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Abstract: The novel non-combustible sandwich panel is extremely fragile in manufacturing and
cannot be tensioned between rolls. Previous studies on the roll-to-roll system, which mainly focused
on the high-tension situations and little described the low-strength materials, are insufficient.
To explore the transportation of low-strength materials, we study the tension distribution of
continuous moving flexible one-dimensional materials on a steady-state track. First, we propose
a numerical method to calculate the steady-state track of low-strength sheet between rolls considering
the gravity, as well as size and position of rolls. Then we obtain the optimum sag at different size
and position of rolls. We find out that there is a lower limit of the sheet’s strength-density ratio
(the Minimum Specific Strength) for a specific set of size and position of rolls. Finally, we establish
a method to calculate the lower limit approximately for engineering use. Our method can be
generalized in manufacturing other low-strength flexible thin-sheet materials as well.

Keywords: axially moving materials; rolls; catenary; tension; mathematical modeling

1. Introduction

The non-combustible sandwich panel is a new type of building material. Its core layer consists of
less than 25 wt % polyacrylate and more than 75 wt % inorganic powders, which significantly enhances
the safety of traditional sandwich panels. During the continuous manufacturing process of the core
layer, fluidized state compound of polyacrylate and inorganic powder are transported through several
machines to form solid-state panels [1]. As the majority of core panel precursors is inorganic powder,
the material is extremely fragile and prone to crack, especially when being transported between rolls.

The placement of the rolls and the sheet has an important influence on the tension in the sheet
when the low-strength sheet is transported between rolls. To figure out the optimum placement,
multiple experiments are needed at different transporting speeds and different polyacrylate portions in
core panel. This trial and error method is inefficient since the non-contact measurement or processing
equipment between the upstream and downstream rolls (as shown in Figure 1) is hard to move
after installation.
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Figure 1. Non-contact measurement or processing around continuous moving thin-sheet materials
hanging between rolls.

Previous studies on the roll-to-roll system mainly focused on the high-tension situation,
most of which neglected the influence of the gravity, the shape and the relative position of
rolls. Those approximations lead to the consequence that the track of the traveling materials is
an approximately straight line. For example, the studies on the transverse vibrations of axially
moving materials [2–14] and studies on the transverse vibration control technique of axially moving
materials [15–20] all neglected the effect of gravity on the sheet and treated the traveling materials
as tensioned. This means that the sag of the moving sheet is small compared to the distance
between two rolls. The studies on the speed or tension control of axially moving materials [21–26]
assumed the moving materials as a 1D elastic beam and simplified the track of materials as a straight
line. Stump studied the low-tension, large-deflection shape of a transporting sheet hanging under
gravity [27]. Banichuk studied the gravity’s influence on the stability of the travelling elastic beam
using analytical and numerical methods [28]. However, they did not give the explicit expression of the
relationship between positions of rolls and tension in the sheet.

However, many novel composite materials (such as flame retardant composites) possess very low
strength in processing [29–31] that even tension caused by gravity may cause the crack. Ignoring gravity
is inappropriate for these novel materials. Moreover, engineering practice demonstrates that the size
and position of rolls, as well as the sag of thin-sheet materials, influence the maximum tension in the
moving thin-sheet material. Those parameters are also neglected in conventional studies.

Since conventional models are not good at predicting thin-sheet material’s behavior between
rolls, a thorough study in tension distribution and motion state of thin-sheet materials between rolls is
of great significance to the manufacturing of the non-combustible core panel and such low strength
material sheets.

In this study, we propose a model describing the steady-state behavior of low-tension moving
thin-sheet materials. This model is developed from the previous studies on hanging materials [32–37]
and axially moving materials [19,27]. We introduce a numerical method to calculate the shape of
moving thin-sheet materials between rolls, taking into account the position and size of rolls. We further
discuss how the sag of the thin-sheet material and placement of rolls influence the maximum tension
in the thin-sheet material. Finally, we present approximate estimation methods to predict the optimum
shape and the lower limit of the material’s strength-density ratio (the Minimum Specific Strength) that
two rolls can transport.
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2. Problem Formulation

Figure 2 shows the axially moving sheet travelling between two rolls with the constant linear
velocity v. The geometric parameters of the sheet and rolls are: b is the width, t is the thickness, l is
the sheet length between it and rolls’ contact points, Dh is the vertical (y direction) distance between
two rolls’ axes, 2Dl is the horizontal (x direction) distance between two rolls’ axes. The ratio between
thickness t and length l is very small: t/l � O(1). The material properties are the mass density ρ,
the Young’s modulus E. σx is the stress at position x in tangent direction and εx is the strain at position
x in tangent direction.

Figure 2. A schematic drawing showing the geometry of the transporting sheet and rolls.

This study focuses on the scenario that the tension in the sheet is mainly caused by gravity that is
enough to break some low-strength materials. This means that σx/(ρgl) ≈ O(1). In the international
system of units (SI), ρgl ≈ O(104) and E > O(106) for most materials. Thus εx = σx/E < O(10−2).
So the elastic effect can be negligible and it can be considered as a 2D problem. Since that many
polymer composites are plastic when processing and t/l � O(1), the bending moment in the sheet
is assumed to be 0. The sheet is perpendicular to plane xy and its projection in plane xy is y = f (x).
The gravity is in the direction of −y. At equilibrium, the kinetic energy T, the potential energy U are
given as:

T =
1
2

ρbt
∫

l
v× vdl (1)

U = ρbtg
∫

l
ydl (2)

When the system is steady, f satisfies:

f = arg min
f

∫
l
(ρbtgy +

1
2

ρbtv2)dl (3)
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Introduce Lagrange multiplier λ, L = (ρbtgy+ 1
2 ρbtv2−λ)

√
1 + ẏ2. The Euler-Lagrange equation

of this problem is:

d
dx

(
∂L
∂ẏ

)
− ∂L

∂y
= 0, ⇒ d

dx

(
ρbtgyẏ + 1

2 ρbtv2ẏ− λẏ√
1 + ẏ2

)
− ρbtg

√
1 + ẏ2 = 0 (4)

Solve the equation for y :

y(x) =
C1

ρbtg
cosh

(
ρbtg(x− C2)

C1

)
+

λ

ρbtg
− v2

g
(5)

λ, C1 and C2 can be determined by boundary conditions.
The free-body diagram of the forces acting on the element is shown in Figure 3. T(x) is the tension

in the sheet at position x and G is the gravity.

Figure 3. Free-body diagram of the forces acting on the element.

Equilibrium equation of the forces is:

T(x + dx)~eu(x + dx)− T(x)~eu(x)− G~ey =
d~v
dt

ρbt
√

1 + ẏ2dx (6)

That is:
d

dx
(T(x)~eu)− ρbtg

√
1 + ẏ2~ey =

d~v
dt

ρbt
√

1 + ẏ2 (7)

in which, ~ey is the unit vector in the y direction. ~eu and ~ev is the unit tangent vector and unit normal
vector of v, respectively:

~ey =

[
0
1

]
, ~eu =

 1√
1+ẏ2

ẏ√
1+ẏ2

 , ~ev =

− ẏ√
1+ẏ2

1√
1+ẏ2

 , ~v = v~eu (8)

In the equilibrium state, each point of the sheet has a linear velocity of v, so:

d~eu

dt
= v

d~eu

ds
=

v√
1 + ẏ2

· d~eu

dx
(9)

Substitute Equations (8) and (9) in Equation (7), and solve Equation (7) for T(x) :

T(x) = ρbtv2 +
1 + ẏ2

ÿ
ρbtg (10)

Substitute Equation (5) into Equation (10):
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T(x) = ρbtv2 + C1 cosh
(

ρbtg(x− C2)

C1

)
(11)

Equation (11) is the explicit expression of the tension in the sheet.
With Equations (5) and (11), it can be inferred that the stress at the higher position of the

steady-state continuous moving sheet is larger than that at the lower position. The track of the
sheet is catenary and there is a square relationship between tension and transporting speed v.

3. Problem Solution

When the thin-sheet material is transported from one roll to another, its projection curve along
the rolls’ axes between two contact points with rolls can be described with Equation (5). As shown
in Figure 4, the upstream roll is located at coordinate O1(0, Dh), the downstream roll is located
at coordinate O2(2Dl , 0). The radius of the upstream roll and the downstream roll is R1 and R2

respectively. The touchpoints between the sheet and the two rolls are B and C. The upper external
co-tangents of O1 and O2 is AD. The angles between the vertical direction and O1B and O2C are θ1

and θ2, respectively.

Figure 4. Flexible thin-sheet material between rolls.

The first derivative of the track is continuous at point B and point C. The boundary conditions of
this problem are: 

yB = Dh + R1 cos θ1

yC = R2 cos θ2

ẏB = − tan θ1

ẏC = tan θ2

⇒


y(R1 sin θ1) = Dh + R1 cos θ1

y(2Dl − R2 sin θ2) = R2 cos θ2

ẏ(R1 sin θ1) = − tan θ1

ẏ(2Dl − R2 sin θ2) = tan θ2

(12)

Substitute Equation (5) in Equation (12):

−Dh − R1 cos θ1 +
C1

ρbtg cosh
(

ρbtg
C1

(R1 sin θ1 − C2)
)
+ λ−ρbtv2

ρbtg = 0

−R2 cos θ2 +
C1

ρbtg cosh
(

ρbtg
C1

(2Dl − R2 sin θ2 − C2)
)
+ λ−ρbtv2

ρbtg = 0

tan θ1 + sinh
(

ρbtg
C1

(R1 sin θ1 − C2)
)
= 0

− tan θ2 + sinh
(

ρbtg
C1

(2Dl − R2 sin θ2 − C2)
)
= 0

(13)

Define dimensionless variables as follows:

D̃l ≡
Dl
R1

, r̃ ≡ R2

R1
, D̃h ≡

Dh
R1

, C̃1 ≡
C1

R1ρbtg
, C̃2 ≡

C2

R1
, C̃3 ≡

λ− ρbtv2

R1ρbtg
(14)
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So, the dimensionless form of Equation (13) is:

−D̃h − cos θ1 + C̃1 cosh sin θ1−C̃2
C̃1

+ C̃3 = 0

−r̃ cos θ2 + C̃1 cosh 2D̃l−r̃ sin θ2−C̃2
C̃1

+ C̃3 = 0

tan θ1 + sinh sin θ1−C̃2
C̃1

= 0

− tan θ2 + sinh 2D̃l−r̃ sin θ2−C̃2
C̃1

= 0

(15)

These four equations contains four unknown varibles. For any given θ1 ∈ (θs, π
2 ), the unkown

θ2, C̃1, C̃2, C̃3 can be solved with Equation (15) where θs is the angle between AD and the horizontal
direction and given by

θs = arctan
D̃h

2D̃l
− arcsin

r̃− 1√
D̃h

2
+ 4D̃l

2
(16)

It is hard to obtain analytical solution to Equation (15). Numerical methods are used to solve it.
In fact, Equation (15) has multiple solutions, as shown in Figure 5, and only the one with θ2 ∈ (−θs, π

2 )

accords with the actual circumstance. In many cases, the numerical methods cannot converge because
of the high nonlinearity of Equation (15). It is found that the convergence of many numerical methods
and which solution of the multiple solutions will be given are highly sensitive to the initial value

[θ
(0)
2 , C̃1

(0), C̃2
(0), C̃3

(0)
]T .

Figure 5. Multiple solutions of Equation (15).

To solve this problem, an approximate value of the solution is given in Equation (17).
This value is calculated by first assuming that the relationship between θ1 and θ2 is linear

(θ1 ∈ (θs, π
2 )→ θ2 ∈ (−θs, π

2 )) and then calculating C̃1
(0), C̃2

(0), C̃3
(0) with θ1 and hypothetical θ2.

Using this approximate value as the initial value in the process of finding the wanted numerical
solution for Equation (15) is proved to be very efficient and effective.


θ
(0)
2

C̃1
(0)

C̃2
(0)

C̃3
(0)

 =



π
2 +θs
π
2 −θs

(θ1 − θs)− θs

C̃2
(0)−sin θ1

arcsinh tan θ1
(2D̃l−r̃ sin θ

(0)
2 )arcsinh tan θ1+sin θ1arcsinh tan θ

(0)
2

arcsinh tan θ1+arcsinh tan θ
(0)
2

D̃h + cos θ1 − C̃1
(0)

cos θ1


(17)

Algorithm 1 present an example way to solve Equation (15) for [θ2, C̃1, C̃2, C̃3].
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Algorithm 1 Calculate [θ2, C̃1, C̃2, C̃3]
T when given R1, R2, Dl , Dh, θ1.

Require: 2Dl > R1 + R2, θ1 ∈ (θs, π
2 )

Calculate r̃, D̃l , D̃h

Calculate [θ
(0)
2 , C̃1

(0), C̃2
(0), C̃3

(0)
]T with Equation (17)

tol = 10−7, factor = 10−3

Find [θ2, C̃1, C̃2, C̃3]
T minimize Equation (15) with [θ

(0)
2 , C̃1

(0), C̃2
(0), C̃3

(0)
]T as the initial value and

factor as the initial step

return [θ2, C̃1, C̃2, C̃3]
T

The convergence of this algorithm is verified using the exhaustive method when D̃h ∈ [−20, 20],
D̃l ∈ [1.5, 50]. Figure 6 shows the shape of the moving thin-sheet materials (solid) between rolls when
position of rolls varies and r̃ = 2. Figure 6 also shows the track of the lowest point on the sheet (dash).
This work uses HYBRID of MINPACK [38] in numerical computation.

Figure 6. The shape of the moving thin-sheet materials between rolls when position of rolls varies.

For a given set of position and size parameters R1, R2, Dl , Dh and θ1 ∈ (θs, π
2 ), by using above

method, the parameters θ2, C̃1, C̃2, C̃3 can be determined. This method can be applied in the design
of the production line, to determine if the track of a sheet is appropriate or to avoid the possible
mechanical interference of the sheets with other equipment.

4. The Optimal Sag

If the sheet between rolls is too long or too short, it will have large tensions inside. To determine
the relationship between the length of the sheet between rolls, the maximum tension in the sheet,
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and the position and size of rolls, define the length between rolls L as the length of the sheet between
A and D as shown in Figure 4. For a given θ1, L can be expressed as:

L ≡
_

AB +
_
BC +

_
CD

= R1(θ1 − θs) +
∫ xC

xB

√
1 + ẏ2dx + R2(θ2 + θs)

=
C1

ρbtg
(tan θ1 + tan θ2) + R1(θ1 − θs) + R2(θ2 + θs) (18)

Equation (11) indicates that the maximum tension exists at either point B or point C (the higher
one). So the maximum stress in the sheet is:

σmax =
Tmax

bt
=

max{TB, TC}
bt

= 2ρv2 − λ

bt
+ ρg max{yB, yC}

= 2ρv2 − λ

bt
+ ρg max{Dh + R1 cos θ1, R2 cos θ2} (19)

Define the dimensionless forms of L and σmax as:

L̃ ≡ L
R1

= C̃1(tan θ1 + tan θ2) + θ1 + r̃θ2 + (r̃− 1)θs (20)

σ̃max ≡
σmax − ρv2

R1ρg
= max{D̃h + cos θ1, r̃ cos θ2} − C̃3 (21)

It should be pointed out that for some specific parameters R1, R2, Dl , Dh (when
(R1 − R2 + Dh)Dh < 0), the maximum tension point may change between B and C as the length
changes. For example, when R1 = 0.2, R2 = 1.0, Dl = 3.0, Dh = 0.4, as shown in Figure 7, point C
has greater tension when the sheet is tensioned and point B posesses greater tension when the sheet
is relaxed.

Figure 7. Maximum tension point may shift between B and C.

The relationship between σ̃max and L̃ is calculated with Equations (20) and (21) when D̃l varied
and D̃h = 0 is shown in Figure 8. Figure 8 (A), (B), (C), (D) for r̃ = 0.2, 1.0, 1.5, 1.8 respectly.
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Figure 8. Plot of calculated σ̃max and L̃ when D̃l varied.

The plot of σ̃max as a function of L̃ is shown in Figure 9, when D̃h varied and D̃l = 2.5. Figure 9
(A), (B), (C), (D) for r̃ = 0.2, 1.0, 1.5, 1.8 respectly.

Figure 9. Plot of calculated σ̃max and L̃ when D̃h varied.

Figures 8 and 9 show that σ̃max increases fast when L̃ is close to the length of AD, which means
that the sheet is tensioned. It is also shown that the slope of σ̃max − L̃ curve coverges to 0.5 when L̃
increases. It has been shown that for a set of specific position and size parameters R1, R2, Dl , Dh, there
is one optimum length L̂ which minimizes the maximum stress inside the sheet. Examples of this
optimum pose are shown in Figure 10.

L̂ = arg min
L

σmax (22)
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Figure 10. The optimum length.

In practical engineering, L̂ can be estimated from the length of AD. Define L0 = AD. Figure 11
shows L̂/L0 when D̃l ∈ [1.5, 5], D̃h ∈ [−10, 10]. Figure 11 (A), (B), (C), (D) for r̃ = 0.2, 1.0, 1.5, 1.8 respectly.

Figure 11. L̂/L0 when r̃ = 0.2, 1.0, 1.5, 1.8.

The approximate value of L̂ is:

L̂ ≈ 1.25L0 = 1.25
√

D2
h + 4D2

l + (R1 − R2)2 (23)

The estimation method of the optium sheet sag shown in Equation (23) is a fast way to know how
the sheet should be located to lower the maximum stress in the sheet.

5. The Minimum Specific Strength

When the radius of the rolls (R1, R2) and positions (Dl , Dh) are fixed, there exists an optium
sheet position which makes the maximum dimensionless stress (σ̃max, defined in Equation (21)) in the
sheet minimum.

σ̃max =
σmax − ρv2

ρgR1
> min{σ̃max} (24)
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In another word, when the rolls’ radius and positions are given, there is a lower limit for the
material’s specific strength to be transported between these rolls.

σmax

ρ
> gR1 min{σ̃max}+ v2 (25)

Define this lower limit as the Minimum Specific Strength, σ̂Smin.

σSmin ≡ gR1 min{σ̃max}+ v2 (26)

To calculate min{σ̃max} with R1, R2, Dl , Dh, a numerical approach using varible step Newton’s
Method is proposed as Algorithm 2. In this algorithm, factor α is introduced to control the Newton
step to make the algorithm converge in some extreme examples. σ̃max(θ

(t)
1 ) can be calculated using

method proposed in former sections. min{σ̃max} are calculated when D̃l ∈ [1.5, 5], D̃h ∈ [−10, 10]
and the results are shown in Figure 12. Figure 12 (A), (B), (C), (D) for r̃ = 0.2, 1.0, 1.5, 1.8 respectly.
As shown, the relationship between min{σ̃max}, |Dh| and 2Dl − R1 − R2 is approximately linear.

Algorithm 2 Calculate min{σ̃max} when given R1, R2, Dl , Dh.

Require: 2Dl > R1 + R2

θ
(0)
1 = 1.1, t = 0, α = 1, ∆θ1 = 10−3, tol = 10−7

repeat

θ
(t+1)
1 = θ

(t)
1 − α ∆θ1

2
σ̃max(θ

(t)
1 +∆θ1)−σ̃max(θ

(t)
1 −∆θ1)

σ̃max(θ
(t)
1 +∆θ1)+σ̃max(θ

(t)
1 −∆θ1)−2σ̃max(θ

(t)
1 )

t = t + 1, α = α ∗ 0.995

until abs(θ(t+1)
1 − θ

(t)
1 ) < tol

return min{σ̃max} = σ̃max(θ
(t)
1 )

Figure 12. min{σ̃max} when r̃ = 0.2, 1.0, 1.5, 1.8 and D̃l , D̃h vary.

To provide an estimation method for σSmin, let min{σ̃max} ≈ k1(2Dl − R1 − R2) + k2|Dh|. k1, k2

are identified with the least square method when the r̃ took different values, as shown in Table 1.
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Table 1. Fitting results when r̃ varies. Dh ∈ [0, 10] or [−10, 0], Dl ∈ [1.5, 5].

R1 R2 Dh k1 k2 R1 R2 Dh k1 k2

1.0 0.2 [0, 10] 0.704 0.809 1.0 0.2 [−10, 0] 0.662 0.766
1.0 0.3 [0, 10] 0.701 0.806 1.0 0.3 [−10, 0] 0.664 0.769
1.0 0.4 [0, 10] 0.698 0.804 1.0 0.4 [−10, 0] 0.666 0.771
1.0 0.5 [0, 10] 0.695 0.801 1.0 0.5 [−10, 0] 0.669 0.774
1.0 0.6 [0, 10] 0.692 0.798 1.0 0.6 [−10, 0] 0.671 0.776
1.0 0.7 [0, 10] 0.689 0.795 1.0 0.7 [−10, 0] 0.673 0.779
1.0 0.8 [0, 10] 0.686 0.792 1.0 0.8 [−10, 0] 0.675 0.781
1.0 0.9 [0, 10] 0.683 0.789 1.0 0.9 [−10, 0] 0.677 0.784
1.0 1.0 [0, 10] 0.679 0.786 1.0 1.0 [−10, 0] 0.679 0.786
1.0 1.1 [0, 10] 0.677 0.783 1.0 1.1 [−10, 0] 0.682 0.789
1.0 1.2 [0, 10] 0.674 0.779 1.0 1.2 [−10, 0] 0.684 0.791
1.0 1.3 [0, 10] 0.671 0.776 1.0 1.3 [−10, 0] 0.686 0.794
1.0 1.4 [0, 10] 0.668 0.772 1.0 1.4 [−10, 0] 0.688 0.797
1.0 1.5 [0, 10] 0.666 0.768 1.0 1.5 [−10, 0] 0.69 0.799
1.0 1.6 [0, 10] 0.663 0.764 1.0 1.6 [−10, 0] 0.691 0.802
1.0 1.7 [0, 10] 0.661 0.76 1.0 1.7 [−10, 0] 0.693 0.805
1.0 1.8 [0, 10] 0.659 0.755 1.0 1.8 [−10, 0] 0.694 0.808

Based on the fitting results, the method for calculating σSmin is given as:

σSmin ≈ g[0.68(2Dl − R2 − R1) + 0.79|Dh|] + v2 (27)

Define relative error of this method as ε:

ε =
σSmin − g[0.68(2Dl − R2 − R1) + 0.79|Dh|]− v2

σSmin − v2 (28)

The relative error ε is calculated when r̃, D̃l , D̃h took different values, as shown in Figure 13.
Figure 13 (A), (B), (C), (D) for r̃ = 0.2, 1.0, 1.5, 1.8 respectly. In most cases, relative error of estimation
value given by Equation (27) is less than 25%.

Figure 13. Relative error (percentage) when r̃, D̃l , D̃h took different values.
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The concept of the Minimum Specific Strength has high practical significance in the production of
the low-strength sheet. It is the property of the production system, and it does not depend on the sheet
material or size. In real manufacturing, each machine has fixed roll size and position. Our Minimum
Specific Strength model determines whether a certain type of material can be manufactured on this
machine or not, and hence prevent the potential failures.

6. Discussion

This work derives the track and tension distribution for steady-state continuous moving flexible
sheet under gravity (Equations (5) and (11)). Compared to previous studies (view the track of the sheet
as a straight line), our work has a better prediction of the thin-sheet materials’ behavior when being
transported in the low-tension state between rolls.

This study proposes a numerical method to model the track of the thin-sheet material considering
the size and position of rolls (Algorithm 1). It is hardly studied before since in high-tension condition
the size and position of rolls are insignificant. However, in the low-tension condition, they are
important when modeling the shape and the maximum stress of the hanging sheet (Figures 8 and 9).
This study further finds that there exists a special shape of the thin-sheet material which minimizes the
maximum stress in the sheet (Figure 10). The concept of the Minimum Specific Strength is developed,
which depends only on the size, position, and the transporting speed (Equation (27)). This Minimum
Specific Strength means the lower limit of thin-sheet material’s strength-density ratio that two fixed
rolls can transport without damaging it.

7. Conclusions

This study proposes the concept of the Minimum Specific Strength that determines if a specific
roll-to-roll system would be able to convey a certain low-strength sheet. The essential part of this
work is the low-tension roll-to-roll system model. This study also presents an algorithm used to solve
the complex problems when considering the size and position of rolls. This study further discusses
how the sheet sag, rolls’ position, and rolls’ size would influence the maximum stress in the sheet.
This study eventually leads to the concept of the Minimum Specific Strength and how to calculate and
estimate it with rolls’ size and position. The relative error of this method to estimate the Minimum
Specific Strength is less than 25% when D̃l ∈ [1.5, 5], D̃h ∈ [−10, 10] in most cases.

The models and methods developed have already been applied in the design and intelligent
control of noncombustible composite panel production line, which also can be applied to the
manufacturing process of other low-strength flexible thin-sheet materials as well.
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