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Abstract: In this paper, the estimation of doubly spread underwater acoustic (UWA) channels
is investigated. The UWA channels are characterized by severe delay spread and significant
Doppler effects, and can be well modeled as a multi-scale multi-lag (MSML) channel.
Furthermore, exploiting the sparsity of UWA channels, MSML channel estimation can be transformed
into the estimation of parameter sets (amplitude, Doppler scale factor, time delay). Based on this,
the orthogonal matching pursuit (OMP) algorithm has been widely used. However, the estimation
accuracy of OMP depends on the size of the dictionary, which is related with both delay spread and
Doppler spread. Thus it requires high computational complexity. This paper proposes a new method,
called wavelet transform (WT) based algorithm, for the UWA channel estimation. Different from OMP
algorithm which needs to search in both time domain and Doppler domain, WT-based algorithm
only needs to search in time domain by using the Doppler invariant characteristic of hyperbolic
frequency modulation (HFM) signal. The performance of the proposed algorithm is evaluated by
computer simulations based on BELLHOP. The simulation results show that WT-based algorithm
performs slightly better than OMP algorithm in low signal to noise ratio (SNR) while can greatly
reduce computational complexity.

Keywords: underwater acoustic (UWA) communication; multi-scale multi-lag (MSML) channel;
wavelet transform (WT) based algorithm; hyperbolic frequency modulation (HFM) signal

1. Introduction

Underwater acoustic (UWA) channels pose grand challenges for reliable high data-rate
communications, due to significant Doppler effects and severe delay spread [1–3]. In underwater
communications, acoustic waves propagate at 1500 m/s, much lower than the speed of electromagnetic
waves in terrestrial wireless systems (which is 3× 108 m/s). Thus, the motion of platform will cause
more significant Doppler effects, which is expressed as signal compressing or dilating in time domain
and can be treated as Doppler scale [4]. In addition, the delay spread results in severe inter-symbol
interference (ISI) [5]. To fully understand the channel characteristics and overcome challenges it poses,
accurate channel models and estimation methods are essential to investigate.

As observed in many experiments [6,7], signals from different paths will experience different
Doppler scales, arrive at different time and have different energies. Therefore, the multi-scale multi-lag
(MSML) channel, denoted in [8], can well model acoustic channel and has been adopted in many
researches [7,9]. In MSML channel model, each path can be parameterized by Doppler scale factor,
time delay and amplitude. However, for severe delay spread, this model will be too complex to estimate.
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To overcome such difficulties, many researchers investigated the sparsity of UWA channel, that is,
most of the energy is concentrated in some small regions. Hence only a few channel taps in MSML
channel model are nonzero and need to be tracked. As a result, the computational complexity has been
reduced and many sparse channel estimation algorithms based on compressed-sensing (CS) have been
proposed [7,10–15].

These algorithms can be generally grouped in two categories: dynamic programming like
matching pursuit (MP), and linear programming like basis pursuit (BP) [7]. BP aims at the l1
minimization which needs high computational complexity, thus is less attractive for practical
large-scale applications. Therefore, we will mainly focus on MP algorithm and its successors.

In [10], matching pursuit (MP) algorithm is applied to estimate Doppler scale factors of
different paths. It iteratively selects one column from the dictionary that is most relevant with
the residual signal, and subtracts the estimated path component to update the residual signal.
Compared with MP, its orthogonal version, orthogonal matching pursuit (OMP) algorithm [11]
makes the residual signal be orthogonal with all the selected columns, thus has better convergence
speed and accuracy. The traditional subspace methods and CS-based methods are compared in [7],
and the author concludes that CS-based methods have better performances in channel estimation.
Meanwhile, some improved algorithms, which focus on adaptively estimating path numbers,
like sparsity adaptive matching pursuit (SaMP) [12] and adaptive step size SaMP (AS-SaMP) [13] have
been applied to sparse channel estimation. Furthermore, some references propose methods to reduce
computation: a two-stage OMP algorithm is proposed by [14], which estimates the Doppler scale
factor and time delay respectively, rather than simultaneously as OMP does. However, it requires some
preprocessings before channel estimation. The author of [15] proposes that fast Fourier transform (FFT)
can be utilized in OMP to simplify calculation. However, the reduction is limited as it only focuses on
the computing process rather than on the reducing of column dimensions in the dictionary.

Therefore, the main limitation of MP algorithm and its successors is that the estimation accuracy
depends on the size of the dictionary, which is determined by the product of grid point numbers on
the time delay dimension and the Doppler scale dimension. To guarantee a fine resolution, the number
of columns in the dictionary could be extremely large. Thus calculating inner products of the received
signal and each column lead to extensive calculation, especially for UWA channel, where the delay-scale
spread is large. To overcome this difficulty, this paper proposes a novel wavelet transform (WT) based
algorithm by employing the hyperbolic frequency modulation (HFM) signal as training signal.

In UWA environment, Doppler effects cause frequency shifts of the transmitted signal. HFM signal
is a preferable training signal in UWA communication as the frequency shifts caused by Doppler effects
can be treated as a time shift [16,17]. Thus the Doppler effects and time delay can be simultaneously
estimated by analyzing the time-frequency characteristics of the signal. In addition, we choose WT in
this paper as it is an effective measurable tool for time-frequency analysis and has been used for the
signal analysis in engineering, biomedical and researcher application [18,19]. WT methods consist of
two categories: continuous wavelet transform (CWT) and discrete wavelet transform (DWT), DWT is
nothing but discretization of CWT.

The main contributions of this paper are as follows:

• We propose to use a superimposed HFM signal as training signal and prove that the HFM up
sweep and down sweep signals will not interfere each other for WT.

• We propose an iterative algorithm to estimate MSML channel based on WT.
• We use computer simulations based on BELLHOP to investigate the performance of the proposed

algorithm, and make comparisons with OMP algorithm.
• We present the complexity analysis of the proposed algorithm as well as OMP algorithm.

The rest of this paper is organized as follows: Section 2 gives the MSML channel model.
In Section 3, brief introductions of HFM signal and WT are included and we present the WT-based
algorithm. Section 4 focuses on the simulation results and complexity analysis. Section 5 concludes
the paper.
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Notation : we will use the following notations in this paper: Upper (lower) bold-face letters stand for
matrices (vectors); Superscript * denotes conjugate.

2. Channel Model

UWA channel features large multipath spread for the interaction with ocean surface,
bottom medium, as well as inhomogeneous particles of water column. MSML channel model can well
describe the UWA multipath channel, that is:

h(τ, t) =
L

∑
l=1

Al(t)δ(τ − (alτl − (al − 1)t)) (1)

where L is the number of channel taps. Al(t) is the time-varying amplitude of the lth path and can
be assumed to be constant during a short period of time, for example, the transmission duration of
one data frame [7]. τl and al are the time delay and Doppler scale factor of the lth path, respectively.
In addition, δ(t) is a delta function defined as follows:

δ(t) =

{
1
0

t = 0
otherwise

(2)

Let s(t) be the transmitted signal and the corresponding received signal r(t) can be written as

r(t) =
L

∑
l=1

Al(t)s(al(t− τl)) + n(t) (3)

where n(t) is the additive noise.
Given the sparsity of UWA channel, only some channel taps are nonzero in (1), which means

that r(t) is a superposition of only a few scale-delayed versions of s(t). Therefore, the calculation
complexity for channel estimation is significantly reduced.

3. WT-Based Sparse Channel Estimation

3.1. HFM Signal

HFM signal is a kind of non-linear frequency modulation signal whose instantaneous frequency
is a hyperbolic function of time, which can be expressed as [16]:

s(t) =

{
cos(−2πk ln(1− t

t0
))

0
− T

2 ≤ t ≤ T
2

otherwise
(4)

where t0 = T( f2+ f1)
2( f2− f1)

, k = T f2 f1
f2− f1

. In addition, T is the duration of the HFM signal, f1 is the starting
frequency and f2 is the end frequency. If f1 < f2 then s(t) is HFM up sweep signal, otherwise
represents HFM down sweep signal. The signal instantaneous frequency is the derivation of the phase
term of the cosine function:

f (t) =
1

2π

d[−2πk ln(1− t
t0
)]

dt
=

k
t0 − t

(5)

We consider to apply HFM signal as the channel training signal for its good Doppler-invariability.
Introducing a Doppler scale factor a to (4), the phase term ϕ(t) becomes

ϕa(t) = −2πk ln(1− at
t0
) (6)
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Correspondingly, the instantaneous frequency is

fa(t) =
1

2π

dϕa(t)
dt

=
ak

t0 − at
(7)

In addition, from [17], there is a constant time shift ∆t = (a−1)t0
a to satisfy the following equation.

fa(t− ∆t) = f (t) (8)

Thus, the HFM signal is Doppler invariant.

3.2. CWT

As mentioned before, WT is an effective measurable tool to analyze non-stationary signal, and the
instantaneous frequency of HFM varies with time. Therefore, WT is a preferable choice for the
time-frequency analysis of HFM signal. The CWT of the received signal r(t) can be expressed below:

Wr(aW , b) =
1√
aW

∫ +∞

−∞
r(t)ψ∗(

t− b
aW

)dt (9)

where ψ(t) is the basis function that called mother wavelet [20], and aW and b are the time scale and
time shift, respectively.

Selection of proper mother wavelet is very important for effectively time-frequency analysis.
There are different types of mother wavelet, such as Haar, Daubachies, Sine and Gaussian. In addition,
they all satisfy the following admissible condition [21]:

Cψ =
∫

R

|ψ̂(w)|2
|w| dw < ∞ (10)

where ψ̂(w) is the Fourier transform of ψ(t).
It is easy to verify that a signal with finite length in both time domain and frequency domain will

satisfy (10), Agrawal, S. et al. [22] points out that the WT efficiency will increase if characteristic of
mother wavelet is closer to the input signal. So we consider to employ the transmitted HFM signal as
mother wavelet, and since the transmitted signal has limited samples, thus it’s length is limited and
can satisfy (10).

3.3. WT-Based Algorithm

Firstly, we consider the transmitted HFM signal as s(t), then the received signal is as in (3),
plugging (3) in (9) and let ψ(t) = s(t), we get

Wr(aW , b) =
1√
aW

∫ +∞

−∞
r(t)ψ∗(

t− b
aW

)dt

=
L

∑
l=1

1√
aW

∫ T

0
Als(al(t− τl))s∗(

t− b
aW

)dt
(11)

CWT displays the distribution of signal amplitude and phase into time scale aW and time shift b.
Thus, with proper aW and b, which match to the signal from the lth path, WT coefficients will appear
a peak. Therefore, we can get the frequency information of rl(t) at time shift b. With this, we can set
the values of aW and b to be a list of possible values and get the WT coefficients matrix. Thus get
the time-frequency information of rl(t). To get better time-frequency analysis, the values of aW and b
should be as many as possible. The two-dimensional searching requires large computation cost.

Considering the good Doppler-invariability of HFM signal as we mentioned before, we can
simplify the two-dimensional searching to one-dimension, that is, by using the transmitted HFM signal
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as the mother wave, the time scale aW can be set as 1 and the WT coefficients will meet a peak at a time
shift for each path as the following:

bl = −∆tl = −
(al − 1)t0

al
+ τl (12)

The detail information can be seen in Appendix A.
From (12), the time shift is determined by both time delay and Doppler scale factor. So it is

difficult to estimate al and τl simultaneously when only sending one HFM signal. We consider to send
a superimposed signal, which is defined as

x(t) = cos(−2πk ln(1− t
t0
)) + cos(2πk ln(1 +

t
t0
)) (13)

The variables in (13) are defined as in (4) and f1 < f2. Therefore, the first part in (13) is a HFM up
sweep signal and can be defined as s+(t); the second part is a HFM down sweep signal and can be
denoted as s−(t).

The received signal will be

r(t) =
L

∑
l=1

Al(s+(al(t− τl)) + s−(al(t− τl))) + n(t) (14)

where n(t) is the additive noise. In addition, at the receiver, WT will be performed twice and the
mother wave will be s+(t) and s−(t), respectively.

We have verified that when use s+(t) as mother wave, a constant time shift does not exist which
will make s+(t) match to s−(al(t− τl)) in frequency in Appendix B. Thus the superposition of s+(t)
and s−(t) will not interfere each other, and corresponding time shifts for the lth path are:

bl
+ = − (al − 1)t0

al
+ τl (15)

bl
− =

(al − 1)t0

al
+ τl (16)

The Doppler scale factor and time delay can be calculated by

al =
2t0

2t0 − (bl
− − bl

+)
(17)

τl = (bl
+ + bl

−)/2 (18)

In addition, the path amplitude can be calculated by normalizing (11), that is

Al =
Wr(aW , b)

1√
aW

∫ T
0 s( t−b

aW
)s∗( t−b

aW
)dt

(19)

For MSML acoustic channels, we propose an iterative algorithm to estimate parameters for
each path. Specifically, at each iteration, path with the highest energy can be identified and will be
separated from the received signal. In addition, parameters {Al , al , τl} can be estimated at the same
time. The whole estimation scheme is given as follows.

WT-based iterative channel estimation algorithm:
Input: Transmitted HFM up sweep signal vector S+, and HFM down sweep signal vector S−;

received signal vector r; a small positive ε.
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Initialization: Set the residual signal vector re = r; iteration index i = 1;
Iterate:
(1) Calculate and save the energy rate of re as: E = ||re||22/||r||22.
(2) Use S+, S− as mother waves and do WT with re, respectively. Select the maximum peaks and

get corresponding time shifts b+max, b−max.
(3) Calculate the path parameters:

âl =
2t0

2t0 − (bmax
− − bmax

+)
(20)

τ̂l = (bmax
+ + bmax

−)/2 (21)

where l represents the lth path, and the path amplitude Âl can be calculated as (19).
(4) Update residual signal:

re = re − Âl(S
+[b+max : b+max + N − 1] + S−[b−max : b−max + N − 1]) (22)

where N is the length of re.
(5) If E− ||re||22/||r||22 < ε, stop the iteration, else, set i = i + 1 and go to step 1).
Output: The estimated channel parameters {Âi, âi, τ̂i}L

i=1.
Note: since the number of paths L is unknown, we use ε as a threshold to determine the

termination of the algorithm. ε represents the normalized decrease of residual signal, and when
all paths have been detected, the decrease will be small and ε can be set as a small positive number,
such as 0.01 in this paper.

4. Simulation Results

4.1. Performances

In this part, we use computer simulations to evaluate the performance of the proposed WT-based
algorithm, and comparisons with OMP algorithm will also be included.

The parameters of the transmitted superimposed HFM signal are set as follows: the starting
frequency and end frequency are f1 = 6 kHz, and f2 = 10 kHz. The time duration is set to be
T = 200 ms, and the sampling rate is fs = 40 kHz.

The computer simulation is based on BELLHOP and is implemented in Matlab software.
BELLHOP is a beam tracing model for predicting acoustic pressure fields in ocean environments [23].
The underwater environment is set as: the water is 100 m deep, the initial horizontal range between
the transmitter and receiver is 1000 m. the transmitter is fixed at the depth of 80 m, and the receiver is
at 30 m depth with a horizontal speed of 4.5 m/s toward the transmitter. The speed of the acoustic
wave is set to be 1500 m/s. In addition, the reflection coefficients of the bottom and the surface are set
to be 0.7 and −0.9, respectively. As shown in Figure 1.
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Figure 1. Acoustic ray paths of UWA channel.

At the receiver, both WT-based algorithm and OMP algorithm will be applied to
channel estimation. For WT-based algorithm, WT will be applied twice to search for bl

+ and bl
− at

each iteration, while for OMP algorithm, we build a dictionary with a resolution of 1× 10−3 in the
Doppler scale factor and 1/ fs in the tap delay.

Figures 2 and 3 display the estimating errors of the Doppler scale factor and time delay versus
signal to noise ratio (SNR), as defined in the following:

Errorscale =
1
L

L

∑
l=1
|âl − al | (23)

Errordelay =
1
L

L

∑
l=1
|τ̂l − τl | (24)
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Figure 2. Errors of the estimating Doppler scale factor versus SNR.
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Figure 3. Errors of the estimating delay versus SNR.

From Figures 2 and 3, we can see that WT-based algorithm is slightly better than OMP algorithm
when SNR is lower than 12 dB. In addition, at high SNR, both algorithm can achieve low Doppler
scale estimation errors, and the delay estimation errors are nearly 0, which implies that WT-based
algorithm is an effective algorithm for channel estimation as the classical OMP algorithm while only
needs one-dimension searching.

Figure 4 illustrates the residual signal energy rate, ||re||2/||r||2, versus SNR of both estimation
algorithms. In addition, a reference which uses the true channel information is also included. It shows
that the performance of WT-based algorithm approaches to the lower bound while OMP algorithm
has some performance losses at low SNR. Residual signal energy rate is a comprehensive evaluation
of the channel estimation, that is, the estimation accuracies of Doppler scale, delay and amplitude
all contribute to it. Thus the performance in Figure 4 is also coincident with which we analyzed in
Figures 2 and 3.
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Figure 4. Residual signal energy rate versus SNR.

In addition, according to the reviewer’s suggestions, we also include residual signal energy rate
versus SNR at different sampling rates: fs = 20 kHz in Figure 5 and fs = 60 kHz in Figure 6. It shows
that WT-based algorithm can maintain good performances at different sampling rates, while OMP
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algorithm shows performance degradation at low sampling rate.
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Figure 5. Residual signal energy rate versus SNR with sampling rate at 20 kHz.
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Figure 6. Residual signal energy rate versus SNR with sampling rate at 60 kHz.

4.2. Complexity Analysis

Both WT-based and OMP algorithms estimate path parameters iteratively, and for proper selection
of ε, the iteration number is nearly the true channel path number for both of them. Therefore, the mainly
differences of computation lie in the process of one iteration. Hence we will focus on the computation
of one iteration.

For OMP algorithm, parameters in both time domain and Doppler domain need to be searched.
Let KL be the length of the training sequence, Nτ be the grid points on the time dimension, Na be the
grid points on the Doppler scale dimension, thus the column numbers of the dictionary is N = Nτ Na.
Thus, the inner products of the received signal and columns in the dictionary require ρ = Nτ NaKL
complex multiplications.

For WT-based algorithm, WT will be performed twice at each iteration. As mentioned before,
HFM signal is Doppler invariant, thus it only needs to search in the time domain. let KL be the length
of the training sequence, and Nτ be the grid points on the time dimension, and then the computation
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is ρ = 2NτKL.
Therefore, WT-based algorithm only needs one-dimension searching and the computational

complexity is much lower than OMP algorithm, especially when the grid points on the Doppler scale
dimension is large.

5. Conclusions

We have investigated the problem of doubly spread UWA channels estimation in this paper
and proposed the WT-based algorithm. By using the superimposed HFM signal as training signal,
the proposed algorithm only needs to search in time domain, and the Doppler scale factor and time
delay can be simultaneously estimated. Therefore, it greatly reduce the computational complexity than
OMP algorithm, while has slightly better performance.
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Abbreviations

The following abbreviations are used in this manuscript:

UWA Underwater Acoustic
MSML Multi-scale Multi-lag
OMP Orthogonal Matching Pursuit
WT Wavelet Transform
HFM Hyperbolic Frequency Modulation
SNR Signal to Noise Ratio
ISI Inter-symbol Interference
CS Compressed-sensing
BP Basis Pursuit
MP Matching Pursuit
SaMP Sparsity adaptive Matching Pursuit
AS-SaMP Adaptive Step size Sparsity adaptive Matching Pursuit
FFT Fast Fourier Transform
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform

Appendix A

Let s(t) be the transmitted HFM signal and expressed as

s(t) = cos(−2πk ln(1− t
t0
)) (A1)
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The definitions of variables in (A1) are the same as in (4). In addition, we assume that the channel
has L paths, with {Al , al , τl} as the path amplitude, Doppler scale factor and time delay of the lth path.
Then the received signal without considering noise is as follows:

r(t) =
L

∑
l=1

Al cos(−2πk ln(1− al(t− τl)

t0
)) (A2)

The instantaneous frequency of the received signal from lth path is

fl(t) =
1

2π

d
dt
(−2πk ln(1− al(t− τl)

t0
)) =

alk
t0 − al(t− τl)

(A3)

According to (8), there is a constant time shift ∆tl which makes the establishment of the
following formula:

alk
t0 − al(t− τl)

=
k

t0 − (t + ∆tl)
(A4)

where ∆tl =
(al−1)t0

al
− τl

At the receiver, we use the transmitted HFM signal as the mother wave. With the scale aW and
time shift b, it can be written as

ψ(t) = cos(−2πk ln(1− t− b
aW t0

)) (A5)

In addition, the instantaneous frequency of ψ(t) is

fψ(t) =
k

aW t0 − (t− b)
(A6)

Comparing with (A3), we can find that, by setting aW = 1, WT coefficients will meet a peak at
b = −∆tl .

Appendix B

Let s−(t) be a HFM down sweep signal and the received signal from one path without considering
noise is:

r(t) = Al cos(2πk ln(1 +
al(t− τl)

t0
)) (A7)

In addition, the instantaneous frequency of r(t) is

fr(t) =
1

2π

d
dt
(2πk ln(1 +

al(t− τl)

t0
)) =

alk
t0 + al(t− τl)

(A8)

When use the HFM up sweep signal s+(t) as the mother wave and set aW = 1, the instantaneous
frequency fm(t) is:

fm(t) =
k

t0 − (t− b)
(A9)

Suppose there is a constant time shift b which can make the establishment of the following formula:

alk
t0 + al(t− τl)

=
k

t0 − (t− b)
(A10)

By solving (A10), we can obtain that

b =
(1− al)t0 + 2alt

al
− τl (A11)
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where al is the Doppler scale factor, al > 1 when the transmitter and the receiver are approaching
each other; al ∈ (0, 1) when they are away from each other; and al = 1 when they are static.
Therefore al 6= 0 and b varies with t. The assumption that b is constant is incorrect. In addition,
it is the same for s+(t).
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