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Abstract: This paper presents a low-voltage ride-through (LVRT) control strategy for grid-connected
energy storage systems (ESSs). In the past, researchers have investigated the LVRT control strategies to
apply them to wind power generation (WPG) and solar energy generation (SEG) systems. Regardless
of the energy source, the main purpose of the LVRT control strategies is to inject reactive power into
the grid depending on the grid-code regulations using the grid-side inverter; the proposed LVRT
control strategy for grid-connected ESSs also has the same purpose. However, unlike the WPG and
SEG systems having unidirectional power flow, grid-connected ESSs have a bidirectional power
flow. Therefore, the charging condition of the grid-connected ESSs should be considered for the
LVRT control strategy. The proposed LVRT control strategy for grid-connected ESSs determines
the injection quantity of the active and reactive currents, and the strategy depends on the voltage
drop ratio of the three-phase grid. Additionally, in this paper, we analyzed the variations of the
point of common coupling (PCC) voltage depending on the phase of the reactive current during the
charging and discharging conditions. The validity of the proposed LVRT control strategy is verified
and the variations of the PCC voltage of the grid-connected ESS are analyzed by simulation and
experimental results.

Keywords: low voltage ride through; wind power generation system; solar energy generation system;
grid-connected; energy storage system

1. Introduction

In recent years, the depletion of fossil fuels and environmental pollution have become important
matters of global concern because they cause the depletion of energy resources and global warming.
Accordingly, the demand for the use of renewable energy sources, such as wind power, solar energy,
and biomass, has rapidly increased [1–3]. To meet the demand and reduce the problems associated
with the depletion of fossil fuels and environmental pollution, numerous studies have been conducted
for green energy and renewable energy development [4–6]. The common renewable energy systems are
wind power generation (WPG), which uses wind turbines, and solar energy generation (SEG), which
uses photovoltaic cells. However, sources such as wind power and solar energy might be unreliable
and unpredictable because of changes in environmental conditions. Therefore, energy storage systems
(ESSs) are used for conserving energy generated by the renewable energy sources in battery systems.

The grid-connected ESS usually generates and supplies power by connecting to a grid. It is used
for conserving the additional energy with a reasonable cost, such as at night. Moreover, it can improve
the energy quality and maximize its efficiency by supplying the conserved energy on requirement.
The ESS has been made commercially available as typical renewable energy and energy conservation
systems [7–11].
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Power generation systems connected to the grid can have a negative impact on the grid in
case the power scale of the systems becomes large. Therefore, several countries suggest grid-code
regulations to mitigate the negative impacts on the grid. Grid-code regulations differ from country to
country; Germany’s grid-code regulations are more rigorous than the grid-code regulations of other
countries. In general, the grid-code regulations define that systems such as WPG and SEG have to
remain connected to the grid when the voltage drops for a specified time and support the grid with a
reactive current. This requirement, known as a low-voltage ride-through (LVRT), is needed to avoid
grid blackouts.

The LVRT requirement is crucial for grid-code regulations. Figure 1 shows the LVRT requirements
in Germany and China. The requirements are different regarding a fault duration and the injection
quantity of the reactive power depending on the voltage drop ratio. This requirement ensures that
the system connected to the grid operates properly when the grid voltage drops [12–18]. The LVRT
requirement contributes to the recovery of the grid voltage by supplying the reactive current in the
designated voltage range. In order to satisfy the LVRT requirement, a proper control of the reactive
current in the grid-connected ESS is necessary. To control the reactive power and the current for the
grid-connected inverters in the WPG, SEG, and ESS is crucial. Numerous studies have been conducted
for issues related to the reactive power and current compensation capabilities of such systems [19–25].
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The WPG systems using wind turbines and the SEG systems using photovoltaic cells usually
have a large power scale. Therefore, the LVRT requirement needs to be thoroughly implemented in
these systems. The LVRT control strategies researched recently comply with the LVRT requirement. In
addition, these strategies focus on the additional operations that are effective and economical, which
include the continuously stable operations with dynamic breakers in the WPG systems [26–30] and
the maximum power generation with low voltages in the SEG systems [31–33]. These methods for
additional operations are presented by considering the characteristics of the source type. The research
on the LVRT control strategies for the WPG and SEG systems is actively progressed, however, the
research on the LVRT control strategy for the grid-connected ESSs is insufficient.

The WPG and SEG systems are characterized by unidirectional power flow, which are unlike the
grid-connected ESSs that are characterized by bidirectional power flow. Therefore, the LVRT control
strategy used for the grid-connected ESSs needs to comply with the LVRT requirement, additionally,
the characteristics of bidirectional power flow, i.e., the charging conditions of the grid-connected ESSs,
need to be considered in the LVRT control strategy. The LVRT control strategy for the ESS is presented
in [34]. In [34], when the grid voltage drops under charging condition of the grid-connected ESS,
the LVRT control strategy is applied after the condition of the grid-connected ESS is changed to the
discharging condition. It contributes to increase the voltage at the point of common coupling (PCC).
This LVRT control strategy can be applied in applications improving the grid voltage durability such
as frequency regulator that improves the grid frequency stability [35], [36]. However, in applications
with other system connected to the DC-link of the grid-connected ESS, the charging condition of the
grid-connected ESS must be maintained although the grid voltage drops. This paper presents the
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LVRT control strategy for grid-connected ESSs by considering the characteristic of bidirectional power
flow. The proposed LVRT control strategy complies with the LVRT requirement and operates for
contributing to increase voltage at the PCC. In other words, when the grid voltage drops, the proposed
LVRT control strategy determines the injection quantity of the active and reactive currents depending
on the voltage drop ratio of the three-phase grid. Additionally, in this paper, we analyzed the variations
of the PCC voltage depending on the phase of the reactive current of the grid-connected ESS during
the charging and discharging conditions. The validity of the proposed LVRT control strategy is verified
and the variations of the PCC voltage of the grid-connected ESS are analyzed by PSIM simulation and
experimental results.

2. LVRT Control Strategy for Renewable Energy Systems

2.1. LVRT Control Strategy in the WPG System

Figure 2 shows the configuration of the WPG system that uses a back-to-back converter.
This system comprise a generator connected to a blade, a back-to-back converter (with a dynamic
breaker), a filter, a transformer, and a three-phase grid. The generator with the blade has a large inertia;
therefore, the WPG system cannot instantaneously reduce the power. The back-to-back converter is the
representative topology used in WPG systems, and it comprises a generator-side converter, DC-link
with a dynamic breaker, and grid-side inverter.
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Figure 2. Configuration of the wind power generation system that uses a back-to-back converter.

When the grid voltage drops in the WPG system, the power limited by the rating current is
reduced because of the low grid voltage. Therefore, surplus power exists, and it considerably increases
the DC-link voltage. If the WPG system decreases the power generation for preventing the production
of surplus power, the blade speed increases owing to the large inertia of the generator with the blade.
Finally, the increase in the blade speed or the DC-link voltage can lead to the destruction of the WPG
system. Therefore, when the grid has a low voltage, the LVRT control strategies for the WPG system
should focus on the stable operation of the WPG system. In the WPG system, another device is required
to consume the surplus power, comply with the LVRT requirement, and maintain stable operation.
Therefore, a dynamic breaker is included in the back-to-back converter; the dynamic breaker, called
crow bar, comprises a resistor and a switch.

The LVRT control strategies for the WPG system under low grid voltage determine the injection
quantity of the reactive current (Ide) by the LVRT requirement depending on the level of low voltage.
In addition, the active current (Iqe) for transferring the active power allowed in the range of the rating
current (Irating) of the WPG system is calculated as in (1).

Iqe =
√

I2
rating − I2

de (1)

where Ide and Iqe, which represent the reactive and active powers, respectively, are the d-q axis currents
in the synchronous reference frame. These are reflected in the control of the grid-side inverter. If surplus
power is generated, the generator-side converter is able to reduce the power until the blade speed
becomes equal to the rating speed. At the rating speed of the blade, the dynamic breaker operates to
decrease the DC-link voltage.
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2.2. LVRT Control Strategy in the SEG System

Figure 3 shows the configurations of the SEG systems, which are typically classified into two
topologies: the one-state topology without a DC/DC converter (see Figure 3a) and the two-stage
topology with a DC/DC converter (see Figure 3b). The SEG system comprises photovoltaic (PV)
arrays, a power conversion system (comprising a DC/DC converter and a grid-side inverter), a filter,
and a three-phase grid.
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If the grid voltage drops in the SEG system, regardless of the topology, reactive power is injected
in the grid-side inverter to comply with the LVRT requirement, which is similar to the case of WPG
system. However, the LVRT control strategies for the SEG systems are different from those for the
WPG systems. In the SEG system, the LVRT control strategy with maximum power generation is
widely used. Using the LVRT control strategy, the d-axis current (Ide) required for injecting the reactive
power into the grid having a low voltage is determined based on the LVRT requirement depending on
the level of low voltage. In addition, to transfer the maximum power from the PV arrays to the grid
with low voltage, the active current is calculated by (1). Unlike the LVRT control strategy for the WPG
systems, in the SEG systems, the LVRT control strategy focuses on the power generation.

In Figure 3b, the DC/DC converter transfers the input power corresponding to the output power
calculated using Iqe and the low grid voltage.

3. Proposed LVRT Control Strategy for Grid-Connected ESSs and Analysis of PCC
Voltage Variation

Figure 4 shows the circuit configurations of the grid-connected ESS using a voltage source inverter
(VSI). It comprises a battery, DC-link capacitors (CDC), a VSI, a filter (Lf), the resistive impedance (RG)
and inductive impedance (LG) elements of the grid, and a three-phase grid. The VSI comprises six
insulated gate bipolar transistors (IGBTs) with antiparallel diodes. In addition, there is a PCC between
the filter and the three-phase grid. The three-phase grid generates balanced three-phase grid voltages
(VR, VS, and VT) having constant frequencies.
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3.1. Proposed LVRT Control Strategy for a Grid-Connected ESS

The LVRT control strategy needs to be applied in the grid-connected ESS having a large power
scale. This strategy generally considers the characteristic of the source type or the application of the
system. However, regardless of the characteristics or application, the main purpose of the LVRT control
strategy is to comply with the LVRT requirement and inject reactive power through the grid-side
inverter on the basis of the gird-code regulations.

The characteristics of the grid-connected ESS are different from those of the WPG and SEG systems;
the grid-connected ESS with the battery in the DC-link has bidirectional power flow depending on the
charging and discharging conditions, unlike the WPG and SEG systems, which have unidirectional
power flow. Therefore, the LVRT control strategy for the grid-connected ESS needs to consider the
charging and discharging conditions.

When the grid voltage drops during ESS operation under the discharging and charging conditions,
the proposed LVRT control strategy for the grid-connected ESS becomes similar to the strategy for
the WPG and SEG systems. The proposed LVRT control strategy determines the injection quantity of
the reactive current for injecting reactive power into the three-phase grid depending on the grid-code
regulation. In addition, the active current for transferring active power is determined within the range
of the rating current of the grid-connected ESS.

The method for determining the injection quantity of the active and reactive currents depends
on the voltage drop ratio of the three-phase grid as shown in Figure 5. The voltage-level (VLEVEL) of
the three-phase grid is calculated by the voltage-level calculation process using the three-phase grid
voltages VR, VS and VT. VLEVEL is classified into three parts depending on the LVRT requirement of the
grid-code regulations, and the method for determining the injection quantity of the active and reactive
currents is selected by each part. If VLEVEL is greater than 90% of the three-phase grid voltage under
normal conditions, the reactive current injected into the three-phase grid is zero, and the active current
becomes the reference current. If VLEVEL is greater than 50% but less than 90% of the three-phase
grid voltage, then reactive current to be injected into the three-phase grid is determined based on
the voltage drop ratio of the three-phase grid. In addition, the active current is calculated using the
reactive current and the rating current of the grid-connected ESS. If VLEVEL is less than 50% of the
three-phase grid voltage, the reactive current injected into the three-phase grid is the rating current of
the grid-connected ESS, and the active current is zero.

Figure 6 shows the voltage-level calculation process using VR, VS and VT as the three-phase grid
voltages. The voltage magnitudes (VR(mag), VS(mag) and VT(mag)) of each phase in the three-phase grid
is calculated by VR, VS and, VT and the three-phase grid voltages (VR(shift), VS(shift) and VT(shift)), which
are transformed by the orthogonal signal generator such as the all-pass filter. In addition, VLEVEL is
determined by VR(mag), VS(mag), and VT(mag) using the maximum value estimation. The VLEVEL obtained
by the voltage-level calculation process that uses the three-phase grid voltage magnitude is important
because it is used for detecting the LVRT requirement.
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As a result, the proposed LVRT control strategy for a grid-connected ESS determines the injection
quantity of the active and reactive currents depending on the voltage drop ratio of the three-phase
grid, which is based on the grid-code regulation.

Figure 7 shows the control block diagram of the grid-connected ESS with the proposed LVRT
control strategy. The VR, VS and VT are used to detect the phase angle of the three-phase grid using the
phase-locked loop (PLL). Additionally, they are used for the voltage-level calculation process, which
determines VLEVEL. Using VLEVEL and the LVRT control strategy, the active and reactive reference
currents are determined.
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3.2. Analysis of PCC Voltage Variation

When the ESS operates under the discharging condition, the active current is injected into the
three-phase grid from the ESS. In this case, the PCC voltages are changed by the phase of the reactive
current injected into the three-phase grid. Figure 8 shows the variations of the PCC voltage in the
discharging condition of the ESS depending on the phase of the reactive current. VG is the grid voltage,
and IG is the grid current flowing between the ESS and the three-phase grid. In this paper, when IG is
positive, it flows to the three-phase grid from the ESS. The d-axis refers to the reactive component, and
the q-axis refers to the active component. VPCC is the PCC voltage, which is the sum of VG and the
voltage drops (VRG and VLG) of the resistor–inductor of the three-phase grid. In Figure 8a, IG includes
only the active current, which means that the reactive current is zero. VPCC is occurred by VG, VRG,
and VLG, and it has a phase equal to that of IG. When the inductive or capacitive reactive current is
injected into the three-phase grid, VPCC is changed by the variation of the phases of VRG and VLG, as
shown in Figure 8b,c. In other words, VPCC decreases because of the injection of the inductive reactive
current, and it increases because of the injection of the capacitive reactive current. As a result, in the
discharging condition of the ESS, the active current with the capacitive reactive current injected into
the three-phase grid contributes to an increase of VPCC and meets the LVRT requirement.
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Figure 8. Variations of the point of common coupling (PCC) voltage in the discharging condition of the
ESS depending on the phase of the reactive current. (a) Reactive current is zero; (b) Inductive reactive
current is injected; (c) Capacitive reactive current is injected.

When the ESS operates under the charging condition, contrary to the discharging condition,
the active current flows to the ESS from the three-phase grid. VPCC is also changed by the phase of
the reactive current flowing to the ESS. The variations of VPCC in the charging condition of the ESS
depending on the phase of the reactive current is shown in Figure 9. In Figure 9a, IG includes only the
active current without the reactive current. It does not contribute to the increase of VPCC because IG has
a negative direction. In Figure 9b,c, VPCC is changed by the injection of the inductive and capacitive
reactive currents, respectively. VPCC decreases when the inductive reactive current is injected, and it
increases when the capacitive reactive current is injected. Therefore, in the charging condition of the
ESS, the active current with the capacitive reactive current contributes to the LVRT requirement.
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reactive current is injected.
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When the grid voltage drops in the grid-connected ESS, the proposed LVRT control strategy is
required to comply with the LVRT requirement. The proposed LVRT control strategy determines the
injection quantity of the active and reactive currents, and the strategy depends on the voltage drop
ratio of the three-phase grid. In addition, regardless of the operating condition of the ESS, such as
the charging and discharging conditions, the injection of the capacitive reactive current contributes
to the LVRT requirement because of the increase of VPCC. The validity of the proposed LVRT control
strategy is demonstrated and the variations of the PCC voltage of the grid-connected ESS are analyzed
by simulation and experimental results.

3.3. LVRT Control Strategy Depending on State of Charge of Battery

Contrary to the LVRT control strategy for the WPG and the SEG systems, in the grid-connected
ESSs with a battery in the DC-source, shown in Figure 4, a state of charge (SOC) should be considered
for the LVRT control strategy. The SOC is an essential indicator used to regulate the operating decisions
and to avoid the over-charge or over-discharge. However, it cannot be measured directly by sensors.
In general, the SOC is obtained by the battery management system or various algorithms for estimation
of the SOC using the battery model [37–39].

In case the SOC is higher or lower than the designated value under the discharging or charging
conditions of the grid-connected ESS, the proposed LVRT control strategy, which is mentioned above
can be applied. However, in case the SOC is lower or higher than the designated value under the
discharging or charging conditions of the grid-connected ESS, the SOC should be considered in the
grid-connected ESS with the LVRT control strategy. In other words, if the SOC is lower than the
designated value under discharging conditions of the grid-connected ESS, the active current cannot
be supplied to the three-phase grid. The other way, if the SOC is higher than designated value under
charging conditions, the active current is not required. Therefore, regardless of the grid voltage drops,
the grid-connected ESS controls the reactive current as rating current.

4. Simulation Results

To verify the performance of the proposed LVRT control strategy and analyze the variations of the
PCC voltage, a simulation that uses the grid-connected ESS as shown in Figure 4 was conducted using
the PSIM software. The simulation parameters are listed in Table 1. DC-link voltage (VDC) generated
by the battery was 600 V, and the three-phase grid line-to-line voltage (VG) was 60 Hz/380 Vrms. In
addition, Lf was 3 mH and RG and LG were 0.05 Ω and 0.04 mH, respectively.

Table 1. Simulation parameters.

Parameters Value Unit

DC-link voltage (VDC) 600 V
DC-link capacitor (CDC) 2200 µF

Three-phase grid line-to-line voltage (VG) 380 Vrms
Three-phase grid frequency (fG) 60 Hz

Filter inductance (Lf) 3 mH
Resistive impedance of grid (RG) 0.05 Ω
Inductive impedance of grid (LG) 0.04 mH

Rating power (Prating) 5 kW
Rating current (Irating) 10.7 Apeak

Switching frequency (fsw) 10 kHz

Figure 10 shows the simulation results of the voltage-level calculation process (given in Figure 6)
that uses the three-phase grid voltages VR, VS, and VT. Under normal conditions, VR, VS, and VT are
60 Hz/310 Vpeak. However, in Figure 10a, the grid voltage drops, and the magnitudes of VR, VS, and
VT decrease to 80%, 60%, and 40%, respectively, of the magnitudes of the phase voltages under normal
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conditions for intervals ranging from 0.1 to 0.5 s. After that, the magnitudes increase to 70% and 100%
as compared with the magnitudes of the phase voltages under normal conditions. The magnitude
(Vmag) of VR, VS, and VT is precisely calculated using the voltage-level calculation process as shown in
Figure 6. Moreover, VLEVEL as the voltage-level of the three-phase grid is determined depending on
Vmag (as shown in Figure 10b), and VLEVEL is used for the detecting the LVRT requirement.
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Similar to the scenario in Figure 10, Figure 11 shows the simulation results of the proposed
LVRT control strategy depending on the detecting the LVRT requirement based on the voltage-level.
Figure 11a shows VLEVEL of the three-phase grid when the voltage drops (as in Figure 10). Figure 11b,c
show the d-axis and q-axis currents (Ide and Iqe) and the reference currents (I*de and I*qe) of the
synchronous reference frame. Ide and Iqe stand for the reactive and the active currents in the
synchronous reference frame, respectively. I*de and I*qe are determined by the proposed LVRT control
strategy depending on the detecting the LVRT requirement using VLEVEL. In other words, the injection
quantity of the active and reactive currents is determined from the voltage drop ratio of the three-phase
grid using the method as shown in Figure 5.

If VLEVEL is 80% during the interval from 0.2 to 0.3 s in Figure 11a, I*de as the injection quantity of
the reactive current is determined to 40% (approximately 4.28 A) of Irating in the grid-connected ESS
as shown in Figure 11b. In addition, if VLEVEL is lower than 50% during the interval from 0.4 to 0.5 s
in Figure 11a, I*de is determined to 100% (approximately 10.7 A) of Irating in the grid-connected ESS
as shown in Figure 11b. After determining I*de using the proposed LVRT control strategy, I*qe as the
injection quantity of the active current is calculated using I*de and Irating.

As a result, although the grid voltage drops, Ide and Iqe are controlled by I*de and I*qe, respectively,
using the proposed LVRT control strategy. The proposed LVRT control strategy complies with the
LVRT requirement, and the three-phase grid currents (IR, IS, and IT) maintain a sinusoidal waveform,
as shown in Figure 11d.

In this paper, an additional simulation was performed to analyze the variations of the PCC voltage
depending on the phase of the reactive current injected into the three-phase grid. Figures 12 and 13
show the simulation results of the PCC voltage depending on the phase of the reactive current when
the ESS operates under the discharging and charging conditions, respectively. In Figures 12 and 13,
the magnitudes of VR, VS, and VT are decreased to 60% as compared with those of phase voltages
under normal conditions. Therefore, I*de was determined to 80% (approximately 8.56 A) of Irating in the
grid-connected ESS through the proposed LVRT control strategy. I*qe as the reference active current is
calculated according to (1) as approximately 6.42 A. The Iqe values as shown in Figures 12c and 13c
are controlled by I*qe (6.42 A in Figure 12c and −6.42 A in Figure 13c), depending on the operating
conditions of the ESS, such as the discharging and charging conditions.
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Figure 12. Simulation results of the PCC voltage depending on the phase of the reactive current when
the ESS operates under the discharging condition. (a) PCC voltage; (b) Synchronous reference frame
d-axis current and reference current; (c) Synchronous reference frame q-axis current and reference
current; (d) Three-phase grid currents.
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As shown in Figures 12b and 13b, the inductive reactive current is injected into the three-phase
grid during the interval from 0.3 to 0.5 s, and the capacitive reactive current is injected during the
interval from 0.5 to 0.7 s. Depending on the phase of the reactive current injected into the three-phase
grid, the PCC voltage (VPCC) is changed as shown in Figures 12a and 13a with an extended simulation
waveform. Regardless of the operating conditions of the ESS, the VPCC magnitude is higher when
the capacitive reactive current is injected as compared with the VPCC magnitude when the inductive
reactive current is injected. Therefore, when the grid voltage drops, the capacitive reactive current
determined by the proposed LVRT control strategy needs to be injected into the three-phase grid.
This contributes to the PCC voltage increase. The three-phase grid currents (IR, IS, and IT) are shown
in Figures 12d and 13d.
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Figures 14 and 15 show the simulation results of the active and reactive currents of the
grid-connected ESS depending on the SOC under discharging and charging conditions. In the
discharging and charging conditions of the grid-connected ESS, the proposed LVRT control strategy is
applied when the grid voltage drops. However, in Figure 14, the SOC of the battery in the DC-link is
changed from 20 to 10 at 0.3 s. It is lower than designated value, which is decided to 15. Additionally,
in Figure 15, the SOC of the battery is changed from 80 to 90 at 0.3 s. It is higher than designated value,
which is decided to 85. Fundamentally, the SOC of the battery cannot change as immediately as a step
function because it is a dynamic variable. However, it was simulated to show the performance of the
proposed algorithm depending on the SOC of the battery. In these cases, regardless of the grid voltage
drops, the grid-connected ESS controls the reactive current as rating current.
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Figure 15. Simulation results of the active and reactive currents of the grid-connected ESS depending on
the SOC under charging condition. (a) SOC; (b) Voltage-level of the three-phase grid; (c) Synchronous
reference frame d-axis current and reference current; (d) Synchronous reference frame q-axis current
and reference current; (e) Three-phase grid currents.
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5. Experiment Results

To verify the validity of the proposed LVRT control strategy and analyze the variations of the
PCC voltage, experiments were performed using the experimental setup as shown in Figure 16.
In the experimental setup, the DC power supply (TC.GSS.20.600.4WR.S) that has characteristic of
the bidirectional power flow is used for the battery as shown in Figure 4. The experimental setup
comprised a DC-link, control board, relay, switched mode power supply (SMPS), fan, power board,
and magnetic contactor. The SMPS supplies the power to operate the control board and power board.
The control board comprised a digital signal processor that used TMS320F28335, and the power board
consisted of an inverter stage using the IGBTs and gate drivers. The parameters of the experiment
were equal to those of the simulation listed in Table 1.
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Figure 16. Experimental setup.

Figure 17 shows the experimental results of the voltage-level calculation process. Under normal
conditions, VR as the R-phase grid voltage is 60 Hz/310 Vpeak. However, in Figure 17, the grid voltage
drops. The VR magnitude decreases from 100% to 80% and further to 60% and 40%; subsequently, it
increased to 70% and 100% as compared with the phase voltage magnitude under normal conditions.
Vmag as the magnitude of the three-phase grid voltages is precisely calculated. In addition, VLEVEL is
determined, and it was used for detecting the LVRT requirement.
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In a scenario similar to that shown in Figure 17, the experimental results of the proposed LVRT
control strategy depending on the detecting the LVRT requirement are shown in Figure 18. In Figure 18,
Ide and Iqe, which are the reactive and active currents, respectively, are changed by the detecting the
LVRT requirement using VLEVEL and the proposed LVRT control strategy. When VLEVEL is 80%, Ide is
injected into the three-phase grid with 40% of Irating as the rating current in the grid-connected ESS.
If VLEVEL is lower than 50%, Ide is determined to 100% of Irating. In addition, Iqe is determined by Ide
and Irating after determining Ide using the proposed LVRT control strategy. As a result, when the grid
voltage drops, the proposed LVRT control strategy complies with the LVRT requirement, and IR as the
R-phase grid current is maintained in a sinusoidal waveform, as shown in Figure 18.
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LVRT requirement.

Figures 19 and 20 show the experimental results of the PCC voltage depending on the phase of the
reactive current when the ESS operates under the discharging and charging conditions, respectively.
In Figures 19 and 20, the magnitudes of the three-phase grid voltages are decreased to 60% as
compared with those of phase voltages under normal conditions. Therefore, Ide is determined to
80% (approximately 8.56 A) of Irating in the grid-connected ESS using the proposed LVRT control
strategy. Additionally, Iqe is approximately 6.42 A according to (1).

Figure 19 shows that Iqe is maintained at 6.42 A because the ESS operates under the discharging
condition. Ide is changed to 8.56 from −8.56 A, which means that the reactive current injected into
the three-phase grid is changed to the capacitive reactive current from the inductive reactive current.
In Figure 20, Iqe is maintained at −6.42 A because the ESS operates under the charging condition.
Ide is changed similar to that in Figure 19. Depending on the phase of the reactive current injected
into the three-phase grid, VPCC is changed. Regardless of the operating conditions of the ESS, the
VPCC magnitude is larger when the capacitive reactive current is injected as compared with the VPCC
magnitude when the inductive reactive current is injected. In other words, the capacitive reactive
current helps in increasing VPCC regardless of the operation conditions. Therefore, when the grid
voltage drops, the capacitive reactive current should be injected into the three-phase grid using the
proposed LVRT control strategy; this contributes to an increase of the PCC voltage.
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6. Conclusions

This paper presents the LVRT control strategy for grid-connected ESSs. The LVRT requirement for
grid-connected ESSs is similar to that for other systems such as WPG and SEG systems. In other words,
the reactive current needs to be injected into the three-phase grid based on the LVRT requirement.
However, the grid-connected ESSs have bidirectional power flow, unlike other systems that have
unidirectional power flow. Therefore, the charging condition of the grid-connected ESSs needs to be
considered for the LVRT control strategy. In this paper, the proposed LVRT control strategy for the
grid-connected ESSs determines the injection quantity of the active and reactive currents depending
on the voltage drop ratio of the three-phase grid. In addition, we analyzed the variations of the PCC
voltage depending on the phase of the reactive current in the discharging and charging conditions.
As a result, the capacitive reactive current is helpful for increasing VPCC regardless of the operation
condition. Therefore, when the grid voltage drops, the capacitive reactive current needs to be injected
into the three-phase grid using the proposed LVRT control strategy. The validity of the proposed
LVRT control strategy is verified and the variations of the PCC voltage of the grid-connected ESS are
analyzed by simulation and experimental results.
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