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Featured Application: The proposed method could be adapted into other sea fish on-line ambient
monitoring and optimal regulation applications of waterless live transportation.

Abstract: Accurate prediction of forthcoming oxygen concentration during waterless live fish
transportation plays a key role in reducing the abnormal occurrence, increasing the survival rate in
delivery operations, and optimizing manufacturing costs. The most effective ambient monitoring
techniques that are based on the analysis of historical process data when performing forecasting
operations do not fully consider current ambient influence. This is likely lead to a greater deviation
in on-line oxygen level forecasting in real situations. Therefore, it is not advisable for the system to
perform early warning and on-line air adjustment in delivery. In this paper, we propose a hybrid
method and its implementation system that combines a gray model (GM (1, 1)) with least squares
support vector machines (LSSVM) that can be used effectively as a forecasting model to perform early
warning effectively according to the dynamic changes of oxygen in a closed system. For accurately
forecasting of the oxygen level, the fuzzy C-means clustering (FCM) algorithm was utilized for
classification according to the flatfish’s physical features—i.e., length and weight—for more pertinent
training. The performance of the gray model-particle swarm optimization-least squares support
vector machines (GM-PSO-LSSVM) model was compared with the traditional modeling approaches
of GM (1, 1) and LSSVM by applying it to predict on-line oxygen level, and the results showed that its
predictions were more accurate than those of the LSSVM and grey model. Therefore, it is a suitable
and effective method for abnormal condition forecasting and timely control in the waterless live
transportation of flatfish.

Keywords: waterless live fish transportation; grey model; least squares support vector machine;
fuzzy clustering; forecasting

1. Introduction

For the Chinese domestic seafood farmer, live fish sales in seafood markets provide an important
avenue through which to obtain high profit margins [1,2]. As consumer demand and the marketplace to
develop capacity for the supply of live seafood, the price conditions will shift the according competitive
supply for specific markets. Outside of the cost of producing or capturing seafood (as in catching
fisheries) the primary cost associated with conventional delivery of live sea fish to market is the freight
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cost of water weight [3–5]. For example, if live sea fish are shipped at a ratio of 1:3 to water weight,
75% of fuel and transport costs are attributed to just haul water; in addition to the cost of maintaining
temperature and oxygenation or aeration [6]. Shipping live fish without water is also a proven method
for relatively high survival in delivery for some sea fish, such as flatfish and Crucian carp. Sufficient
margins can be obtained with lower energy consumption and very high volumes of live fish delivery;
this is pertinent to economies of scale, which quickly cater for niche markets [7–10].

Many sea fish have been shipped live, however, the waterless live shipping marketplace in China
has not been well established yet [11,12], and there are challenges with respect to their sensitivity to
colder shipping temperatures and higher bio-energetic rates, which complicates shipping in a sealed
atmosphere. In these shipping conditions, sea fish undergo an anesthetization procedure by slowly
reducing water temperature before packing; thereafter they are placed on top and packed in insulated
containers with a method of sealed oxygen enrichment (typically in sealed bags or fresh keeping
boxes). Live sea fish are received at the destination, inspected for survival, and re-acclimated into
tanks or aquarium cabinets for live sale.

With the opportunities that live shipping with waterless conditions present, this method also
presents several challenges that require some practical experience and testing. The principle behind
waterless shipping is to minimize metabolism (proportional to temperature) and keep sea fish in a live
state with adequate oxygen with moisture, but not liquid [13–16].

With good temperature control and proper oxygen filled packaging, acceptable survival rates
have been observed for shipping times over 30 h in our project. As with conventional shipping of
live fish, timing is important. Full stacking of stressed fish, with decreased oxygen and temperature
variation will likely result in moderate to high losses; shipping at a reasonable oxygen concentration
will yield significantly higher survival rates. A lot of literature in the current study is focused on
dissolved oxygen acquisition and monitoring. However, fish delivery systems often contain certain
levels of oxygen that do not provide enough oxygen to satisfy the fish bodies [13–18]. To offset this
predicament, the fish will shift its metabolism to use the stored oxygen of the body, however, this
will cause stress response and even reduce the survival rate. Moreover, during fish shipment in
closed systems, the pressurized oxygen atmosphere usually is a significant factor for high survival in
waterless transportation. Oxygen deficit may occur in exceptional cases when the density of fish is too
high or the transport is of longer duration than the fish can stand.

With full consideration of oxygen changes for the influence of fish survival quality, it is necessary
to construct an oxygen level forecasting model as the basis of scientific adjustment measurement for
sea fish live transportation. Consequently, taking the fish size and weight as well as transportation
space into account, clustering these features are effective ways to classify the train subjects for further
pertinent training. The gray model-particle swarm optimization-least squares support vector machines
(GM-PSO-LSSVM), LSSVM, and GM mathematical models are compared for comprehensive accurate
forecasting. After experiments, the mixed model GM-PSO-LSSVM is preprocessed by fuzzy clustered
training that can effectively improve accuracy and provide a sound basis for early warning and
adaptive controlling for live fish survival. In this paper, flatfish, which are typical sea fish, have been
chosen as experimental subjects for oxygen forecasting processing.

This paper is organized as follows. Section 2 gives oxygen concentration forecasting model
design for waterless delivery, and ambient sensing hardware as well as harvesting procedures.
In Section 3 the performance criteria for a forecasting method that is listed and comprehensively
evaluates the performance of oxygen prediction in different methods is proposed. Section 4 describes
the significant results of a forecasting system for waterless transportation, and discusses the advantages
and limitations of the proposed system. Finally, Section 5 summarizes the conclusions and put forward
the forthcoming research directions.
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2. Materials and Methods

2.1. Ambient Oxygen Concentration Forecasting Model Design

Waterless Transportation Process for Flatfish

The work flow of live sea fish delivery with cooling condition can be roughly divided into three
parts: the pre-transportation processing stage, the packaging processing and monitoring stage, and
the waterless live transportation and recovery stage. The more specific procedure of delivery is
demonstrated as follows.

• The pre-transportation processing stage: in this stage live fish are caught from the aquaculture pond,
and the healthy fish are picked and moved to the aquatic plants for pre-transport processing. The
fish to be transported must be healthy and in good condition. Weakened individuals should be
eliminated from the consignment.

• The packaging processing and monitoring stage: the hibernated fish are caught from the pond, and
are carefully placed on a tray. After weighing, they are piled up in a fresh-keeping box that is
equipped with observation sensors for each box. Then, the box is filled with pure oxygen and
sealed, inducing a hypopnea state in live fish. The fresh-keeping box is transferred to the chill car
and waterless delivery is carried out with a relatively low inside temperature from 0 to 5 ◦C.

• The waterless live transportation and recovery stage: in this stage, fish are delivered in waterless
conditions with low temperature and pure oxygen at the beginning of transportation. The aquatic
products are maintained in dormancy at the lowest state of metabolism. At the destination
of delivery, fish will be aroused gradually in the docking ponds and are expected to regain
consciousness and return to their live state.

The workflow of waterless transportation for live flatfish is shown in Figure 1. Over the whole
period, the quality of fish transported is a key decisive criterion. The fish to be transported must be
healthy and in good condition. Weak fish are killed at a much higher rate than fish in good condition
when the transport time is longer.
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The most important single factor in transporting fish is providing an adequate level of
oxygen [19,20]. However, an abundance of oxygen within a container does not necessarily indicate
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that the fish are in good condition. The ability of fish to use oxygen depends on their tolerance to
stress, ambient temperature, and metabolic products such as concentrations of carbon dioxide. In a
live flatfish delivery system, the fish will require more than the minimum amount since they are not in
a fully resting state. Furthermore, if they are excited at loading, or there are vibrations or disturbances
during transport, they may consume more amount of oxygen than we expected.

The amount of oxygen a fish consumes does not only depend on the amount of oxygen available.
In closed systems, the high levels of atmospheric oxygen required to maintain the live condition are not
well sensed or predicted. During long-distance delivery when the container with fish are undergoing
abnormal movement, the fish may consume more oxygen at a certain level of stress response. This
research applies mainly to solve such problems because an uncertain oxygen atmosphere is not
suitable for maintaining a reasonable survival rate. Next, we will introduce the on-line oxygen
forecasting methods.

2.2. Algorithms for Oxygen Forecasting during Waterless Transportation

There are three methods that are usually utilized in data classification or regression prediction.
The fuzzy clustering algorithm is harnessed for partition and data set training in term of the properties
(weight and length) of flatfish. These classified flatfish are monitored by ambient sensing devices for
respiration. Information on decreases in oxygen concentration and increases in carbon dioxide as
well as temperature in closed containers is saved during the long distance transportation. The GM
model can predict the feature segment of the oxygen value step by step according to the current
segment of acquired ambient factors with the passing of delivery time. However, the grey model
cannot accurately forecast oxygen trends by not referencing the surrounding factors. It easily predicts
the forthcoming acquired ambient factors. LSSVM will regress the error of forecasted oxygen value
with its actual value by fully considering the dynamic ambient changes during delivery. It is effective
for the GM-PSO-LSSVM model to calculate oxygen consumption level. For better improvement of
accuracy and reliability, this research closely blends the grey model and the particle swarm optimized
least square support vector machine technique to construct the forecasting model GM-PSO-LSSVM
to predict the ambient oxygen of flatfish, requiring fewer samples while specifically solving the
nonlinear problem.

Firstly, the original ambient oxygen data are preprocessed, reducing the fluctuation as well as
randomness, and improving the accuracy of forecasting by increasing the regularity of training samples.
Next, the forecasting is continuous to obtain information on coming ambient factors—temperature and
humidity as well as carbon dioxide—and then the LSSVM model will take these predicted unknown
factors that are forecasted by GM model as input data, and deviation with the actual oxygen data as
output data for FCM-GM-LSSVM training. By regression learning of the forecasted error of GM (1, 1),
the hybrid algorithm corrects the prediction error by calculating deviation. Moreover, the parameters
of LSSVM are optimized using the global optimization ability of particle swarm optimization algorithm.
It will intensify the capacity of forecasting and generalization to avoid the subjective blindness of
choosing the coefficients γ and δ2. Finally, the strong generalization ability and high prediction
accuracy of the oxygen forecasting model is testified by real waterless live transportation experiments.
The combined model was validated on real traffic data and results show that the proposed combination
forecasting method was effective and practicable. Consequently, it is significant basis for early warning
in sea fish waterless live transportation. In addition, it will increase the controllability of survival rate.

2.2.1. Fuzzy C-Means (FCM) Clustering Algorithm

Fuzzy C-means (FCM) clustering is the most widely used algorithm for clustering problems.
According to the similarity of objects, clustering is an unsupervised discrimination and classification
process without prior knowledge [21,22]. The final result of clustering is that the similarity is the
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largest, and the similarity between classes is the smallest. Hence, we just have to obtain the minimum
value of the objective function. The expression of the optimal solution is:

min(Jm(U, V)) = min(
c

∑
i=1

n

∑
j=1

um
ij d2

ij) (1)

J(U, V) and m denote the weighted average sum from each sample to the clustering center and
fuzzy weighting exponent, respectively. dij is a distance norm. uij is a membership degree of samples.
The clustering rule of the fuzzy C-means (FCM) clustering algorithm is to calculate U and V for
minimum J(U, V).

Then, healthy flatfish are picked to obtain the training data set by measuring their length and
weight. The FCM algorithm will be halted when some conditions are satisfied [23,24]. Then, we obtain
the optimized number of clustering for the further model construction. In our project, 100 tails of
fish are studied for the modeling data training and the clustering result is demonstrated as follows in
Figure 2. There are four clusters after performing fuzzy C-means clustering [25,26].
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When some delivered fish are in the process of the early warning operation, the system can query
the training data set and categorize it to a certain cluster center by Euclidean distance. Consequently,
the corresponding GM-PSO-LSSVM model forecasts on-line changes of ambient oxygen level.

2.2.2. GM (1, 1) Model

The grey model GM (1, 1) should applied in the gray prediction [27–29]. The application of the
GM (1, 1) model is to accumulate the progression and generate the results generally. The coefficient
a in this model is called the development coefficient of the system, and b is the driving coefficient.
Both of these are undetermined parameters and can be obtained by least squares method. The specific
formula (time response function model) from the prediction of grey model GM (1, 1) can be derived
and given by Equation (2).



Appl. Sci. 2017, 7, 957 6 of 15

x̂(0)(k + 1) = −a
(

x(0)(1)− b
a

)
e−ak (2)

2.2.3. LSSVM Model

A modified version of SVM called LSSVM only considers equality constraints instead of
inequalities [30]. A simple review of the LSSVM for regression problems is as follows. There is
a training set, {x, y}, i = 1, 2, . . . , N. Based on this equation, the Lagrange function is constructed as
follows in Equation (3):

L(W, b, e, α) =
1
2
‖W‖2 + γ

N

∑
i=1

e2
i −

N

∑
i=1

αi(WTφ(x) + b− yi + ei) (3)

The solution to the equation can be obtained by partially differentiating with respect to W, b, αi
and ei. The deduction is as the follows in Formula (4):

a = 1, y =
N

∑
i=1

αφ(xi)φ(x) + b (4)

There, W denotes the weight vector and b is the bias term. φ(x) is the nonlinear mapping function
that transfers the input to a higher-dimensional feature spare. In Equation (3), ei is the error variable at
time i and γ is regulation constant. In Equation (4), αi are Lagrange multipliers. Finally, ultimate forms
of the LSSVM prediction function (5) and radial basis function (RBF) kernel (6) are as follows:

y =
N

∑
i=1

aiK(xi, x) + b (5)

K(xi, x) = exp(−‖x− xk‖2

2δ2 ) (6)

The regularization parameter and kernel value of Gauss “less prone to improper learning” or
“learning”, has great influence on the generalization ability of LSSVM and prediction. The particle
swarm optimization (PSO) algorithm is used in the current study to search for the global optimum
value with fewer parameters and a fast convergence speed. The operation is simple, with easy
implementation. Therefore, the GM-LSSVM model uses particle swarm optimization for LSSVM
parameter selection [31–33] to improve the prediction accuracy of this model.

2.3. Oxygen Forecasting Model for Flatfish

In this forecasting model, there are three parts of this model for on-line calculation of forthcoming
acquired data series, which are based feature clustering, training for different groups, and the
forecasting method. Firstly, flatfish are statistically labeled and clustered by length and weight of their
properties. By doing so, flatfish of similar characteristics will be clustered in the same group which
may imply an identical requirement of oxygen when they are packaged for waterless transportation.
Secondly, for objects in a reasonably clustered group, LSSVM for error correction can be used for GM
(1, 1) oxygen prediction. Finally, the forecasting method will acquire on-line data and calculate the
rectified forecasting data series by GM-PSO-LSSVM. The procedures are as demonstrated in Figure 3.
The specific process of this forecasting model is discussed in the following segment.
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The specific procedure of the fuzzy clustered GM-PSO-LSSVM forecasting model that was
processed as follows.

(1) Input a set of fish feature (W, L) representing fish weight W and length L. This is the process of
clustering for flatfish properties. It is partitioned with classification coefficient m and obtains N
groups by validity index numbering for fuzzy clustering.

(2) As for every group, the model can utilize the GM model for ambient factor forecasting—carbon
dioxide (CO2), and temperature (T) as well as humidity (H). These data were stepwise predictions
of sequence parameters.

(3) Take the ambient factors—CO2, T, and H—as inputs of LSSVM, and the residual of actual and
predicted oxygen series as outputs for training. At the same time, the model uses PSO to optimize
the parameters γ and δ2 to complete the best regression for error of oxygen prediction by GM (1, 1).

(4) The GM-PSO-LSSVM forecasting model acquires the M segment data by utilizing the GM model
to forecast the next M data of forthcoming oxygen concentration by residual compensation with
full consideration of the influence of other ambient factors.

(5) If the forecasting is not halted, the forecasting model can continuously obtain M segment data of
ambient factors to perform the procedure of step 3, or to returns to step 5.

(6) Evaluate the indices of this model by error analysis with mean absolute error (MAE), mean
absolute percent error (MAPE), and root-mean-square error (RMSE).

The modeling procedures are shown in below in Figure 4. Figure 4a shows the regression training
by LSSVM with ambient changes (CO2, humidity, temperature) in a series as input data and with
the residual of actual and predicted data as output data. During this training process, the PSO
algorithm would optimize the parameters in the regression process and move the LSSVM model closer
to the optimal solution. In spite of this, the algorithm required a small sample for modeling, parallel
computing, and adaptive strong ability to achieve higher precision in small sample circumstances, so as
to improve the generalization ability of the model combination. In Figure 4b, the process of forecasting
is to classify the given subjects which belong to a certain clustering center using its PSO-LSSVM model
and the GM model for on-line prediction. The hybrid algorithm would forecast the forthcoming oxygen
level of the GM (1, 1) method step by step and rectify the forecasted result by the PSO-LSSVM residual
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2.4. Wireless Sensing System

2.4.1. Ambient Sensing Hardware

Transportation process of live flatfish with oxygen forecasting was performed by an ambient
sensing device that mounted in the transporting boxes. It consists of three parts:

(1) The sensing part of the ambient factors in the closed fresh-keeping system, which harvests the
spot ambient information.

(2) The signal processing part that preprocesses the obtained data during the processing of
real-time monitoring.

(3) Packaging of the ambient sensing data back to the gateway for intelligent training and on-line
forecasting by the GM-PSO-LSSVM.

The monitoring equipment is shown in Figure 5, and has three parts: the ZigBee module (CC2530)
for wireless communication, the front signal processing module (STM32F, analog to digital converter)
and micro ambient sensors (SHT11, AO2, MH-Z14). The sensors are connected to the analog to digital
converter by the interface ADC (Analog-to-Digital Converter) and the ADC to the microchip STM32
by the interface IO (Input-Output) mode. These dynamic sensing data are sent by the CC2530 module
for on-line mobile ambient acquisition. The mobile smart gateway equipment also has wireless nodes
for the construction of local networks to accomplish the wireless data harvesting task. In Table 1, the
sensors measurement features are listed for monitoring and in the next section we will discuss the
workflow of ambient gas data harvesting.

2.4.2. The Workflow of Ambient Oxygen Data Harvesting

During the actual waterless live transportation, ambient observation and communication were
constructed when they were beginning powered by battery or chill car power supply system. In
Figure 6, the wireless ambient data harvesting procedure is demonstrated by interactive activity
between mobile gateway (with wireless sensor node-Coordinator) and terminal wireless sensor devices.
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Table 1. The sensors for monitoring in flatfish waterless transportation.

ID Equipment Name Types Electronic Features

1 Oxygen gas sensor AO2 Response time: <5 s; output voltage: 7–13 mV;
resolution: 0.1%; accuracy: ±0.1%; range: 0–50 ◦C

2 CO2 gas sensor MH-Z14
Operating voltage: 4–6 V; range: 0–5%;

Output Voltage: 0.4–2 V; preheat time: <3 min;
response time: <30 s; operating temperature: 0–60 ◦C

3 Temperature sensor SHT-11 Range: −40–+123 ◦C; response time: <8 s

Appl. Sci. 2017, 7, 957  9 of 15 

Table 1. The sensors for monitoring in flatfish waterless transportation. 

ID Equipment Name Types Electronic Features 

1 Oxygen gas sensor AO2 
Response time: <5 s; output voltage: 7–13 mV; 

resolution: 0.1%; accuracy: ±0.1%; range: 0–50 °C 

2 CO2 gas sensor MH-Z14 
Operating voltage: 4–6 V; range: 0–5%;  

Output Voltage: 0.4–2 V; preheat time: <3 min;  
response time: <30 s; operating temperature: 0–60 °C 

3 Temperature sensor SHT-11 Range: −40–+123 °C; response time: <8 s 

2.4.2. The Workflow of Ambient Oxygen Data Harvesting 

During the actual waterless live transportation, ambient observation and communication were 
constructed when they were beginning powered by battery or chill car power supply system.  
In Figure 6, the wireless ambient data harvesting procedure is demonstrated by interactive activity 
between mobile gateway (with wireless sensor node-Coordinator) and terminal wireless sensor devices. 

 
Figure 6. The flow chart of ambient observation and wireless communication for live transportation. 

Firstly, the vehicle mobile gateway was started and CC2530 as the coordinator constructed the 
local wireless network for distributed data acquisition. Then, the terminal ambient sensor was 
powered on and the monitoring device initialized. The sensing device checked for ambient sensors 
and judged it was ready for observation. When some sensors were in a fault state, the device waited 
for a solution. If they were ready for monitoring, they were to join in the local wireless sensor network 
to realize real-time ambient harvesting. The local data were periodically sent to a mobile gateway for 
processing and storage. This workflow was continued if the mobile gateway device was powered off 
or there was not data to receive from terminal sensing side. The interval for acquisition of ambient 
data was about 10 s. A too-small gathering interval would increase communication costs and reduce 
the efficiency of monitoring. A too-large interval for ambient on-line observation would less 
accurately reflect the local actual changes of ambient factors. The whole process of observation was 
automatically managed by wireless sensing system that was fixed in chill car. 

3. Results 

3.1. Performance Criteria for the Forecasting Method 

In the experiment, the training software is MATLAB R2014a, the online monitoring and 
forecasting module is the Android 4.2 platform, and terminal data sampling node is ZStack2.0  

Figure 6. The flow chart of ambient observation and wireless communication for live transportation.

Firstly, the vehicle mobile gateway was started and CC2530 as the coordinator constructed the
local wireless network for distributed data acquisition. Then, the terminal ambient sensor was powered
on and the monitoring device initialized. The sensing device checked for ambient sensors and judged
it was ready for observation. When some sensors were in a fault state, the device waited for a solution.
If they were ready for monitoring, they were to join in the local wireless sensor network to realize
real-time ambient harvesting. The local data were periodically sent to a mobile gateway for processing
and storage. This workflow was continued if the mobile gateway device was powered off or there was
not data to receive from terminal sensing side. The interval for acquisition of ambient data was about
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10 s. A too-small gathering interval would increase communication costs and reduce the efficiency of
monitoring. A too-large interval for ambient on-line observation would less accurately reflect the local
actual changes of ambient factors. The whole process of observation was automatically managed by
wireless sensing system that was fixed in chill car.

3. Results

3.1. Performance Criteria for the Forecasting Method

In the experiment, the training software is MATLAB R2014a, the online monitoring and forecasting
module is the Android 4.2 platform, and terminal data sampling node is ZStack2.0 (TI Company, Dallas,
TX, USA). In order to evaluate the proposed hybrid algorithm, three error evaluation formulas were
utilized to measure the prediction accuracy. These evaluation indices were the mean absolute error
(MAE), the root-mean-square error (RMSE) and the mean absolute percent error (MAPE), for which
small values of these indices denote high prediction performance. The indices are defined as follows
(Table 2).

Table 2. The indices for prediction error (MAE, RMSE, MAPE).
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Where vreal
i is the observed value for the time period t and vpredict

i is the predicted value for the
corresponding period. The MAE revealed how similar the predicted values were to the observed values.
The RMSE measured the overall deviation between the predicted and observed values. The MAPE
was a unit-free measure of accuracy for the predicted gas concentration series and was sensitive to
small changes in the acquired data.

3.2. Model Performance Evaluation

In order to analyze and evaluate the prediction performance of the GM-PSO-LSSVM for different
sampling intervals, the 100 testing subjects were fuzzy clustered by the FCM algorithm by their features
(length and weight). For each group, the predicted time length was divided into intervals of 10, 20, 30,
and 40 min. In live flatfish waterless transportation, the abnormal oxygen consumption might occur at
any stage of delivery. The prediction model could predict abnormal activity of live fish respiration
in the form of oxygen level by electronic observation, about 10 to 40 min before it occurred. It thus
had enough time to take countermeasures, giving an early warning as well as performing adjustment
management inside the waterless shipment containers through supplying and reducing the oxygen
level when some influences might possibly have caused a large consumption of oxygen. In Figure 7
the different forecasting results with different time length by utilizing GM-PSO-LSSVM and LSSVM as
well as GM (1, 1) are shown. Those intelligence forecasting methods were compared with an actual
oxygen time series that was acquired in flatfish waterless transportation monitoring.

After comparing the four-time length prediction, the average execution times are shown in Table 3.
The average of the forecasting time was executed five times to obtain a reliable result by using the
evaluation indices in Table 2. The hybrid method was slightly time-consuming, but it could satisfy the
efficiency of requirements in early warning or in alerting businesses in live fish delivery.
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Table 3. Forecasting execution time in different predicted time length (unit: second).

Method 10 min 20 min 30 min 40 min

GM (1, 1) 0.32 0.49 0.55 0.71
LSSVM 0.31 0.35 0.47 0.56

GM-PSO-LSSVM 0.51 0.74 0.89 0.97

Testing data sets were evaluated in Figure 8 for the forecasting values of the oxygen concentration
with different time interval. It analyzed the forecasting error indices by the error of forecasting:
(a) mean absolute error (MAE); (b) mean absolute percent error (MAPE); and (c) root-mean-square
error (RMSE). In terms of the result, with the increasing of time intervals were found to increase the
error between the predicted value and measured value. However, the figure shows that this model can
accurately predict the oxygen concentration within time intervals of 10 min. The result of the 10-min
forecasting relatively meets the requirement in waterless live transportation.

In the meanwhile, the two key stress indices (glucose, lactic acid) were collected discretely by
analyzing the caudal venous blood of flatfish. The specific changes of stress during waterless live
delivery are demonstrated in Table 4. At the beginning of transportation, the glucose and lactic acid
were in a relative low state. With time, the glucose was kept in a stable high state. Meanwhile, lactic
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acid still showed the increasing trends. Therefore, reducing of oxygen might lead to certain stress
responses in flatfish waterless transportation.
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Table 4. Changes of key stress factors during transportation.

Stress Type 0 h 8 h 16 h 24 h 32 h

Glucose (mmol/L) 1.25 ± 0.2 1.86 ± 0.3 5.83 ± 0.1 5.72 ± 0.1 5.78 ± 0.2
Lactic acid (mmol/L) 1.4 ± 0.3 1.6 ± 0.2 2.7 ± 0.1 3.2 ± 0.2 3.9 ± 0.1

Transport duration of all trials was 32 h (p < 0.05). The sample points are 0, 8, 16, 24, 32 h.

4. Discussion

With respect to waterless live sea fish transportation, the deployment of an on-line oxygen
forecasting system for improvement of survival rates has hardly been reported in current research.
It represents a novel model and form of system implementation for the improvement of such live
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delivery. Therefore, it very critically important to accurately obtain information on forthcoming
oxygen levels to sustain flatfish survival quality. The standard LSSVM and the GM (1, 1) methods
have been widely used in the prediction field. However, they have numerous drawbacks, like low
generalization and poor stability. Moreover, when executing forecast operations they do not fully
take the forthcoming ambient factors into account. These drawbacks in a prediction model is not
accurate enough. To analyze the forecasting capacity of the hybrid model based on GM-PSO-LSSVM,
the standard LSSVM and the grey model were selected for comparison with four forecasting lengths
from 10 to 40 min. Ten-minute forecasting has been proven more accurate than oxygen prediction of
20 min or more. In this paper, the present methods are used in problems of relatively poor stability and
low generalization to improve the forecast accuracy of on-line oxygen consumption. After grouping
of testing, it was found that it is more promising to utilize the combined model GM-PSO-LSSVM for
on-line forecasting operations.

In Figure 7, the four intervals (10, 20, 30, 40 min) for different prediction methods were used
for testing. It shows that the proposed GM-PSO-LSSVM model has a stronger learning capacity
than the GM (1, 1) method and standard LSSVM method for small samples, and it also achieves
excellent generalization. The presented model provides more accurate predictions of the short time
period of oxygen forecasting strategy compared with the LSSVM and GM (1, 1) methods. Thus,
the GM-PSO-LSSVM can guarantee improvements in stability and accuracy, and it is a suitable and
effective method for predicting the oxygen level during live flatfish waterless transportation. It can
satisfy the logistical needs of early warning and the corresponding management relatively well.

The indexes MAE, MAPE, and RMSE were analyzed to study the forecasting capacity of the
three models shown in Figure 8. To represent the error trend, the most recent sampled data with
an interval of forecasting results were used to analyze the forecasting performance of the above
models. The performance indexes were calculated and demonstrated the trend of error. As for the
GM-PSO-LSSVM model in the MAE index, the forecasting accuracy has been improved on average
by 20.5% and 52.3% compared with the LSSVM and GM (1, 1) methods respectively. With the
situation of index MAPE, the forecasting accuracy of the hybrid model shows an improvement of
21.9% and 54.2% (on average) compared to LSSVM and GM, respectively. In the RMSE index, the
forecasting error of the GM-PSO-LSSVM method has been reduced 21.4% and 51.7% compared with
other methods, respectively. The accuracy of calculation is not good enough for decision-making due
to the forthcoming ambient changes that may lead to instability and variation when the forecasting
time is been lengthened.

Therefore, the mixed method GM-PSO-LSSVM is more accurate with 10-min prediction lengths
than the traditional forecasting methods LSSVM, and GM (1, 1) which had less of a consideration
of ambient changes in the process of waterless delivery, such as temperature, carbon dioxide,
and humidity.

5. Conclusions

This paper designed a set of on-line ambient monitoring devices and modeled the oxygen level
prediction of flatfish waterless live delivery. It was more effective to combine the grey model with
PSO-LSSVM for the forecasting of forthcoming oxygen. Through the actual delivery experiments,
there were several advantages through which we could deduce the following conclusions:

(1) The accuracy using the mixed algorithm GM-PSO-LSSVM was greater than the accuracy
using a single forecasting method, and it was also better than the accuracy using the optimal
forecasting method.

(2) There was more relevance prediction calculation by fuzzy clustering for pre-partitioning to closely
comply with the actual characteristics of flatfish respiration in order to make the forecast model
more pertinent.

(3) The accuracy of the GM-PSO-LSSVM algorithm was better than the accuracy obtained by LSSVM
and GM (1, 1) due to the full consideration of the influence of ambient changes.
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We used a prediction of the oxygen consumption level during live flatfish delivery when the
ambient information was simultaneously harvested in a certain closed system. This was a crucial need
in delivery ambient management and on-line electronic equipment design. After deliberate design of
the forecasting method according to each characteristic, the hybrid algorithm GM-PSO-LSSVM was
suggested for more accurate prediction due to its adaptability and relevance. After many instances of
actual delivery testing and analysis of its feasibility, it was proved that the hybrid forecasting model
was quite applicable for live sea fish enterprises to follow and can reduce costs of delivery management.
In the near future, our research team will further test its universal performance for other types of live
sea fish transportation and find more optimized forecasting technologies.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/2076-
3417/7/9/957/s1. It provided the basic material to execute the algorithm.
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