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Abstract: This work deals with the study of the convergence ratio of the exponential matrix
method used in the 3D static analysis of functionally graded structures subjected to harmonic loads.
The equilibrium equations are written in mixed orthogonal curvilinear coordinates. This feature
allows plates, cylinders, spherical and cylindrical shells to be studied with the same and unique
formulation. After a reduction to first order differential equations, the obtained system is solved
through the thickness by means of the exponential matrix method. The coefficients of these equations
are not constant because the mechanical properties of the considered functionally graded materials
change through the thickness. Moreover, the curvature terms introduce a further dependence of
the coefficients from the thickness coordinate. The use of several mathematical layers allows for
evaluating both the material properties and the curvature terms at certain points through the thickness
direction. The M number of mathematical layers to be introduced is here studied in combination with
the N expansion order of the exponential matrix. These values are influenced by several parameters.
Therefore, different geometries, thickness ratios, lamination sequences, functionally graded material
laws and half-wave numbers are considered.

Keywords: plates and shells; functionally graded materials; static analysis; 3D elasticity
solution; sandwich structures; exact method; layer-wise approach; exponential matrix method;
convergence study; mathematical layers

1. Introduction

Functionally Graded Materials (FGMs) have changing properties across the volume [1].
This change in the properties is induced and described by a certain spatial function. FGMs may be
obtained changing the porosity, the microstructure or the composition of the bulk material [2]. A first
distinction may be done between the continuous-graded structures and the stepwise-graded structures.
In the present paper, continuous-graded structures, using changing composition, are considered.
A metallic and a ceramic phase are present and their related volume fractions continuously vary
through the thickness direction. In the same way as the volume fraction, the mechanical and thermal
properties also vary. FGMs with metallic and ceramic phases are commonly employed in aerospace
field as structural components in high-temperature environments [3]. The main advantage given by
continuous-graded materials is related to the possibility to achieve specific properties that common
materials cannot guarantee. They do not introduce the common layers and related interfaces as in
multilayered structures. This feature leads to the absence of stress discontinuities that are often at
the base of delamination phenomena in classical multilayered structures. In view of the complexity
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of this problem, the static and dynamic analyses of structures embedding FGMs were conducted by
several authors, which proposed two- (2D) and three-dimensional (3D) models for basic elements
such as plates and shells. Both 3D and 2D models always need to be validated in order to confirm
their capability in displacement, stress, strain and vibration evaluations. 3D exact solutions are the
only tools capable of accurately evaluating the punctual behavior of these elements embedding FGM
layers. These solution types are possible only for certain load/boundary conditions and for specific
assumptions for the displacement components. A closed form of the equilibrium equations can be
solved taking into account how the material properties change in the volume.

Square and rectangular plates are the most common geometries in the literature. Several authors
proposed exact solutions for the static and dynamic analysis of these elements when functionally
graded layers are included. The bending of functionally graded rectangular plates was studied
by Kashtalyan [4] using the solution found by Plevako in [5] for the equilibrium equations of
inhomogeneous isotropic materials. An exponential law for the volume fraction of both the phases
was considered. Several results for displacements were presented. The power series method was
used by Vel and Batra [6] to solve the equilibrium equations for simply supported functionally graded
rectangular plates. Xu and Zhou [7] studied the 3D static exact solution of functionally graded plates
discussing the effects of different thickness ratios on displacements and stresses. Yas and Tahouneh [8]
studied the problem of free vibrations of FGM annular plates on elastic foundations considering
different kinds of material property laws across the thickness. The equations of motion were
solved using a semi-analytical approach based on series solution and on the differential quadrature
method. Solutions for sandwich structures with one or more FGM layers were also proposed in
the literature. The effects of different functionally graded material laws on the structural response
of simply supported rectangular plates were studied by Zhong and Shang in [9], the electroelastic
coupling was also analyzed. Hosseini-Hashemi et al. [10] investigated the free vibrations of a simply
supported homogeneous rectangular plate coated by a functionally graded skin with an exponential
law through the thickness for the elastic modulus and the mass density. Rectangular sandwich plates,
with homogeneous skins and FGM core or with FGM skins and homogeneous core, were studied
by Li et al. in [11]. The fundamental frequencies were found using the Ritz method. The solutions
found for structures with curvatures are less numerous. Curved panels embedding functionally
graded materials were studied by Zahedinejad et al. [12]. The free vibrations for panels, with arbitrary
boundary conditions on two opposite edges and simply supported boundary conditions on the other
sides, were presented. Cylindrical shells were studied by Alibeigloo et al. in [13], an analytical
method was developed to study the free vibrations of simply supported cylinders. Vel [14] used the
power series method to solve the 3D linear equilibrium equations written for functionally graded
shells with simply supported edges. Dong [15] evaluated the effects of different boundary conditions
on the dynamic response of functionally graded annular plates using the Chebyshev–Ritz method,
a convergence analysis was also performed. Kashtalyan and Menshykova [16] studied the advantages
that a functionally graded core may give in a sandwich panel in terms of the reduction of stress
discontinuities at the interfaces. The closed-form solutions found in literature always consider the
problem for particular boundary load conditions. Further interesting exact solutions in the literature are
discussed in the following last part. Barretta [17] proposed exact solutions for equilateral triangle and
elliptic Kirchhoff plates under torsion with no kinematic boundary conditions using the analogy with
a beam under torsion. An extension of this solution to flexure was proposed in [18]. The introduction
of Functionally Graded Materials in Barretta et al. [19] allowed for establishing a relationship between
FGM orthotropic Saint–Venant beams and inhomogeneous isotropic Kirchhoff plates. Further details
about the employed method can be found in [20,21].

Even though several solutions were already proposed in the literature, a lack of generality exists.
The final goal of the present solution is to give a universal tool capable to include several geometries
(plates, cylinders, spherical and cylindrical shells) embedding different material configurations
(also including FGMs). This solution was already introduced by the first author for the free vibrations
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of FGM structures in [22] and extended to the static analysis of FGM plates and shells subjected
to harmonic loads in [23]. The equilibrium equations are written in mixed orthogonal curvilinear
coordinates and solved through the thickness via the exponential matrix method. This method may
only be used when the coefficients of the differential equations are constant. When FGM layers are
introduced, the mechanical properties vary through the thickness, and this feature makes these
coefficients a function of the thickness coordinate z. Moreover, when the shell geometries are
considered, a further dependence of these coefficients from z exists. This problem may be overcome
via the introduction of mathematical layers, where the mechanical properties and the curvature-related
terms may be punctually evaluated in their middle. The M number of mathematical layers and the N
order of expansion for the exponential matrix are two parameters to be determined in order to have
exact results.

In the convergence analysis of the proposed 3D shell solution, two terms are fundamental,
they are the N order of expansion for the exponential matrix and the M number of mathematical
layers. These two terms depend on several parameters such as: geometry, lamination scheme,
material (classical ones or FGMs), FGM law, thickness ratio, performed analysis (static or free vibration
analysis), applied loads and so on. For these reasons, a systematic analysis is necessary to understand
the better combination of M and N values. However, this systematic analysis is possible only if it
is separately performed for different cases in order to remark several important features. For these
reasons, we have proposed four different works: the present new paper and further three past
works [24–26]. In [24], the convergence study in terms of M and N was performed for the free
vibration analysis of composite and sandwich plates and shells. Ref. [25] proposed the convergence
study in terms of M and N for the free vibration analysis of FGM plates and shells. Ref. [26] showed
the convergence study in terms of M and N for the static analysis of composite and sandwich plates
and shells. Finally, the present new paper is about the convergence study in terms of M and N
for the static analysis of FGM plates and shells. This detailed partition is fundamental for several
reasons: the convergence for the free vibration analysis considers the results in terms of frequencies
and vibration modes (typical eigenvalue and eigenvector problems). On the contrary, the convergence
study for the static analysis considers the results in terms of displacements, strains and stresses
(classical linear elastic static problem). Therefore, two different procedures are analysed and different
result types are investigated and discussed. These result types can be affected by various parameters.
The N order of expansion used for the exponential matrix method is strictly connected with the
thickness ratio of the structure. The M number of mathematical layers is introduced for the calculation
of the curvature terms in the shell geometries. However, M is also important in the case of FGM layers
because it allows the punctual calculation of the FGM law through the thickness. This last feature
shows as the investigation of FGM structures is fundamental to be analyzed in separated works. In fact,
M value in FGM shells is used for two reasons, which are the curvature term definition and the FGM
law calculation.

2. 3D Exact Static Analysis of FGM Structures

The formulation of the proposed 3D static solution has been developed in mixed orthogonal
curvilinear coordinates. All the details concerning the geometry and the reference system may be
found in Figure 1. A generic spherical shell is shown; the reference system (α, β, z) is mixed curvilinear
and orthogonal. The origin is located in a corner with z being normal to the middle surface Ω0,
heading towards the upper surface and α and β are defined on it. z varies from −h/2 to h/2 being h
the total thickness of the shell. z̃ is a secondary thickness coordinates. It has its origin at the bottom of
the shell, and thus varies from 0 to h. Figure 2 gives a clear definition of both reference coordinates.
In the present paper, functionally graded materials (FGMs), which change mechanical properties only
through the thickness direction z, have been taken into account. The three-dimensional linear elastic
constitutive equations, written for shells embedding isotropic FGMs, must take into consideration the
dependence of the elastic coefficients from the thickness coordinate z. For each k physical layer that
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constitutes the shell, the link between the stress vector σk = (σk
αα, σk

ββ, σk
zz, σk

βz, σk
αz, σk

αβ) and the strain

vector εk = (εk
αα, εk

ββ, εk
zz, γk

βz, γk
αz, γk

αβ) is given by the 6× 6 matrix Ck(z):

Ck(z) =



Ck
11(z) Ck

12(z) Ck
13(z) 0 0 0

Ck
12(z) Ck

22(z) Ck
23(z) 0 0 0

Ck
13(z) Ck

23(z) Ck
33(z) 0 0 0

0 0 0 Ck
44(z) 0 0

0 0 0 0 Ck
55(z) 0

0 0 0 0 0 Ck
66(z)


, (1)

the compact form of constitutive relations is:

σk = Ck(z)εk . (2)

The output of the present formulation is given in terms of displacements and their derivatives
made with respect to the thickness coordinate z. In order to obtain constitutive equations in
displacement form, the geometrical relations must be introduced. When shells with constant radii of
curvature are considered, the following parametric coefficients can be defined:

Hα = (1 +
z

Rα
) = (1 +

z̃− h/2
Rα

) , Hβ = (1 +
z

Rβ
) = (1 +

z̃− h/2
Rβ

) , Hz = 1. (3)

Rα and Rβ are the radii of curvature in α and β directions, respectively. z̃ and z are the two
thickness coordinates defined above. Hz = 1 because no curvature exists along the z-direction.
Hα and Hβ are the crucial points as their introduction allows for writing a general formulation valid
for spherical shells with two finite radii of curvature. This formulation can be easily extended to
single-curvature structures and plates. When the considered geometry is a cylinder or a cylindrical
panel, Rα or Rβ is infinite, which implies Hα = 1 or Hβ = 1. In the same way, when both the
radii of curvature are infinite (plate geometry), Hα = Hβ = 1. With these parametric coefficients,
the geometrical relations for each k layer of the multilayered FGM shell may be written as:

εk
αα =

1
Hα(z)

∂uk

∂α
+

wk

Hα(z)Rα
, (4)

εk
ββ =

1
Hβ(z)

∂vk

∂β
+

wk

Hβ(z)Rβ
, (5)

εk
zz =

∂wk

∂z
, (6)

γk
βz =

1
Hβ(z)

∂wk

∂β
+

∂vk

∂z
− vk

Hβ(z)Rβ
, (7)

γk
αz =

1
Hα(z)

∂wk

∂α
+

∂uk

∂z
− uk

Hα(z)Rα
, (8)

γk
αβ =

1
Hα(z)

∂vk

∂α
+

1
Hβ(z)

∂uk

∂β
. (9)
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Figure 1. Reference system and notations for the generic shell element.

These relations are written for a spherical shell with constant radii of curvature [27,28]. It is easy
to see how the relations degenerate into the ones for cylinders, cylindrical shells and plates when one
or both the parametric coefficients are equal to 1 (Rα or Rβ equals infinite). The displacement form of
the constitutive equations may be obtained introducing in Equation (2) the geometrical relations of
Equations (4)–(9):

σk
αα =

Ck
11(z)

Hα(z)
uk

,α +
Ck

11(z)
Hα(z)Rα

wk +
Ck

12(z)
Hβ(z)

vk
,β +

Ck
12(z)

Hβ(z)Rβ
wk + Ck

13(z)w
k
,z , (10)

σk
ββ =

Ck
12(z)

Hα(z)
uk

,α +
Ck

12(z)
Hα(z)Rα

wk +
Ck

22(z)
Hβ(z)

vk
,β +

Ck
22(z)

Hβ(z)Rβ
wk + Ck

23(z)w
k
,z , (11)

σk
zz =

Ck
13(z)

Hα(z)
uk

,α +
Ck

13(z)
Hα(z)Rα

wk +
Ck

23(z)
Hβ(z)

vk
,β +

Ck
23(z)

Hβ(z)Rβ
wk + Ck

33(z)w
k
,z , (12)

σk
βz =

Ck
44(z)

Hβ(z)
wk

,β + Ck
44(z)v

k
,z −

Ck
44(z)

Hβ(z)Rβ
vk , (13)

σk
αz =

Ck
55(z)

Hα(z)
wk

,α + Ck
55(z)u

k
,z −

Ck
55(z)

Hα(z)Rα
uk , (14)

σk
αβ =

Ck
66(z)

Hα(z)
vk

,α +
Ck

66(z)
Hβ(z)

uk
β . (15)

In Equations (10)–(15), the subscripts ,α, ,β and ,z have been introduced to compact the related
partial derivative symbols ∂

∂α , ∂
∂β and ∂

∂z . All the coefficients that multiply the displacements and
their derivatives are a function of the thickness coordinate z, even when both the radii of curvature
are infinite. Hα and Hβ depend on z when the relative curvature is concerned, the elastic coefficients
depend on z because of the presence of FGM layers. These features are overcome assuming the real
structure divided into a certain number M of mathematical layers. For each mathematical layer j,
the elastic and the parametric coefficients may be calculated in its middle point, with both the radii of
curvature evaluated in the middle surface Ω0 of the whole structure. The number of mathematical
layers to be introduced is the main subject of study of the present paper, and this number depends on
several parameters. If j is the index that identifies the global mathematical layers, Equations (10)–(15)
can be rewritten for a generic layer j using constant coefficients:
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σ
j
αα =

Cj
11

H j
α

uj
,α +

Cj
11

H j
αRα

wj +
Cj

12

H j
β

vj
,β +

Cj
12

H j
βRβ

wj + Cj
13wj

,z , (16)

σ
j
ββ =

Cj
12

H j
α

uj
,α +

Cj
12

H j
αRα

wj +
Cj

22

H j
β

vj
,β +

Cj
22

H j
βRβ

wj + Cj
23wj

,z , (17)

σ
j
zz =

Cj
13

H j
α

uj
,α +

Cj
13

H j
αRα

wj +
Cj

23

H j
β

vj
,β +

Cj
23

H j
βRβ

wj + Cj
33wj

,z , (18)

σ
j
βz =

Cj
44

H j
β

wj
,β + Cj

44vj
,z −

Cj
44

H j
βRβ

vj , (19)

σ
j
αz =

Cj
55

H j
α

wj
,α + Cj

55uj
,z −

Cj
55

H j
αRα

uj , (20)

σ
j
αβ =

Cj
66

H j
α

vj
,α +

Cj
66

H j
β

uj
β . (21)

The equilibrium equations for a generic mathematical layer j of a shell with constant radii of
curvature Rα and Rβ, may be written as:

H j
βσ

j
αα,α + H j

ασ
j
αβ,β + H j

αH j
βσ

j
αz,z + (

2H j
β

Rα
+

H j
α

Rβ
)σ

j
αz = 0, (22)

H j
βσ

j
αβ,α + H j

ασ
j
ββ,β + H j

α H j
βσ

j
βz,z + (

2H j
α

Rβ
+

H j
β

Rα
)σ

j
βz = 0, (23)

H j
βσ

j
αz,α + H j

ασ
j
βz,β + H j

αH j
βσ

j
zz,z −

H j
β

Rα
σ

j
αα −

H j
α

Rβ
σ

j
ββ + (

H j
β

Rα
+

H j
α

Rβ
)σ

j
zz = 0 . (24)

In [27,29], a more general version of Equations (22)–(24), which considers non-constant radii
of curvature, was presented. A closed form solution for the shell problem may be obtained when
harmonic forms for the displacement components are considered:

uj(α, β, z) = U j(z)cos(ᾱα)sin(β̄β) , (25)

vj(α, β, z) = V j(z)sin(ᾱα)cos(β̄β) , (26)

wj(α, β, z) = W j(z)sin(ᾱα)sin(β̄β) , . (27)

ᾱ = mπ
a and β̄ = nπ

a take into consideration the half-wave numbers m and n and the in-plane shell
dimensions a and b in α and β directions, respectively. U j, V j and W j are the displacement amplitudes
in α, β and z-directions, respectively.

The equilibrium equations can be rewritten in a displacement form by means of the substitution
of Equations (16)–(21) and harmonic forms (25)–(27) into the equilibrium Equations (22)–(24).
Grouping the displacement amplitudes and their derivatives, the three equilibrium equations may be
re-written in a compact form as:

Aj
1U j + Aj

2V j + Aj
3W j + Aj

4U j
,z + Aj

5W j
,z + Aj

6U j
,zz = 0 , (28)

Aj
7U j + Aj

8V j + Aj
9W j + Aj

10V j
,z + Aj

11W j
,z + Aj

12V j
,zz = 0 , (29)

Aj
13U j + Aj

14V j + Aj
15W j + Aj

16U j
,z + Aj

17V j
,z + Aj

18W j
,z + Aj

19W j
,zz = 0 . (30)
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More details about the steps that are necessary to reach this result may be found in the past
first author’s work [23]. Each Aj

s coefficient, with s varying from 1 to 19, is constant in the j layer;
and it contains a combination of mechanical and parametric coefficients, which are evaluated in the
middle point of the j layer. The system is composed of a set of second order differential equations.
The technique described in [30] can be used to obtain a set of first order differential equations.
The variables are redoubled and grouped into a vector Un = [Un Vn Wn Un ′ Vn ′ Wn ′], which is
the vector of the unknowns. ∂Un

∂z̃ = Un ′ contains the first derivatives. The output of this method is:

DjU j′ = AjU j , (31)

where Dj is a diagonal matrix. The system of first order differential equations may be solved using the
exponential matrix method [31]. In order to apply this method, Equation (31) must be rewritten as:

U j′ = Aj∗U j , (32)

where Aj∗ = Dj−1
Aj. Each of the involved matrix is constant as it has been obtained using coefficients

evaluated in the middle of each j mathematical layer. The solution of Equation (32) is:

U j(z̃j) = exp(Aj∗ z̃j)U j(0) with z̃j ε [0, hj]. (33)

z̃j is the thickness coordinate of each j mathematical layer, and it varies from 0 at the bottom to hj at
the top (see Figure 2). For each j layer, the exponential matrix can be expanded assuming z̃j = hj:

Aj∗∗ = exp(Aj∗hj) = I + Aj∗ hj +
Aj∗2

2!
hj2 +

Aj∗3

3!
hj3 + . . . +

Aj∗N

N!
hj N

, (34)

where I is the identity matrix with 6× 6 dimensions. The convergence of the exponential matrix is
really fast with N as shown in [32]. Using Equation (33), it is possible to calculate the displacement
vector at the top of each mathematical layer (z̃j = hj) starting from the value assumed at the bottom
(z̃j = 0). At each interface, the interlaminar continuity of displacements (u, v, w) and transverse
normal and transverse shear stresses (σαz, σβz, σzz) can be imposed in order to extend Equation (33) to
the whole multilayered structure. As Equation (33) is expressed in terms of displacements and their
derivatives, the conditions on the stresses are traduced into conditions on displacements and their
derivative by means of Equations (18)–(20). M− 1 transfer matrices T j−1,j are introduced to express
the links between the layer j− 1 and the layer j in matrix form:



U
V
W
U′

V′

W ′



j

b

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10



j−1,j 

U
V
W
U′

V′

W ′



j−1

t

. (35)

α, β+h/2-h/2h
Figure 2. Thickness coordinates for the generic shell element.
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The terms included in each matrix are constant as they are a function of the elastic constants in
the considered layers (evaluated in their middle point), of the parametric coefficients (evaluated
exactly at the interface) and of the radii of curvature (evaluated in the middle global surface).
A recursively introduction of Equation (35) into Equation (33) allows for obtaining the link between the
displacement vector U M(hM) (considered at the top of the last layer M) and the displacement vector
U1(0) (considered at the bottom of the layer 1):

U M(hM) = HmU1(0). (36)

The omitted steps that lead to the definition of the matrix Hm for the multilayered structure can
be found in [33].

The considered shells and plates can be subjected to loads in α, β, and z-directions, applied on the
top and/or on the bottom surface of the multilayered structure:

σzz = pzb, σαz = pαb, σβz = pβb for z = −h/2 or z̃ = 0, (37)

σzz = pzt, σαz = pαt, σβz = pβt for z = +h/2 or z̃ = h. (38)

Using the relations expressed by Equations (36)–(38), a general algebraic system in compact form
can be written:

EU1(0) = P, (39)

where P = [PT
zt PT

βt PT
αt P1

zb P1
βb P1

αb ]T contains all the loads that can be applied on both the top and the
bottom surfaces (subscripts t and b mean top and bottom, respectively. Superscripts T and 1 indicate
the last and the first layer, respectively). The advantage of this method stands in the fact that, despite of
the complexity of the materials and laminations taken into consideration, the dimension of the matrix
E is always 6× 6. The system in Equation (39) allows to find the values of the vector U evaluated
at the bottom of the first layer. Using recursively Equations (33) and (35), it is possible to evaluate
continuously the vector U through the thickness direction z.

3. Results

The results proposed in this section are given in order to identify the optimum for combined
values of the M number of mathematical layers and the N order of expansion for the exponential
matrix. The introduction of the mathematical layers is necessary to obtain constant coefficients in
the equilibrium equations by approximating the FGM properties and the curvature terms for shells.
Four different geometries are proposed. The first case considers a square plate, and geometry is shown
in Figure 3. The in-plane dimensions are a = b = 1 m. Two different thickness ratios have been taken
into account: a/h = 20 for the thinner plate and a/h = 4 for the thicker plate. Figure 4 shows the
second geometry for the cylinder. The radius of curvature is infinite in β-direction (Rβ = ∞) and it is
finite in α direction (Rα = 10 m). The α dimension of its middle surface is equal to a = 2πRα, while the
dimension in β direction is b = 20 m. The considered thickness ratios are Rα/h = 10 and Rα/h = 4.
Both the plate and the cylinder consider the same material configuration, a single FGM layer with a
metallic and a ceramic phase. The Young modulus changes across the thickness with the following law:

E(z) = Em + (Ec − Em)Vc. (40)

Em is the Young modulus for the metallic phase and Ec is the Young modulus for the ceramic
phase. Em = 70 GPa and Ec = 380 GPa are considered. Vc is the volume fraction of the ceramic phase,
and it is defined as:

Vc =

(
2z + h

2h

)κ

where − h
2
≤ z ≤ h

2
. (41)
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Vc is zero at the bottom of the structure (z = − h
2 ), which means fully metallic, and it is equal

to 1 at the top of the structure (z = h
2 ), which means fully ceramic. κ is a parameter, which changes

the volume fraction law across the thickness. It may be equal to 0.5, 1 and 2. In the first benchmark,
κ = 0.5 is considered; in the second benchmark, a linear evolution of Vc is chosen with κ = 1. Figure 5
shows the evolution of the elastic properties through the thickness and the influence of the parameter κ.
The Poisson ratio is constant through the thickness (νm = νc = 0.3). This feature makes the Young
modulus be the only quantity that changes through the thickness. The third geometry is presented
in Figure 6 and it is a cylindrical shell panel. The only finite radius of curvature is the one in α

direction, and it is equal to Rα = 10 m. The following in-plane dimensions are taken into account:
a = π

3 Rα and b = 20 m. Figure 7 introduces the fourth and last geometry. A spherical shell panel
is considered, having the same radii of curvature in both directions (Rα = Rβ = 10 m). In addition,
the in-plane dimensions are the same in the two directions and they are expressed in terms of Rα as
a = b = π

3 Rα. Both the third and the fourth cases consider a sandwich configuration, with bottom
and top isotropic skins and an FGM core. The thickness of the bottom skin is h1 = 0.15h, and it is full
metallic with Young modulus Em = 70 GPa. The top skin is full ceramic with the Young modulus
Ec = 200 GPa. The top skin has the same thickness of the bottom skin (h3 = 0.15h). The FGM core has
thickness h2 = 0.7h; the Young modulus of this layer changes according to the same law presented in
Equation (40). It changes from a fully metallic phase on the bottom to a fully ceramic phase on the
top. As the mechanical properties only change in the range −0.7 h

2 ≤ z ≤ 0.7 h
2 , the thickness of the

core (h2 = 0.7h) must replace the total thickness h in Equation (41). The parameter κ has been chosen
equal to 2 in the case of the cylindrical shell and equal to 1 for the spherical panel. Figure 8 shows
the material properties through the thickness for these last two shell geometries. The Poisson ratio
remains constant through the thickness and it is equal to νm = νc = 0.3. In both cases, a moderately
thick (Rα/h = 10) and a thick shell (Rα/h = 4) are considered.

α

β

z

a

b

h

Figure 3. The square plate geometry for Case 1.

h b

a

Figure 4. The cylinder geometry for Case 2.
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Figure 5. Functionally Graded Material (FGM) configuration and elastic properties for Cases 1 and 2.
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Figure 6. The cylindrical shell geometry for Case 3.
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Figure 7. The spherical shell geometry for Case 4.
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Figure 8. FGM configuration and elastic properties for Cases 3 and 4.

In all four of the cases, the load is applied on the top surface and in the z-direction; its amplitude
is equal to 1 Pa. The considered half-wave numbers differ from case to case. Cases 1, 3 and 4 take into
consideration (m, n) = (1, 1); for the cylinder Case 2, (m, n) = (2, 1) is set. The results shown in tables
and figures are given in no-dimensional form. For the plates of Case 1, they are:

w̄ =
104Emw

Pzh(a/h)4 , σ̄βz =
σβz

Pz(a/h)
. (42)

All the results for shells of Cases 2–4 are obtained using the following no-dimensional quantities:

{ū, v̄, w̄} = 104Em{u, v, w}
Pzh(Rα/h)4 , σ̄αα =

102σαα

Pz(Rα/h)2 , σ̄αz =
102σαz

Pz(Rα/h)
, σ̄zz = σzz . (43)
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Table 1 summarizes the results obtained for the plate; the displacement w̄ and the stress σ̄βz are
shown. The displacement is given for the thicker plate (a/h = 4); the stress is considered for the thinner
one (a/h = 20). In this case, the curvature-related terms are not present. However, the introduction of
a certain number of mathematical layers is necessary to take into account the through-the-thickness law
followed by the mechanical properties. The N order of expansion is ineffective in this sense because
the exponential matrix of each layer contains the mechanical properties evaluated in the middle point
of the layer. This effect is clear as by increasing the order of expansion N, the result converges at a
correct value only for a minimum value of M. At least M = 60 mathematical layers are necessary
for the thinner plate, while the thicker plate needs at least M = 250 layers to obtain correct results.
Both cases must be combined with an N order of expansion equal to 3. Some of the results of Table 1
are also shown in Figure 9 for the thinner plate. The plots are drawn for different and increasing values
of the number of mathematical layers (until M = 80, which allows the convergence).

Table 1. Case 1, one-layered Functionally Graded Material (FGM) (κ = 0.5) plate. Displacement w̄ for
thickness ratio a/h = 4 and stress σ̄βz for thickness ratio a/h = 20, both evaluated in the middle of
the thickness and given as dimensionless values. One physical layer (NL = 1) divided into M global
mathematical layers. 3D reference solution in Brischetto [23]. NaN means Not a Number. Digits given
in bold are the correct values.

w̄(a/2, b/2, 0); a/h = 4

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 1 NaN 25.06 587.80 68.89 98.26 90.80 92.36 92.15 92.18 92.18 92.18 92.18
M = 2 108.43 66.33 103.67 96.70 98.32 98.22 98.23 98.23 98.23 98.23 98.23 98.23
M = 5 105.18 96.78 103.35 103.18 103.22 103.22 103.22 103.22 103.22 103.22 103.22 103.22
M = 10 105.54 103.06 104.77 104.76 104.77 104.77 104.77 104.77 104.77 104.77 104.77 104.77
M = 20 105.66 104.92 105.35 105.35 105.35 105.35 105.35 105.35 105.35 105.35 105.35 105.35
M = 40 105.70 105.45 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56 105.56
M = 60 105.70 105.56 105.61 105.61 105.61 105.61 105.61 105.61 105.61 105.61 105.61 105.61
M = 80 105.70 105.61 105.63 105.63 105.63 105.63 105.63 105.63 105.63 105.63 105.63 105.63
M = 100 105.69 105.63 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.65
M = 130 105.69 105.64 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.65 105.65
M = 160 105.69 105.65 105.66 105.66 105.66 105.66 105.66 105.66 105.66 105.66 105.66 105.66
M = 200 105.69 105.66 105.66 105.66 105.66 105.66 105.66 105.66 105.66 105.66 105.66 105.66
M = 250 105.68 105.66 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67
M = 300 105.68 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67
M = 350 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67
M = 400 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67 105.67

σ̄βz(a/2, 0, 0); a/h = 20

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 1 NaN 0.0802 0.2448 0.2368 0.2391 0.2391 0.2391 0.2391 0.2391 0.2391 0.2391 0.2391
M = 2 0.0541 0.1560 0.2367 0.2364 0.2365 0.2365 0.2365 0.2365 0.2365 0.2365 0.2365 0.2365
M = 5 0.1660 0.2220 0.2414 0.2414 0.2414 0.2414 0.2414 0.2414 0.2414 0.2414 0.2414 0.2414
M = 10 0.2035 0.2373 0.2426 0.2426 0.2426 0.2426 0.2426 0.2426 0.2426 0.2426 0.2426 0.2426
M = 20 0.2231 0.2419 0.2432 0.2432 0.2432 0.2432 0.2432 0.2432 0.2432 0.2432 0.2432 0.2432
M = 40 0.2332 0.2431 0.2434 0.2434 0.2434 0.2434 0.2434 0.2434 0.2434 0.2434 0.2434 0.2434
M = 60 0.2366 0.2433 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 80 0.2384 0.2434 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 100 0.2394 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 130 0.2403 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 160 0.2409 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 200 0.2415 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 250 0.2419 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 300 0.2422 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 350 0.2424 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435
M = 400 0.2425 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435 0.2435

The displacement v̄ and the stress σ̄zz are shown in Table 2 for the closed cylinder.
The no-dimensional forms introduced in Equation (43) for these quantities have been considered.
The results converge to the exact values faster than those for the plate case even if curvature terms
are included in the cylinder. This feature is due to some advantages of this geometry and the relative
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lamination. First of all, an easier law for the mechanical characteristics (with κ = 1, the elastic
properties develop linearly through the thickness). Moreover, the geometry also plays an important
role as the symmetry makes the problem easier to be solved and the closed geometry increases the
rigidity of the structure. In the thinner case (Rα/h = 10), only M = 10 mathematical layers are
necessary to stabilize the stress value (when it is coupled with a third-order of expansion for the
exponential matrix). On the other side, the same order of expansion N = 3 needs at least M = 160
mathematical layers to obtain the convergence of the displacement v̄ because a thicker shell is analyzed.
Figure 10 confirms the trend shown in Table 2 for the displacement v̄ of the thicker cylinder; the results
move close to the exact value as the number M mathematical layers is increased. This result is achieved
with only a third expansion order for the exponential matrix (N = 3).
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Figure 9. Case 1, one-layered FGM (κ = 0.5) plate with thickness ratio a/h = 20. Stress σ̄βz(a/2, 0, 0)
vs. N order of expansion of the exponential matrix for different M numbers of global mathematical
layers. Reference solution in Brischetto [23] is here indicated as REF.
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Figure 10. Case 2, one-layered FGM (κ = 1) cylinder with thickness ratio Rα/h = 4. Displacement
v̄(a/2, 0, 0) vs. N order of expansion of the exponential matrix for different M numbers of global
mathematical layers. Reference solution in Brischetto [23] is here indicated as REF.
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Table 2. Case 2, one-layered FGM (κ = 1) cylinder. Displacement v̄ for thickness ratio Rα/h = 4
and stress σ̄zz for thickness ratio Rα/h = 10, both evaluated in the middle of the thickness and given
as dimensionless values. One physical layer (NL = 1) divided into M global mathematical layers.
3D reference solution in Brischetto [23]. Digits given in bold are the correct values.

v̄(a/2, 0, 0); Rα/h = 4

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 1 −91.308 0.273 −11.682 −7.335 −7.671 −7.630 −7.631 −7.631 −7.631 −7.631 −7.631 −7.631
M = 2 −31.308 6.919 6.776 7.078 7.707 7.707 7.707 7.707 7.707 7.707 7.707 7.707
M = 5 −4.599 10.601 10.759 10.776 10.776 10.776 10.776 10.776 10.776 10.776 10.776 10.776
M = 10 3.603 11.326 11.377 11.379 11.379 11.379 11.379 11.379 11.379 11.379 11.379 11.379
M = 20 7.600 11.500 11.514 11.514 11.514 11.514 11.514 11.514 11.514 11.514 11.514 11.514
M = 40 9.584 11.544 11.548 11.548 11.548 11.548 11.548 11.548 11.548 11.548 11.548 11.548
M = 60 10.243 11.553 11.554 11.554 11.554 11.554 11.554 11.554 11.554 11.554 11.554 11.554
M = 80 10.572 11.556 11.556 11.556 11.556 11.556 11.556 11.556 11.556 11.556 11.556 11.556
M = 100 10.770 11.557 11.557 11.557 11.557 11.557 11.557 11.557 11.557 11.557 11.557 11.557
M = 130 10.952 11.558 11.558 11.558 11.558 11.558 11.558 11.558 11.558 11.558 11.558 11.558
M = 160 11.066 11.558 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559
M = 200 11.165 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559
M = 250 11.244 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559
M = 300 11.296 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559
M = 350 11.334 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559
M = 400 11.362 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559 11.559

σ̄zz(a/2, b/2, 0); Rα/h = 10

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 1 0.5118 0.4456 0.4723 0.4699 0.4701 0.4701 0.4701 0.4701 0.4701 0.4701 0.4701 0.4701
M = 2 0.3457 0.3292 0.3333 0.3331 0.3331 0.3331 0.3331 0.3331 0.3331 0.3331 0.3331 0.3331
M = 5 0.3432 0.3376 0.3382 0.3382 0.3382 0.3382 0.3382 0.3382 0.3382 0.3382 0.3382 0.3382
M = 10 0.3351 0.3326 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 20 0.3339 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 40 0.3333 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 60 0.3331 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 80 0.333 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 100 0.3329 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 130 0.3329 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 160 0.3328 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 200 0.3328 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 250 0.3328 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 300 0.3328 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 350 0.3328 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327
M = 400 0.3328 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327

The results obtained for the sandwich cylindrical panel are shown in Table 3; the stress σ̄αz for the
thinner shell (Rα/h = 10) and the displacement ū for the thicker geometry (Rα/h = 4), are presented.
The material property law follows a second-order evolution inside the core, while constant elastic
properties through the thickness are considered for both the external skins. This case is interesting
as it shows that the impact of different factors follows a behavior, which is a priori unpredictable.
In the presented case, the concerned stress reaches the convergence with M = 160 mathematical layers,
starting from an order of expansion N for the exponential matrix equal to 3. This result can be easily
explained because the geometry and the lamination scheme are harder to be described than those
presented in the previous case (cylinder). On the contrary, the displacement ū, which is a direct output
for the proposed solution, converges using only M = 40 with the same order of expansion (N = 3),
even if a thicker plate is considered. The convergence of the stress σ̄αz with increasing values of M is
shown in Figure 11.

The results for the last considered geometry are presented in Table 4 where a sandwich spherical
shell panel is analyzed. The through-the-thickness law for the elastic properties is simpler because the
volume fraction in the FGM core follows a linear evolution with respect to z (κ = 1). The stress σ̄αα is
considered for the thicker structure. The second-order expansion combined with M = 40 guarantees
the convergence. N = 3 expansion order allows the number of mathematical layers to be further
reduced until M = 20. The thicker case (Rα/h = 4) also shows that the number of mathematical layers
can be strongly reduced when the order of expansion is increased. Passing from N = 2 to N = 3,
the mathematical layers can be reduced from M = 200 to M = 80. The results presented in Table 4 are
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shown in Figure 12 for the displacement w̄ with a progressive increase of the number of mathematical
layers until M = 120.
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Figure 11. Case 3, sandwich cylindrical shell with FGM (κ = 2) core and thickness ratio Rα/h = 10.
Stress σ̄αz(0, b/2, 0) vs. N order of expansion of the exponential matrix for different M numbers of
global mathematical layers. Reference solution in Brischetto [23] is here indicated as REF.

Table 3. Case 3, sandwich cylindrical shell with FGM (κ = 2) core. Displacement ū for thickness ratio
Rα/h = 4 and stress σ̄αz for thickness ratio Rα/h = 10, both evaluated in the middle of the thickness
and given as dimensionless values. Three physical layers (NL = 3) divided into M global mathematical
layers. 3D reference solution in Brischetto [23]. Digits given in bold are the correct values.

ū(0, b/2, 0); Rα/h = 4

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 3 469.72 246.78 320.81 312.72 313.62 313.57 313.58 313.58 313.58 313.58 313.58 313.58
M = 20 329.32 319.37 320.96 320.95 320.95 320.95 320.95 320.95 320.95 320.95 320.95 320.95
M = 40 324.87 320.57 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 60 323.51 320.79 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 80 322.85 320.87 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 100 322.46 320.90 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 120 322.21 320.92 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 140 322.03 320.93 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 160 321.89 320.94 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 200 321.70 320.95 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 240 321.58 320.95 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 260 321.53 320.95 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 300 321.45 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 340 321.40 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96
M = 400 321.33 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96 320.96

σ̄αz(0, b/2, 0); Rα/h = 10

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 3 191.60 24.041 28.522 28.375 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383
M = 20 30.081 28.265 28.373 28.373 28.373 28.373 28.373 28.373 28.373 28.373 28.373 28.373
M = 40 29.163 28.354 28.381 28.381 28.381 28.381 28.381 28.381 28.381 28.381 28.381 28.381
M = 60 28.889 28.371 28.382 28.382 28.382 28.382 28.382 28.382 28.382 28.382 28.382 28.382
M = 80 28.758 28.376 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383
M = 100 28.681 28.379 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383
M = 120 28.630 28.380 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383
M = 140 28.594 28.381 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383 28.383
M = 160 28.567 28.382 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384
M = 200 28.530 28.383 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384
M = 240 28.505 28.383 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384
M = 260 28.496 28.383 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384
M = 300 28.481 28.383 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384
M = 340 28.469 28.383 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384
M = 400 28.456 28.383 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384 28.384
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Figure 12. Case 4, sandwich spherical shell with FGM (κ = 1) core and thickness ratio Rα/h = 4.
Displacement w̄(a/2, b/2, 0) vs. N order of expansion of the exponential matrix for different M numbers
of global mathematical layers. Reference solution in Brischetto [23] is here indicated as REF.

Table 4. Case 4, sandwich spherical shell with FGM (κ = 1) core. Displacement w̄ in the middle of the
thickness for thickness ratio Rα/h = 4 and stress σ̄αα at the top surface for thickness ratio Rα/h = 10,
both given as dimensionless values. Three physical layers (NL = 3) divided into M global mathematical
layers. 3D reference solution in Brischetto [23]. Digits given in bold are the correct values.

w̄(a/2, b/2, 0); Rα/h = 4

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 3 228.39 172.20 208.31 202.13 202.94 202.87 202.87 202.87 202.87 202.87 202.87 202.87
M = 20 204.15 200.55 201.10 201.08 201.08 201.08 201.08 201.08 201.08 201.08 201.08 201.08
M = 40 202.64 201.00 201.14 201.13 201.13 201.13 201.13 201.13 201.13 201.13 201.13 201.13
M = 60 202.14 201.09 201.14 201.14 201.14 201.14 201.14 201.14 201.14 201.14 201.14 201.14
M = 80 201.90 201.11 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 100 201.75 201.13 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 120 201.65 201.13 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 140 201.58 201.14 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 160 201.52 201.14 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 200 201.45 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 240 201.40 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 260 201.38 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 300 201.35 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 340 201.33 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15
M = 400 201.30 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15

σ̄αα(a/2, b/2, h/2); Rα/h = 10

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

M = 3 17.75 11.27 11.99 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94
M = 20 12.72 12.02 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 40 12.37 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 60 12.26 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 80 12.20 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 100 12.16 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 120 12.14 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 140 12.13 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 160 12.11 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 200 12.10 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 240 12.09 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 260 12.08 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 300 12.07 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 340 12.07 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03
M = 400 12.06 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03 12.03

4. Conclusions

The present paper proposes the 3D equilibrium equations in mixed orthogonal curvilinear
coordinates to perform the 3D exact static solution of plates and shells with Functionally Graded
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Material (FGM) layers. The problem is solved for different kinds of geometry: plates, cylinders,
spherical and cylindrical shells can be analyzed via a unique formulation. The second order differential
equations are reduced to the first order differential equations redoubling the number of variables.
The system of first order equations is solved through the thickness using the exponential matrix
method. This method allows for obtaining as a direct result the displacement amplitudes and the
relative derivatives with respect to z. The coefficients of the differential equations are not constant as
they depend on the thickness coordinate. This dependence is related to the material (as the mechanical
properties of FGM layers change across the thickness) and to the geometry (as the curvature is
considered by means of parametric coefficients). The structures are divided into M mathematical
layers to approximate these values in the middle of each layer. The third order of expansion for
the exponential matrix combined with the opportune value of M always give stable results. Several
parameters play a significant role in the definition of these values, but these effects cannot be a priori
determined. The complexity of the FGM law is one of the most important parameters. The influence of
geometry and thickness ratio is also fundamental. Using an expansion N = 3 combined with M = 300
mathematical layers, the convergence to the exact results for each possible case is always guaranteed.
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