.

This Remark applies in a similar way to the (x, y) position control in the next Section 3.2. Therefore,
the Remark is omitted in the position control in Section 3.2.

3.2. Position Control of a Quadrotor Based on Altitude Control

In this section, to realize the position control of a quadrotor, we define the variable ũ1, using the
actual altitude control input u1, as follows:

ũ1 = T1(φ(t), θ(t))u1 =
cos φ cos θ

m
v1 + g. (30)

To design the position control of a quadrotor, the dynamics of a quadrotor (5) can be rewritten in
state-space form using the following states:

x1 = X, x2 = Ẋ, x3 = Y, x4 = Ẏ

We obtain the (x, y) position state-space equations of a quadrotor as follows:
ẋ1 = x2

ẋ2 = u1
(
cosφsinθcosψ + sinφsinψ

)
/m

ẋ3 = x4

ẋ4 = u1
(
cosφsinθsinψ− sinφcosψ

)
/m

(31)

Rearranging these equations, we finally obtain the following position dynamics (7) of a quadrotor
as follows: 

Ṗ = V

V̇ = u1/m

[
ux

uy

]
(32)

where P and V are defined as P := [X Y]T and V := Ṗ, respectively, ux and uy are the effective control
inputs are defined by [

ux

uy

]
=

[
cosφsinθcosψ + sinφsinψ

cosφsinθsinψ− sinφcosψ

]
. (33)

To express (32) in a form like that of (8), substituting the altitude input (30) of a quadrotor into the
position dynamics (32) of a quadrotor and using the transformation matrix T2(χz(t), φ(t), θ(t), ψ(t))
given by

T2(χz(t), φ(t), θ(t), ψ(t)) = ũ1

[
cos ψ sin ψ

sin ψ − cos ψ

]
, (34)
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we obtain the matrix-type position dynamics of a quadrotor as follows:

Ṗ = V

V̇ = ũ1

[
cos ψ sin ψ

sin ψ − cos ψ

] [
tan θ

sec θ · tan φ

]

= T2(χz(t), φ(t), θ(t), ψ(t))

[
u11

u22

]
, (35)

where u11 = tan θ and u22 = sec θ · tan φ.
The states P and V, which are related to the position of a quadrotor, can be rewritten as the state

χp, as follows:

χp =

[
P− Pd
V −Vd

]
, (36)

where Pd is the reference value of the position, Vd = Ṗd is the reference velocity value along the X and
Y axes.

Differentiating χp with respect to time, we have

χ̇p = Ap χp + Bp(χz(t), φ(t), θ(t), ψ(t)) up, (37)

where Ap and Bp(χz(t), φ(t), θ(t), ψ(t)) are defined as Ap :=

[
02×2 I2×2

02×2 02×2

]
and

Bp(χz(t), φ(t), θ(t), ψ(t)) :=

[
02×2

T2(χz(t), φ(t), θ(t), ψ(t))

]
, respectively, and up :=

[
u11

u22

]
.

The parameters, χz(t), φ(t), θ(t), and ψ(t) are function of time, so we can express (37) as follows:

χ̇p = Ap χp + Bp(t) up. (38)

where we denote Bp(t) := Bp(χz(t), φ(t), θ(t), ψ(t)) with a slight abuse of notation.
For the system (38), we also propose the following inverse optimal (x, y) position control input

up of a quadrotor:

up = −kp(χz, φ, θ, ψ) · χp, (39)

where kp is given by

kp(χz, φ, θ, ψ) = Γ−1
p (t) · BT

p (t) · Pp. (40)

where we denote Γp(t) := Γp(χz(t), φ(t), θ(t), ψ(t)) with a slight abuse of notation.
Here, a positive definite matrix Γp(t) is given by

Γp(t) = γp · I2×2 · ũ2
1, (41)

and Pp =

[
P11p P12p
PT

12p P22p

]
is the solution of the ARE

AT
p Pp + Pp Ap −

1
γp

PpBp,0BT
p,0Pp + Qp = 04×4,
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where Ap :=

[
02×2 I2×2

02×2 02×2

]
and Bp,0 :=

[
02×2

I2×2

]
, respectively, and a positive definite matrix

Qp :=

[
qp,1 02×2

02×2 qp,2

]
, qp,1, qp,2 are the positive matrices.

Through the (x, y) position dynamics (35) of a quadrotor, which is expressed in terms of P, V,
and T2(χz(t), φ(t), θ(t), ψ(t)) given by (34), we can consider the position control input defined by

up =

[
u11

u22

]
=

[
tan θ

sec θ tan φ

]
. (42)

Assumption 3. To derive a reference attitude value for position control, the attitude of the quadrotor is assumed
to be perfect tracking.

The motion along the x and y axes is related to the pitch and roll angles, respectively. The reference
roll(θd) and pitch(φd) angles of a quadrotor that enable the quadrotor to converge in the desired position
are obtained from the inverse optimal position control input up designed in Section 3.2. Therefore, the
reference roll(θd) and pitch(φd) angles are obtained by using the position control input (42) as follows:

θd = arctan (u11) (43)

φd = arctan
(

u22

sec θd

)
. (44)

For notational convenience, we will use the state vector χp throughout the following lemma and
theorem that gives the stability and inverse optimality of the position control input (39).

Lemma 1. T2(χz(t), φ(t), θ(t), ψ(t))Γ−1
p (t)TT

2 (χz(t), φ(t), θ(t), ψ(t)) = γ−1
p I2×2.

Proof of Lemma 1. Using (34) and (41), we obtain

T2(χz(t), φ(t), θ(t), ψ(t))Γ−1
p (t)TT

2 (χz(t), φ(t), θ(t), ψ(t))

=

{
ũ1 ·

[
cos ψ sin ψ

sin ψ − cos ψ

]
· (γp · I2×2 · ũ2

1)
−1 ·

(
ũ1 ·

[
cos ψ sin ψ

sin ψ − cos ψ

])T}

=

{[
cos ψ sin ψ

sin ψ − cos ψ

]
· γp

−1 · I2×2 ·
[

cos ψ sin ψ

sin ψ − cos ψ

]T }
= γ−1

p I2×2.

Theorem 2. Consider the transformation matrix T2(χz(t), φ(t), θ(t), ψ(t)), as shown in (34) satisfying
Lemma 1, and the (x, y) position system (38) of a quadrotor with the position control input (39). Then,
(i) Stability: The position control input (39) asymptotically stabilize the (x, y) position system (38) of a quadrotor.
Further, the state χp in (36) decreases exponentially with regard to the initial value, i.e.,

χp(t) ≤ αχ−κt
p , lim

t→∞
χp(t) = 0,

with positive constants α and κ.
(ii) Inverse Optimality: The (x, y) position control input (39) of a quadrotor minimizes the objective functional

J
(
χp(0), up(.)

)
=
∫ ∞

0

(
χT

p Qpχp + uT
p Γp(t)up

)
dt,
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for some positive definite matrix Qp and a time varying positive definite matrix Γp(t).

Proof of Theorem 2.
(i) Stability: Substituting (39) into the (x, y) position system (38) of a quadrotor, we obtain

χ̇p = Apχp + Bp(t)
(
− Γ−1

p (t)BT
p (t)Ppχp

)
=
(

Ap − Bp(t)Γ−1
p (t)BT

p (t)Pp
)
χp

=
(

Ap − Bp,0T2(χz(t), φ(t), θ(t), ψ(t))Γ−1
p (t)TT

2 (χz(t), φ(t), θ(t), ψ(t))BT
p,0Pp

)
χp. (45)

From Lemma 1, (45) can be rewritten as

χ̇p =
{

Ap − Bp,0γ−1
p I2×2BT

p,0Pp

}
χp

=
{

Ap − γ−1
p Bp,0BT

p,0Pp

}
χp (46)

Consider the positive definite function V(χp) = χT
p Ppχp as a Lyapunov function candidate.

Differentiating V(χp) with respect to the time and substituting (45), we obtain

V̇(χp) = χ̇T
p Ppχp + χT

p Ppχ̇p

=

{(
Ap −

1
γp

Bp,0BT
p,0Pp

)
χp

}T

Ppχp + χT
p Pp

(
Ap −

1
γp

Bp,0BT
p,0Pp

)
χp

= χT
p

(
AT

p Pp −
1

γp
PT

p Bp,0BT
p,0Pp

)
χp + χT

p

(
Pp Ap −

1
γp

PpBp,0BT
p,0Pp

)
χp.

Since Pp is a symmetric matrix satisfying the equation Pp = PT
p , we obtain

V̇(χp) = χT
p

(
AT

p Pp + Pp Ap − 2
1

γp
PT

p Bp,0BT
p,0Pp

)
χp

= χT
p

(
−Qp −

1
γp

PT
p Bp,0BT

p,0Pp

)
χp

= −χT
p

(
Qp +

1
γp

PT
p Bp,0BT

p,0Pp

)
χp

≤ −χT
p Qpχp

≤ −αV(χp).

Therefore, we have V
(
χp(t)

)
≤ V

(
χp(0)

)
e−αt, which implies the exponential stability of the

system. When the time goes to infinity, the state χp related to the (x, y) position of a quadrotor goes to
zero. Therefore this result solves the position control problem (9).
(ii) Inverse Optimality: In order to prove the inverse optimality, we use the comparison Lemma [19].
Then, we have

0 < V
(
χp(t)

)
≤ V

(
χp(0)

)
e−αt < ∞.

Therefore, we can check that V
(
χp(t)

)
has a finite value. In addition, using (39) and (40), V̇(χp)

can be rewritten as

−V̇(χp) = χT
p Qpχp + uT

p Γp(t)up. (47)
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From the definition of V(χp) = χT
p Ppχp, we know that limt→∞ V

(
χp(t)

)
= 0 is satisfied.

Therefore, integrating (47) with respect to time from zero to infinity, we obtain

V
(
χp(0)

)
= −

[
lim
t→∞

V
(
χp(t)

)
−V

(
χp(0)

)]
=
∫ ∞

0

(
χT

p Qpχp + uT
p Γp(t)up

)
dt. (48)

Because QP and Pp are positive definite matrices, matrices Qp, Pp, Γp(t), Ap, and Bp(t) satisfy the
matrix-type HJB equation

AT
p Pp + Pp Ap − PpBp(t)Γ−1

p (t)BT
p (t)Pp + Qp = 04×4. (49)

Then, up = −kp(χz, φ, θ, ψ) · χp is the optimal solution for the objective functional (48).

From Lemma 1, Bp(t)Γ−1
p (t)BT

p (t) in (49) becomes

Bp(t)Γ−1
p (t)BT

p (t) =
(

Bp,0T2(χz(t), φ(t), θ(t), ψ(t))
)

Γ−1
p (t)

(
Bp,0T2(χz(t), φ(t), θ(t), ψ(t))

)T

= Bp,0
(
T2(χz(t), φ(t), θ(t), ψ(t))Γ−1

p TT
2 (χz(t), φ(t), θ(t), ψ(t))

)
BT

p,0

=
1

γp
Bp,0BT

p,0. (50)

Using (50), (49) can be rewritten as follows:

AT
p Pp + Pp Ap −

1
γp

PpBp,0BT
p,0Pp + Qp = 04×4. (51)

Therefore, the inverse optimal position control input (39) is the optimal solution for the objective
functional (48), because (51) has the same form as that of the HJB equation.

Further, the position control input up is the optimal solution for the objective functional (48) and
the (x, y) position (38) of a quadrotor. Therefore this result solves the inverse optimality problem (10)
of the position control of a quadrotor.

4. Simulation Results and Analysis

4.1. Testing/Evaluation Methodology

In order to verify the effectiveness of the proposed inverse optimal position controller of
a quadrotor, we perform some computer simulations. The position dynamics (5) of a quadrotor
is employed in the simulations. This paper focuses on position control using inverse optimal control.
Therefore, for attitude control, we considered simplified attitude dynamic of the quadrotor ignoring
gyroscopic and centrifugal term as follows [20]:

φ̈ =
u2

Ixx
, θ̈ =

u3

Iyy
, ψ̈ =

u4

Izz
.

In addition, we did not consider the rotor dynamics of the quadrotor. Therefore, the input of the
system is not the thrust of each motor, but the newly defined inputs u1−4 made by the calculation of
each motor thrust.

The simulations parameters are chosen as follows: m = 1.0 [kg], g = 9.806 [m/s2],
Ixx = 2.3×10−3 [kg ·m2], Iyy = 2.3×10−3 [kg ·m2], Izz = 5.09×10−3 [kg ·m2] and J = 6.5×10−5 [kg ·m2].
In addition, the sampling time was fixed at 0.001 [s] for simulation.
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The attitude control inputs of a quadrotor are given as follows:

u2 = l · b(Ω1
2 −Ω3

2),

u3 = l · b(Ω2
2 −Ω4

2),

u4 = d(Ω1
2 + Ω3

2 −Ω2
2 −Ω4

2),

Ωr = Ω1 + Ω3 −Ω2 −Ω4,

(52)

where l is the distance between the center of a quadrotor and the center of a propeller, b and d are the
thrust and drag factors of the quadrotor, respectively, u2, u3, and u4 are the inputs for the roll (x-axis),
the pitch (y-axis), and the yaw (z-axis), respectively, and Ωi(i = 1, 2, 3, 4) is the propeller speed of the
i-th rotor.

In the simulation, we employ the PID control which is a typical linear-control techniques for
the attitude control of a quadrotor. Also we use the attitude control input to realize the convergence
of the attitude of a quadrotor to the reference attitude of a quadrotor, which is the output of the
position control.

To design the attitude control inputs of a quadrotor, we define the errors eφ, eθ , and eψ, which are
related to the attitude of a quadrotor respectively, as follows:

eφ = φd − φ, eθ = θd − θ, eψ = ψd − ψ.

We designed the attitude control inputs u2, u3, and u4 using the following expressions [20]:

u2 = Kp,φeφ + Kd,φ ėφ + Ki,φ

∫
eφdt

u3 = Kp,θeθ + Kd,θ ėθ + Ki,θ

∫
eθdt

u4 = Kp,ψeψ + Kd,ψ ˙eψ + Ki,ψ

∫
eψdt.

In these controllers, Kp,q > 0, Kd,q > 0, and Ki,q > 0 for q = φ, θ, ψ are the proportional, derivative,
and integral control gains, respectively. The simulation is performed with the PID parameters presented
in Table 1.

In this paper, the feedback gain of PID controllers used in attitude control is selected by changing
slightly based on gain of PID controller used in [21]: These gains were tuned to ensure acceptable
tracking performance while minimizing the overshoot and the undershoot of error signals.

Table 1. Feedback gains of the position and the rotational controllers.

Feedback gains of the position controller
γz 0.03
γp 0.001

PID parameters of rotational controller
q = φ q = θ q = ψ

Kp,q 3 3 3
Ki,q 0.3 0.3 0.3
Kd,q 0.2 0.2 0.2

4.2. Simulation Results

Figure 3 shows the simulation result obtained by applying the inverse optimal position control
of a quadrotor, when the initial and target positions are (0, 0, 0), (1, 1, 1), respectively. More details,
the time histories of the x, y, z for each motion of a quadrotor are shown in Figure 4. From the
simulation results, we verify that the proposed control method successfully makes a quadrotor move
to the target position.
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Figure 3. The inverse optimal position control when the initial and final states are (0, 0, 0) and
(1, 1, 1), respectively.
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Figure 4. The position control results for each of the three axes. The dashed line indicates the goal
position of each axis, and the solid line is the result of the simulation about each axis: (a) x; (b) y; (c) z.
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Figure 5 shows simulation results of the attitude control. We can be found that when the initial
state of a quadrotor is (roll, pitch, yaw) = (0, 0, 0) [rad], the current attitude angles follow the reference
attitude angles that enable a quadrotor to converge in the desired position. After a quadrotor reach
to the target position, the roll, pitch, and yaw converge to 0, respectively, and then, it maintains a
stable posture.
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Figure 5. The attitude response for the position control. The dashed line indicates the reference attitude
angles that enable the quadrotor to converge in the desired position, and the solid line is the result of
the simulation about attitude responses of a quadrotor: (a) θ; (b) ψ; (c) φ.

Figures 6 and 7 show the altitude and attitude control inputs of a quadrotor. As shown in the
simulation result, the altitude control input u1 is positive value and from 5 s when the quadrotor
reaches the target position, u1 is maintained at about 9.8 [N], which is magnitude of gravity. Also we
can check that the size changes of input u2, u3 and u4 are within a reasonable range.

From the simulation results, we verify that the proposed control method successfully makes the
position of a quadrotor converge to the references.

We conducted additional simulations to verify that the proposed controller has good performance
even though the input coupling matrix Bz(t) changes over time. In the additional simulation,
the ascending circular trajectory is set as the reference trajectory, we tested whether the quadrotor track
the trajectory well in nonlinear motion.
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Figure 6. The control input for the altitude of a quadrotor.
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Figure 7. The control inputs for the attitude of a quadrotor: (a) u2; (b) u3; (c) u4.

Figures 8 and 9 show that the quadrotor successfully tracking the given trajectory. Figure 10
shows the reference attitude angle for trajectory tracking control. It can be found that the proposed



Appl. Sci. 2017, 7, 907 18 of 24

controller maintains good trajectory tracking performance even when the input matrix is changes with
time by nonlinear motion such as Figure 10.

Figure 8. The trajectory tracking control of a quadrotor. The dashed blue line indicates the reference
trajectory and the solid red line is the result of the simulation.
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Figure 9. The trajectory tracking control results for each of the three axes. The dashed line indicates the
reference trajectory of each axis, and the solid line is the result of the simulation about each axis: (a) x;
(b) y; (c) z.
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Figure 10. The attitude response for the trajectory tracking control. The dashed line indicates the
reference attitude angles that enable the quadrotor to converge in the desired trajectory, and the solid
line is the result of the simulation about attitude responses of a quadrotor: (a) θ; (b) ψ; (c) φ.

In order to verify the performance of the proposed controller in this paper, we have
conducted simulation to compared the performance with other control techniques. In this simulation,
the ascending circular trajectory is set as the reference trajectory, we tested whether the quadrotor track
the trajectory well in nonlinear motion.

We compared the proposed inverse optimal control, LQR control that is a typical optimal control,
and PD control. Since, this paper focuses on position control, so all of the quadrotor attitude control
uses the same PID control and same PID gains of attitude. The PID gains of attitude is equal to the
gains of the previous simulation. For the PD position control, the control performance depends on the
PD gain. Therefore, proper PD gain setting is important for proper performance comparison. To select
the proper PD gain, the range of the reference attitude angle and the magnitude of the altitude input
were selected in comparison with the other two control methods. Since, the range of the reference
attitude angle for position control changes according to the position control gain.

Figures 11 and 12 show trajectory tracking control simulation results for three control methods,
when the initial position is (0, 1, 0) with the ascending circular reference trajectory. More details, the time
histories of the x, y, z for each motion of a quadrotor are shown in Figure 12. From the simulation
results, we verify that the proposed inverse optimal control has better trajectory tracking performance
than other control methods. Figure 13 shows the reference attitude angle for trajectory tracking.
In Figure 13, we can see that the attitude of the quadrotor changes continuously around 40 degrees,
and if the attitude angle changes greatly, the linear control method like LQR control, PD control does
not perform well. The proposed inverse optimal control is an optimal control method for nonlinear
system, unlike LQR control method, it can be expected good performance even in the circular trajectory
like Figure 11. Looking at the range of attitude angles of Figure 13 and the magnitudes of the inputs
of Figures 14 and 15, we can see that the three control methods are simulated in very similar conditions.
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Figure 11. Circular trajectory tracking control results: (a) Inverse optimal control; (b) LQR control;
(c) PD control.
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Figure 12. Circular trajectory tracking control results for each of the three axes: (a) Inverse optimal
control; (b) LQR control; (c) PD control.
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Figure 12. Circular trajectory tracking control results for each of the three axes: (a) Inverse optimal
control; (b) LQR control; (c) PD control.

Figure 12. Circular trajectory tracking control results for each of the three axes: (a) Inverse optimal
control; (b) LQR control; (c) PD control.

Figure 13. The attitude response for the trajectory tracking control: (a) Inverse optimal control; (b) LQR
control; (c) PD control.
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Figure 14. The control inputs for the attitude of a quadrotor: (a) Inverse optimal control; (b) LQR
control; (c) PD control.

Figure 15. The control input for the altitude of a quadrotor: (a) Inverse optimal control; (b) LQR control;
(c) PD control.
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Along with the simulation results, we can say the advantage of inverse optimal is in terms of
nonlinearity and optimality. The proposed inverse optimal control is of great significance that we dealt
with the optimal concept in a nonlinear system and we can find an optimal solution. Simulation results
show that the inverse optimal control is better performance because it overcomes the limitation of
LQR that are designed based on linear systems. It is an advantage of inverse optimal control from a
nonlinear point of view.

In addition, unlike controllers that are not based on optimal control such as PD controllers, it is
possible to control the convergence performance and energy consumption of the controller by adjusting
(Qz, γz) and (Qp, Γp). It is an advantage of inverse optimal control from a optimality point of view.

5. Conclusions

In this paper, we focused on the inverse optimal position control of a quadrotor. First, we derived
the dynamics of a quadrotor using the Newton-Euler formulation. Then, we presented the state
transformation technique to derive the position dynamics from the kinematic and dynamic models of
a quadrotor. Based on the obtained results, we proposed an inverse optimal position control technique
using the altitude control input of a quadrotor. The stability analysis based on the Lyapunov theorem
showed that the proposed control method resulted in the exponential stability of a quadrotor system. In
addition, we reinterpreted the optimal control problem for a system with a time varying input matrix as
an optimal control problem with a constant matrix by appropriately setting the weighting parameters
of the performance index. Using this technique, we proved that the proposed control input is the
optimal solution of the objective functional and satisfies inverse optimality. Finally, from the simulation
results, we verified that the proposed control method is more effective in terms of nonlinearity and
optimality than other controllers.
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