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Abstract: As a result of increasing machines capabilities in modern manufacturing, machines run
continuously for hours. Therefore, early fault detection is required to reduce the maintenance
expenses and obviate high cost and unscheduled downtimes. Fault diagnosis systems that provide
features extraction and patterns classification of the fault are able to detect and classify the failures
in machines. The majority of the related works that reported a procedure for detection of rotor bar
breakage so far have applied motor current signal analysis using discrete wavelet transform. In this
paper, the most appropriate features are extracted from the coefficients of a wavelet packet transform
after fast Fourier transform of current signal. The aim of this study is to develop an effective and
sensitive method for fault detection under low load conditions. Through combining the strength
of both time-scale and frequency domain analysis techniques, a unified wavelet packet signature
analysis pinpoints the fault signature in the special fault-oriented frequency bands. The wavelet
analysis combined with a feed-forward neural network classifier provides an intelligent methodology
for the automatic diagnosis of the fault severity during runtime of the motor. The faults severity is
considered as one, two, and three broken rotor bars. The results have confirmed that the proposed
method is effective for diagnosing rotor bar breakage fault in an induction motor and classification of
fault severity.

Keywords: induction motor; broken rotor bar; wavelet packet signature analysis; fast Fourier
transform; multi-layer perceptron neural network

1. Introduction

As a basic segment of the present industrial plants, electrical machines expedite industrial tasks
and productions. Owing to its robust, well-constructed, and simple design, induction motors (IMs) are
widely used in manufacturing processes. Nevertheless, three-phase induction machines are subjected
to inevitable electrical, mechanical, and environmental stresses. Among various failures occurred in
different parts of a machine, broken rotor bar (BRB) is of significance due to its serious consequent
malfunctions caused. Presence of broken rotor bar leads to torque reduction, incompatible motor
operation and safety concerns [1]. In order to ensure the availability of industrial systems and the
safety of goods and persons on the site, the monitoring and diagnosis of rotor faults are of prime
importance. Rotor irregularity in the machine can be diagnosed at an early stage by the processing
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of the monitored signal. Employing an appropriate method of feature extraction that indicates the
presence of rotor fault from the processed signal improves the classification of the motor condition and
thus the performance of decision-making [2]. Comparing all numerous signals for feature extraction
and fault diagnosis presented in [3], measuring the stator currents of an induction motor is more
cost-effective and easy to implement for fault detection objectives. Motor current signature analysis
was extensively used based on the monitoring of the sideband components at (1 & 2 ks) f;, where f; is
the fundamental frequency and s is the slip [4,5].

The intrinsic dynamic nature and/or the external excitations, especially under time-varying
operational conditions during machine operations, often lead to non-stationary signals. Such non-stationary
signals contain rich information about the machinery health conditions. Therefore, important fault
features can be extracted from these signals for fault detection and diagnosis, if proper analysis
methods are applied [6]. Feature extraction using fast Fourier transform (FFT) produces good results
when the waveforms examined are stationary or periodic, but it is not suitable for non-stationary
signals. In [7], the performance of Fourier and wavelet transform (WT) for efficient recognition of
broken rotor bar in a squirrel-cage induction machine was evaluated. Wavelet transform is a time-scale
representation of a signal, and its window width is automatically adjustable for various frequency
components [8]. The way wavelet analysis localizes signal’s information in the time-scale plane makes
it more suitable for processing the non-stationary signals. Therefore, important fault features can be
extracted from these signals for early identification of the faults through wavelet transform. Hence, in
fault diagnostics domain, wavelet transform has been used to extract dominant frequency components
and time variation features and describe a more precise behavior of the stator current signal [9]. In [10],
novel indices for BRBs diagnosis is introduced for three-phase induction motors based on discrete
wavelet coefficients of stator current in a specific frequency band. In [11], a review of using WT for
rotor fault diagnosis is presented. In [8], a fault diagnosis method based on discrete wavelet transform
is proposed for diagnosis and severity determination of the broken bars both in the transient and
steady conditions. Although many researchers have been devoted the diagnosis of the BRBs for many
years, there are still some difficulties with regard to the broken bars diagnosis and determination of
specific sub-bands with narrow bandwidth without the attendance of other faults [12].

To alleviate this inconvenience, wavelet packet transform (WPT), owning to its more detailed
decomposition capability, has been employed for analysis of the signal obtained from condition
monitoring of the machine. On the other hand, as the wavelet transform is a time-scale domain
technique, it does not provide frequency information on the characteristic feature components. Wavelet
packet transform contains powerful capacity to extract the features that are sensitive to the change
of the system. In [13], wavelet packet transform was used to decompose the stator current signal
and selected the coefficients as the feature to detect broken rotor bars, as well as air-gap eccentricity.
Further research was performed in [14], in which the chosen depth and nodes to follow broken rotor
bar are different from those in some other studies, like [15,16]. One of the important points which
needs to be affirmed in wavelet packet-based techniques is the fact that frequency order is not the
same as the node order due to down sampling [15]. To tackle this issue, the fine resolution advantage
of wavelet packet decomposition (WPD) integrated with the spectral analysis of Fourier transform to
extract the most appropriate sub-band including rotor fault feature frequency [17,18].

A further step toward an intelligent, reliable, and efficient diagnostic system may be provided
by artificial intelligence (AI) techniques such as artificial neural networks (ANN), especially during
the decision process. Wavelet analysis techniques and ANN were integrated for fault diagnosis in
induction motors [14,19] and gearbox [20]. ANN, as one of the most popular classification methods for
monitoring of equipment performance, uses the relationship between the type of fault and a set of
patterns extracted from the collected signals without establishing explicit models.

As can be seen in Table 1, these three researches also focus on rotor fault detection. However,
there are some drawbacks in their studies, such as extracting only one feature to detect the fault or
evaluating only one mother wavelet behavior impact on choosing the most appropriate frequency band.
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Table 1. A summary on selected criteria for fault detection using WPD.

Mother Artificial

Ref.  Fault Signal Processing Feature Index Wavelet Intelligent Disadvantages
[14] BRB WPD Feature coefficient Coif 4 Artificial neural iny one feature is extracted &
network Disordering of sub-band frequency
Statistical feature Adaptive . .
[21] BRB WPD of wavelet Haar neuro-fuzzy Only one mother wavele_t 18 Smdl‘?d &
. Lack of BRB fault severity detection
packet 1-d inference system

WPD, Empirical Multi-layer . .
Energy moment Db5 feed-forward Only one mother wavelet is studied &

(221 Rotor Mode. . of IMFs Only one feature is extracted
Decomposition neural network

WPD, wavelet packet decomposition; BRB, broken rotor bar; IMF, the intrinsic mode functions.

Almost all methods for fault classification are sophisticated. However, a trade-off exists so that
increasing the complexity the fault detection capability is increased together with computational
cost [23]. Therefore, the contribution of this paper consists of three points: In the signal processing
step, exact localized fault frequency sub-bands are determined based on the combination of WPD
and FFT named as wavelet packet signature analysis (WPSA) under arbitrary load conditions. In the
feature extraction step, wavelet statistical parameters of are obtained from stator current and they
are used as an input vector to the neural network (NN). In the classification step, a straightforward,
small-sized, low-cost multi-layer perceptron neural network (MLP-NN) is used in order to have an
intelligent, reliable, and noninvasive classifier.

2. Broken Rotor Bar in IMs

The squirrel-cage rotor is the inner part of the motors, and it is rotated by electromagnetic field,
which is induced in its coils by stator field. The rotor then applies the rotational force to the external
equipment. Squirrel-cage rotor, depending on the construction of the cage, is divided into cast and
fabricated rotor. The material used for cast cage is aluminum and cast cage rotors are generally used in
small-sized motors, whereas the material used for fabricated cage is copper and fabricated cage rotors
are used for high-power motors. Although the squirrel-cage rotor is rugged, rotor defects, such as broken
rotor bar, cracked end-ring, and bent shaft, do occur. The percentage of motor failures attributed to rotor
problems is not too large, but they can cause extensive damage to the motor if left undetected [24].

Broken bar faults may happen due to a variety of reasons, such as mechanical, thermal, or magnetic
stresses; environmental stresses during motor operation; and defects in design of motor structure and
its manufacturing [1]. Among different types of rotor fault, broken bar and end-ring are mainly caused
by manufacturing defects and excessive start-stop cycles or frequent speed changes. Motors of low and
medium power generally involve casting rotor bars. Small defects that may occur during the casting
process cause important failures in the bar and the other reasons mentioned in [25]. In the rotor of a
high-power motor, copper bars are generally connected to the end-rings through welding, and if this
procedure are not performed carefully, some defects are generated [26]. Rotor design plays a key role
in the severity of rotor irregularity. If the rotor has a closed bar design, the fault severity is expected to
be low because of the iron acting of the rotor that holds the asymmetrical bar in place. Nevertheless,
if the rotor has an open bar design, the asymmetrical severity enhances significantly [24].

Rotor bar failures bring about secondary failures in other parts of electrical machines.
These secondary failures cause severe malfunctions of the motor and reduce the motor efficiency
that increases the operational costs. For example, current in bars adjacent to the broken one increases
up to 50% of rated current [27] and thus causes unbalanced currents and torque pulsation, which
decrease the average torque [28]. When distribution of rotor current is changed, adjacent bars to
the broken one are overheated, which causes other irregularities [29] and breakage of several other
bars [30]. Variation of heating around the bars can also make a bow in the rotor and then generate
eccentricity. Rotor eccentricity causes basic rotor unbalance and a greater unbalanced magnetic pull [31].
Moreover, if a broken rotor bar rises out of the slot due to the centrifugal force, the bar will contact the
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stator winding and damage it. The small pieces come from a broken rotor bar also damage the stator
windings and laminations during operation [25]. In addition to the secondary failures from broken
rotor bar, mentioned above, this failure leads to a shaft vibration and thus air gap eccentricity [9].
Besides vibration, broken rotor bar also causes sparking and noise during the motor start-up and its
normal operation [25,32], which threatens the operation safety. It is evident that during start-up, more
excessive vibration, more destructive sparking, and louder noise are generated.

According to the explanation above, the effects of broken bar significantly lessen the efficiency
and performance of electrical machines and early detection of this failure is essential [33]. Detection
of broken rotor bar in its early ages not only secures the motor performance but also reduces risk of
other types of failures. When the failure is at its early stage, symptoms of the faults are small and the
motor apparently operates normally, therefore, the fault cannot be detected [10]. A relatively large
number of studies have been performed on early detection of rotor faults, especially broken rotor bar,
in squirrel-cage induction machines [1].

2.1. Effect of Broken Rotor Bar Fault on Rotor Magneto-Motive Force

The effect of broken rotor bar on the rotor magneto-motive force (MMF) and consequently its
impact on the stator current waveform will be discussed in this section. The MMEF of the rotor can
be resolved into the forward component corresponding to the healthy case, which is rotating at
synchronous speed, Wsyn, with respect to the stator (or SWsyn with respect to the rotor). However, when
a rotor bar cracks, no current can flow through the bar, and hence no magnetic flux is generated around
that bar. In the case that there is no magnetic flux around a bar, a non-zero backward rotating field and
thus an asymmetry in the rotor MMF are produced. It has to be noted that for a symmetrical rotor
with no broken bar, the resultant of backward rotating field is zero. The non-zero backward rotating
component, which is generated due to the virtual presence of a bar carrying an equal opposite current
to the original bar, is subject to breakage in the healthy rotor.

This non-zero backward MMF due to broken bar rotates at slip frequency corresponding to the
slip speed, swsy,, with respect to the rotor and induces harmonic currents in the stator windings, which
are superimposed on the stator winding currents. Accordingly, the speed of the non-zero backward
MMF with respect to the stator can be calculated as follow:

WHMMF = —S5Wsyn + Wiy = —SWsyn + (1- S)wsyn =(1- Zs)wsyn 1)

These superimposed features are used as signatures for the detection of broken rotor bar in MCSA
techniques [33].

2.2. Effect of Broken Rotor Bar in Frequency Domain

The non-zero backward MMF induces electro motive forces (EMFs) in the stator windings at a
frequency equal to f,, = (1 — 2s)fs, where f; is the fundamental frequency, s is slip,and k=1,2,3 ...
The fundamental frequency is defined as f; = (p/47)wsyn, Where p is the number of poles and wsy,, is
synchronous speed. This sideband component appears in the frequency spectrum of the stator around
the fundamental frequency in the presence of the cracked or broken rotor bar. It has been indicated
that the amplitude of this sideband frequency component is proportional to the number of broken
rotor bars present in the electrical machine [34]. Another parameter that can affect the magnitude of
these sidebands is the level of motor-load [1,35].

3. The Construction of Wavelet Packet Signature Analysis

Mallat in 1989 introduced a recursive algorithm known as the pyramid algorithm [36].
This algorithm, which is deemed to be an important algorithm for computing the DWT coefficients,
consists of a conjugate pair of low-(H) and high-(G) pass filters followed by down sampling giving
two coefficients, namely details and approximations. In the next decomposition levels, the filters are
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only applied to the approximations. Compared with DWT, only the approximate coefficients will be
further decomposed at each level, both the approximate coefficients and the detail coefficients will be
further decomposed at each level in WPD that offers a richer signal analysis [37,38]. Wavelet packet
atoms are waveforms with three naturally interpreted indices.

() =2%¢f(2ft_k) i=0,1,23... @)

where integer j determines the dilation, and k and 7 are called the time-localization and modulation
parameters of the wavelet packet, respectively. Wavelet packet atoms are defined by the following
sequence of functions:

2Zh )1 (2t = k) 3)

o0 () 223 )12t = k) @)

The conjugate mirror filters hi(k) and g(k) with finite impulse responses (FIR) of size k can define the
fast binary WPD algorithm of the signal. The first two WP functions ¢ ,(t) = ¢(t) and ¢} 5(t) = ¥ (t)
are also called the scaling function and wavelet function, respectively [36,39-41]. Each output of the
filter consists of N/2 wavelet coefficients. The wavelet packet coefficients (WPC) of signal f(t) are
calculated by taking the inner product of the signal and basic function:

= [ swiear ©

Since the wavelet coefficients will highpoint the changes in signals, the wavelet coefficients-based
features are relatively suitable for early and high sensitivity fault detection. The wavelet packet
coefficient features have been broadly used for characterizing machine faults. Although these
coefficients are associated with frequency components, they are modified in the time domain (each
coefficient, C!, corresponds to a time range). Each C]l:(k) coefficients measure a specific sub-band
frequency content. For a discrete signal,

Chy(1) = ;h(k 27)Cj (k) ©6)
Ciil(n) = ;g(k 21)Cj (k) 7)

The frequency bandwidth of WPT coefficient can be calculated by [42,43].

RS

2j+1°  9j+1

®)

The wavelet transform is commonly used in the time domain, which is why the frequency
localization of wavelet packets is more complicated to analyze. The popularity of wavelets is due to
its dilation and translation properties. Dilation property is used to adjust the width of the frequency
band along with the location of its center frequency, and the translation property can be used to
automatically zoom in and out in order to locate the positions of high-frequency and low-frequency
changes. As mentioned above, the parameter i is the interpretation of oscillation. The basic idea of the
wavelet packets is that for fixed values of j and k, l/’;:.k (t) analyzes the fluctuations of the signal roughly
around the position 2/ k, at the scale 2/, and at various frequencies for the different admissible values of
the last parameter i. Note that the method of decomposition described above does not result in a WPT
tree displayed in increasing frequency order. In fact, the delicate point is to realize that the naturally
order fori=0,1,2,3,4,5,6,7 does not matched exactly the order defined by the number of oscillations
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in wavelet packet decomposition. The frequency orderisi=0,1, 3,2, 6,7, 5, 4 as highlighted in Figure 1
by dashed lines.

Original SIgnal
Level 0 0,0)

Level 1 A(1,0) Da,1)
] '
|--J———I |——J———,
Level 2 A(2,0) D(2,1) : D(23) | : AQ2) |
L L
[ S P s s R
Level 3| AG,0) D@G,1) I DB3 || AB2 | | DGO 11 ABY | | AG5 | ! DB |
[ T T EU N S S S (N SRR

Figure 1. Three-layer structure of wavelet packet decomposition based on frequency order.

On the other hand, due to the trade-off between time localization and frequency resolution,
the resolutions in time and frequency domains cannot reach their highest levels concurrently. Therefore,
the signal processing tool is required to have the frequency resolution power of the Fourier transform
and the time resolution power of the wavelet transform. To obtain frequency characteristic associated
with BRB and develop data analysis of wavelet transform, further FFT analysis can be enhanced the
overall effectiveness of feature extraction. In general, spectral analysis and wavelet packet transform
represent a signal from different perspectives.

4. Proposed Fault Diagnosis Algorithm

In order to assess the proposed intelligent diagnosis system, the main characteristics of our
experiments performed on a three-phase induction machine with: Rated voltage: 415 V, Rated power:
750 W, six poles, primary rated current: 2.1 A, rated speed: 915 rpm. As shown in Figure 2a, the bench
test has been set up, consisting of squirrel-cage induction motors, an AC generator, and a resistive
bank, which provide four different loadings 10%, 35%, 50%, and 80% of the full load under both
healthy and faulty conditions to study the effects of putting various loads in the fault identification
procedure. For each condition of the motor, 20 sets of stator current signal have been collected and was
sampled at 2 KHz before and after defects with a sample number of N = 2000 during the steady-state
operating condition of the motor. In total, 320 sets of experiment were performed; 20 sets of motor
current from four motors with different severity operating at four different load conditions. Figure 2b
also demonstrates of the healthy rotor and a rotor with three broken bars.

Generator

N

(b)

Figure 2. (a) Experimental test rig and (b) Demonstration of the healthy and rotor with three
broken bars.
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By looking at the current signal measured, we cannot realize the motor condition if broken
rotor bar exists. In the word, the raw current signal does not indicate the difference between healthy
and faulty conditions because the amplitude of the fault-related frequency is much smaller than
fundamental frequency.

As an example, typical stator current signals for a healthy motor as well as for a motor with
one broken bar under 35% full load are illustrated in Figure 3. As it is clear, there is no observable
difference between these two signals that can be utilized for fault (here broken rotor bar) detection.
Therefore, a signal processing method is used to extract the fault-related feature for fault detection.
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(b) Faulty Motor (One BRB)

Figure 3. Typical motor current signal for 35% full-load (a) healthy motor and (b) motor with one
broken bar.

The architecture of the intelligent diagnosis system, which is a combination of progressive signal
processing and pattern recognition techniques, is given in Figure 4. This method not only improves the
signal processing algorithm to find the exact fault-oriented sub-bands, but also implements a NN-based
classifier to categorize the severity assessment. In the first step, the wavelet packet decomposition is
applied to the monitored signal to extract features in more concentrated fault-related depths and nodes
in the MATLAB® (2008) environment. In the next step, the reconstructed signals are transformed to
frequency domain using FFT to find the optimum level and nodes of wavelet packet tree to detect fault
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in various loads, in particular no load condition. In addition, the statistical features extracted from
wavelet packet coefficients are selected to form the classifier’s input vector. At the end, the feed-forward
neural network (NN) is employed to identify the BRBs severity.

N ' R b e e e G R ]
Three-phase Motor ! Load i

|
——————1 (10%, 35%, 50%, 80% !

/ I of full Load) !
I NN PR —— !
1

[
Stator Current Signal

I
|

I

:

] 1
I Zoom on defect frequency range |
*I (1-2s)fs based on FFT on Wavelet |I
Packet Reconstructed signal to :

find the optimum level and node at [

Signal Processing various load :
|

Best Mother Wavelet selection i

|

|

I

I

|

|

|

using STD-WPC at defined level
and node

Feature extraction based on == i, "
Feature statistical parameter of 1 : :
Extraction wavelet packet coefficients at —l— l' Shp |

specified level and nodes ______

‘ !

Decision-Making Neural Network Classifier

Y
Fault and Severity Detection

Figure 4. Architecture of the proposed system.

In this research, in order to illustrate the merits of taking FFT to follow the bands including
fundamental-oriented frequency, the stator current signals are decomposed into approximations and
details signal using WPD in the MATLAB® environment. Then, for every selected node in proceeding
levels, the wavelet packet reconstructed signals are transformed to frequency domain using FFT to
find the sub-band with maximum value. The FFT is used to find the optimum level and nodes are
fundamental-oriented frequency as well as the fault-related band frequency to detect fault severity in
various load according to Figure 5 [15,16,44]. Consequently, regarding the closeness of broken bar fault
frequency to fundamental frequency, especially in no load condition, the exact fault-related sub-band
with high reliability is highlighted.

Figure 6 shows the wavelet packet tree that the red lines highlight the frequency bands directions
with 50 Hz in deeper levels when the sampling rate is 2000 Hz. Fourier analysis of the reconstructed
signal was performed to find the sub-band with maximum value using the MATLAB® command line.
Therefore, various features can be extracted exactly from the fault-related sub-frequency band of the
WPT-based signal decomposition.
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Sample Stator Current Signal

Wavelet packet
decomposition (WPD)

wpt=wpdec(signal,Level, WName');

for
node = 0:2"Level-1;

Node=0:2"evel

Wavelet Packet data = wprcoef(wpt,[Level node]);
Reconstruction of WPC on
WPT
l FFT;
FFT and find the Max MAX=max(AMPLITUDEmat(:,2));
Amplitude % Maximum Amplitude
p end
v 4
. MAX2=max(MaxFund(:,2));
_ Findthe [p ql=find(MaxFund(;2)==MAX2);
optimum level and node

N
Yes

Figure 5. Wavelet packet signature analysis (WPSA)-based algorithm.
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Figure 6. WPSA-based algorithm.
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Finally, the statistical parameter of wavelet packet coefficients together with the slip speed are the
input vector to the classifier for decision making approach to examine the effect of load variations and
fault severity. To evaluate the effectiveness of proposed method, a NN-based approach is developed in
the MATLAB environment. The algorithm is proposed to configure the best decision-making solution.
WPSA is used for the feature extraction which gives distinguishable signatures from stator current
signal in a specific frequency band. In the experimental setup, the left affected frequency is considered
fors = (1 — 2s) f; to discern the healthy and faulty condition and fault severity. The related depths and
nodes of the WP tree constitute of most appropriate frequency range is arranged to cover various load
illustrated in Table 2.

Table 2. Sub-Band Frequency Selection Based on Slip.

. Frequency

Load Speed Torque fs Slip forb (Depth, Node) Sub-Band
High 958 5.7 50.01 0.042 45.811 6,3) [31.25-46.88]
Medium 976 3.96 49.98 0.024 47.584 (7,5 [46.88-54.69]
Low 991 1.53 49.98 0.009 49.080 (8,10) [46.88-50.78]
No 998 0.01 49.8 0.002  49.6008 (9,21) [48.83-50.78]

Feature vector, which is one of the most significant parameters to design an appropriate neural
network, was innovated by features extracted from statistical parameters of WPC. In order to check the
learning ability and classification accuracy of MLP-NN classifier, 75% of data (60 samples among all
80 samples in each load condition) are tagged as training data. In this study, the leave-one-out (LOO)
method has been applied for available train data. The algorithm trains the network 60 times. Each time,
one out of the 60 available inputs is excluded and used for testing the performance of the constructed
MLP-based classifier. The proposed NN is trained on various datasets and later validated carefully
based on the second dataset (25% = 20 remained samples in each load condition), which is tagged
for final testing as to ensure a completely independent test set. Figure 7 schematically demonstrates
wavelet packet coefficients of raw signal and their relevant standard deviation as one of the feature
vectors of neural network. The statistical parameter of wavelet packet coefficients together with the
slip speed are the input vector to the classifier for decision making approach to examine the effect of
load variations and fault severity.

As it can be seen, four three-layer MLP networks are dedicated to four assorted load range
(80%, 50%, 35% and 10% of full load), each with 13 neurons in their hidden layers. MLP network
structure, which is a feed-forward neural network (FFNN), has found an immeasurable popularity
in neural network and has been frequently exploited in machine condition monitoring applications.
Furthermore, to diminish the training time and accelerate the convergence of neural network in
real-world applications, specifically fault detection and classification procedure, it is preferred to use a
small-sized and fixed-dimension vector for training purposes. Therefore, in this study, by preparing the
finite-dimension input vectors from all classes under investigation, the utilized classification approach
with FENN structure was employed as the base of severity assessment. The mean sum of squares of
the network errors is a typical performance function for feedforward networks which is defined as:

mse = 1 ﬁ(@)z
=5 L

where, ¢; = t; — y;, error is desired output f minus actual outputs y. In order to overcome the problem
of overfitting and improving generalization, particularly in a small set of data base, the performance
function can be modified by: msereg = gmse + (1 — q)msw, where q is the performance ratio, and msw
is the mean of the sum of squares of the network weights and biases. As mentioned in the help section
of MATLAB®, using this performance function causes the network to have smaller weights and biases,
and this drives the network response to be smoother and less probable to overfit. Another method to
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evaluate how well the neural network model is, is the Cross-Validation (CV) procedure. It is also very
useful for small datasets, since it allows one to use the entire dataset for training and testing.

It was found that four fully connected networks each constitutes a separate category of fault
number with four output nodes give [0.1; 0.1; 0.1; 0.9] for detecting healthy rotor bar (HRB), [0.1; 0.1;
0.9; 0.1] for the case of one broken rotor bar (1BRB), [0.1; 0.9; 0.1; 0.1] for two broken rotor bars (2BRB),
and [0.9; 0.1; 0.1; 0.1] are donated to three broken rotor bars (3BRB), that function as flags to indicate
the severity level and the objective is to classify test datasets to the corresponding severity class. In real
industrial situation when the stator current of motor is acquired, if its related slip is within the intervals
[0.03-0.042], ‘high load’ text is demonstrated and NN1 will run, which is related to high load (80%
of full load), to classify each recording in healthy or faulty mode and assign the resultant severity
in faulty case. Otherwise, if the slip is in [0.02-0.026], or [0.008-0.013], or [0.002-0.006], it displays
‘Medium Load’, ‘Low Load’, and ‘No Load” message and runs NN2, NN3, or NN4, respectively.
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Figure 7. Schematic diagram of the multi-layer perceptron (MLP) network Classifier.

5. Results and Discussion

After wavelet packet decomposition to the eleven levels of resolution using the selected mother
wavelet “db44”, coefficients-related features were extracted and calculated by the 14 statistical
parameters as sorted in Table 3, having the average of 20 samples for each mode of rotor in the
case of high load. In Tables 4-6, the features with increasing trend, such as root-mean-square (RMS),
root-sum-square (RSSQ), energy, and standard deviation (StD), are tabulated in the case of medium,
low, and no load respectively.
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Table 3. Mean Value of Statistical Features for Healthy and Faulty Motor in High Load.

Features Healthy 1BRB 2BRB 3BRB

RMS 4.5596 4.7330 4.8220 4.8274

RSSQ 49.108 50.976 51.934 51.992

Kurtosis 5.0818 5.0121 49798 4.8902

Skewness 0.3147 0.3075 0.3088 0.2854

Mean 0.0277 0.0265 0.0276 0.0255

PtoP 26.793 27.725 28.173 28.113

. P to RMS 2.9738 2.9614 2.9544 2.9413
High Load (6,3) Log Detect 1.5660 1.6154 1.7383 1.7862
PAPR 8.8445 8.7707 8.7290 8.6514

Shape Factor 174.39 185.67 176.91 191.22

Impulse Factor 519.44 549.84 522.76 562.39

Energy 2413.8 2599.3 2697.4 2703.7

StD 45793 4.7535 4.8428 4.8482

6th-Moment 309,542 376,865 416,589 409,496

The bold numbers mean: the valus of a feature follow an incresing or decreasing trend
regarding the fault severity.

Table 4. Mean Value of Statistical Features for Healthy and Faulty Motor in Medium Load.

Features Healthy 1BRB 2BRB 3BRB

RMS 13.049 13.386 13.647 14.064

RSSQ 131.14 134.52 137.13 141.34

Kurtosis 2.4943 2.4792 2.4466 2.5265

Skewness 0.0650 0.0398 0.0218 0.1119

Mean 0.1199 0.1154 0.1080 0.1445

PtoP 54.545 56.185 57.470 58.061

. P to RMS 22327 2.2165 2.1998 2.2450
Medium Load (7,5) Log Detect 6.4912 6.6992 7.1041 6.7506
PAPR 4.9851 4.8775 4.8401 5.0403

Shape Factor 109.78 119.47 12791 97.700

Impulse Factor 245.04 264.03 281.06 219.36

Energy 17,241 18,099 18,807 19,979

StD 13.114 13.452 13.713 14.134

6th-Moment 3.93 x 105 438 x 105  4.84 x 10°  6.05 x 108

The bold numbers mean: the valus of a feature follow an incresing or decreasing trend regarding
the fault severity.

Table 5. Mean Value of Statistical Features for Healthy and Faulty Motor in Low Load.

Features Healthy 1BRB 2BRB 3BRB
RMS 15.61 15.99 16.158 16.226
RSSQ 151.38 155.05 156.66 157.32
Kurtosis 2.778 2.837 2.712 2.885
Skewness —0.0462 —0.0316 0.0364 —0.0495
Mean 0.4242 0.4635 0.4843 0.4565
PtoP 76.782 77.907 74.351 79.597
P to RMS 2.5607 2.5570 2.4571 2.5794
Low Load (8,10) Log Detect 8.3186 8.4276 8.4875 8.3089
PAPR 5.5706 5.6598 6.0381 5.4074
Shape Factor 37.076 34.528 33.375 35.564
Impulse Factor 95.543 88.380 82.011 91.802
Energy 23015 24055 24546 24753
StD 15.691 16.071 16.238 16.307

6th-Moment 1.76 x 1085 1.98 x 105  1.83 x 105  2.23 x 10°

The bold numbers mean: the valus of a feature follow an incresing or decreasing trend regarding
the fault severity.
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Table 6. Mean Value of Statistical Features for Healthy and Faulty Motor in No Load.

Features Healthy 1BRB 2BRB 3BRB
RMS 20.571 21.243 21.326 21.686
RSSQ 195.16 201.53 202.31 205.73

Kurtosis 3.3268 32732 3.1821 3.0076

Skewness —0.0579 —0.0624 —0.0654 —0.0694
Mean —0.8348 —0.8774 —0.7704 ~1.0566
PtoP 111.70 114.22 112.69 11225

P to RMS 28716 2.8379 2.7286 2.6786

No Load (9,21) Log Detect 10.060 10.593 10.400 11.484
PAPR 8.2465 8.0539 7.3546 7.1889
Shape Factor ~ —24.910 —24.852 ~29.177 —20.766
Impulse Factor —71.518 —70.555 —80.108 —55.783
Energy 38129 40617 40938 42330
StD 20.669 21.343 21.430 21.781

6th-Moment 128 x 10° 147 x 10°  1.39 x 10° 1.4 x 10°

The bold numbers mean: the valus of a feature follow an incresing or decreasing trend regarding
the fault severity.

The distances between healthy and faulty conditions indicate the more efficiency of RMS, RSSQ,
energy, and StD features of wavelet packet coefficients. Therefore, these indices are compared for
(Level 6—Depth 3) for High Load, (Level 7—Depth 5) for half of the full load, (Level 8—Depth 10) for
low load, and (Level 9—Depth 21) under no load condition to define the most appropriate frequency
band to represent the frequency components caused by the BRB malfunction in the induction motor.
Root-mean-square of wavelet packet coefficients is depicted in Figure 8.

4.85 14.2 16.3 21.8
i X % X
4.8 14 16.2 21.6
4.75 13.8 16.1 21.4 ¢ Healthy
< . . WIBRB
g 4.7 13.6 16 21.2 BRB
& X 3BRB
5 465+—— 1341—w— 159 21
5
= 46 13.2 15.8 20.8
rY *
4.55 13 157 20.6 15
45 12.8- 156-—2

20.4 -
High Load Medium Load  Low Load No Load
Load Condition

Figure 8. Root-mean-square (RMS) of wavelet packet coefficients (WPC).

Stability and convergence of the network are directly dependent on the distinguished feature
vector with enough samples. In order to have adequate data without redundancy and remove
extraneous information and reduce the burden of the classification system, some combination of
features is tested to select the most superior features. To arrange the input vector for training, a simple
sequential floating forward selection is used. As a result, three features are selected among all
15 available features and fed to the network to train the network and observations are recorded. In next
step, the selection is repeated for the remained 12 features, and other two selected features add to
the first three ones. The new five features are also used to train and test the network. Gradually,
based on this trend, the number of inputs is increased to 7, 9, 11, 13, and finally all 15 features are
fed to the network, and the network performance is observed carefully in terms of cross-validation
(CV) classification accuracy and testing Mean Squared Error (MSE). As it can be observed from
Figure 9, the combination of five features in high load condition designs a network with 98.39%
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average classification accuracy during training and 0.005 as average of MSE for testing data. In case
of medium load when nine features are selected for inputs, testing MSE is minimum (0.003) and CV
classification accuracy is maximum (98.37%), according to Figure 10. Figure 11 demonstrates low load
condition when five features are used as input vectors to get 100% classification accuracy. The MSE
for testing dataset is 0.003. As can be seen from Figure 12, in case of no load when seven features are
conjugated as input vector, testing MSE is 0.004 and CV classification accuracy is 96.61%.
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Figure 9. Variation of average classification and mean squared error (MSE) with a number of features
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Figure 10. Variation of average classification and MSE with a number of features as inputs in
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Figure 11. Variation of average classification and MSE with a number of features as inputs in Low Load.
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Figure 12. Variation of average classification and MSE with a number of features as inputs in no Load.

As observed from the training result, some measured properties of the classifier performance on
CV data, tabulated in Table 7, indicate the network classification capability with correct ratio around
one (CorrectRate = Correctly Classified Samples/Classified Samples). The amount of averaged MSE,
minimum observed MSE, and Root Mean Squared Error (RMSE), and correct classification accuracy of
MLP-NN-based classifier are sorted for test data in Table 8.

Table 7. Performance of multi-layer perceptron neural network (MLP-NN)-based classifier on
cross-validation data.

Testing on CV Data
Performance Measure High Load Medium Load Low Load No Load
cp.ErrorRate 0.01667 0.01666 0 0.0333
cp.CorrectRate 0.98333 0.98333 1 0.9667
mean_ErrorRate 0.01604 0.01626 0 0.0338
mean_CorrectRate 0.9839 0.98373 1 0.9661
Standard deviation 0.00049 0.00050 0 0.0005
No. of features 5 9 5 7
Table 8. Performance of MLP-NN-based classifier on test data.
Testing on Test Data
Performance Measure High Load Medium Load Low Load No Load
Averaged MSE 0.0055 0.003 0.0032 0.0046
RMSE(Min. observed) 0.0698 0.05 0.039 0.0654
MSE(Min. observed) 0.0048 0.0025 0.0015 0.0042
Classification accuracy 98.80% 98.80% 98.80% 98.80%

Root mean squared error is known as the fit standard error; the lower value of RMSE indicated,
the closer to the NN convergence value. It can be seen that the RMSE on testing samples are very
small, which means that the NN classifies and estimate correctly. In addition, average classification
accuracy on testing instances is obtained as 98.80%, indicating a reasonable classification. To show
how close is actual output to the desired output, the comparative results of target and output of the
back propagation (BP) neural network in all load conditions can be sorted as shown in Table 9.
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Table 9. Desired and Actual Output in all Load Conditions.

Load/FL  Fault Severity Desired Output Actual Output

HRB 01 01 01 09 0092 0116 0.102 0.904

10°% 1BRB 01 01 09 01 0092 0136 0.893 0.073
° 2BRB 01 09 01 01 0139 0892 0.064 0.117
3BRB 09 01 01 01 0882 0126 0.103 0.096

HRB 01 01 01 09 0.1 0.145 0.068 0.897

30% 1BRB 01 01 09 01 009 0142 0.858 0.106
° 2BRB 01 09 01 01 0092 0912 0.088 0.103
3BRB 09 01 01 01 0888 0101 0.103 0.103

HRB 01 01 01 09 0151 0.062 0111 0.889

509 1BRB 01 01 09 01 0092 015 0837 0.126
° 2BRB 01 09 01 01 0069 086 0.156 0.107
3BRB 09 01 01 01 091 0111 0112 0.077

HRB 01 01 01 09 008 0109 0.121 0.891

80 1BRB 01 01 09 01 0102 0.094 0903 0.108
° 2BRB 01 09 01 01 0093 0924 0061 0.12
3BRB 09 01 01 01 0875 0.09 0129 0.109

Figures 13-16 show the difference between desired output and real output for test dataset in 80%,
50%, 35%, and 10% of full load operating condition, where MSE and RMSE are calculated according
to MATLAB® code from plot results function. The whole procedure was repeated ten times and
performance measure for the average output was calculated. Finally, the corresponding value of
correct classification function was calculated according to MATLAB® code. The whole procedure of
NN testing was repeated five times and performance measure for the average output was calculated.
As it can be seen, the target is between 0.1 and 0.9 as mentioned before (215-217), and output could be
close to target. The maximum error is highlighted through dashed yellow lines, which are around 0.15.
However, among all samples, the computed maximum MSE is 0.0048855, which is small enough.

It has been found that the presented network is able to detect the faults in the induction motor
with average classification accuracies of 98.80% to the corresponding severity level or class. Once the
NN is trained and tested carefully on different data sets, namely, cross validation and testing data sets
for the various performance measures, it will be ready to use for the real-world applications.
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Figure 13. The Error between Real Output and Desired for Testing Data Set in 80% of Full Load.



Appl. Sci. 2018, 8,25

Figure 14. The Error between Real Output and Desired for Testing Data Set in 50% of Full Load.
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Figure 15. The Error between Real Output and Desired for Testing Data Set in 35% of Full Load.
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Figure 16. The Error between Real Output and Desired for Testing Data Set in 10% of Full Load.

6. Conclusions

In this study, an advanced wavelet-based signal processing method has been applied to extract
the required information out of that monitored signal. In order to be one hundred percent sure that the
selected sub-band after WPD is a fault-oriented sub-band, the combination of WPT and FFT, which
is named WPSA, is used to complement the BRB fault diagnosis reliability. The WPSA extracts the
superimposed spectral harmonics of the wavelet packet reconstructed signal using FFT. As a result
of WPSA, the overall effectiveness of defect-dependent feature extraction is enhanced. The defect
frequency band in wavelet packet decomposition is directly related to the sampling frequency and
follows the frequency order which is not the same as node order. Daubechies 44 showed the most
similarity across faulty rotor bar for no load, the low, medium, and high load of the rated torque.

The proposed method is able to introduce a sub-band that involves the fault characteristics.
By implementing wavelet statistical parameters, it is shown that the RMS, RSSQ, StD, and energy value
of wavelet packet coefficients are the appropriate features for BRB detection, even in no load condition.
The WP-based statistical parameters are found to be fast, accurate, and easy to implement. The present
approach based on statistical feature of WPSA gets stronger with a computationally more efficient
and intelligent decision-making technique. To generalize the design network especially for small
datasets, the Leave-One-Out (LOO) cross validation (CV) technique is applied to multiple MLP-based
NN for available train data. Stability and convergence of the network are directly dependent on the
distinguished feature vector with enough samples. In order to have adequate data without redundancy
and remove extraneous information and reduce the burden of the classification system, the most
superior features are selected based on simple sequential feed-forward selection. RMSE on testing
samples are very small, which means that the NN classifies and estimate correctly. The lower value of
RMSE indicates the closer to NN convergence value. It has been found that network is able to detect
the faults in the rotor with average classification accuracies of 98.80% on testing data to identify rotor
bar breakage severity in four load range (80%, 50%, 35% and 10% of full load).

In most NN-based fault classification schemes, a hybrid complex network is used, whereas it is
seen that a simple, small-sized multilayer perceptron network works as magnificent fault classifier for
intelligent condition-based monitoring of three-phase induction. As compared to existing structures,
the suggested scheme is simple, cost-effective, reliable, and accurate.
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