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Featured Application: The proposed general Euler angle error model can intuitively describe the
process of attitude motion. Especially in large-angle attitude movements, such as missile erection
and manipulator control, real-time attitude information can be measured, after which the attitude
motion can be optimized.

Abstract: Attitude error models play an important role in analyzing the characteristics of navigation
error propagation for the design and operation of strapdown inertial navigation systems (SINS).
However, the majority of existing attitude error models focus on misalignment, rather than Euler
angle errors. Misalignment cannot directly describe attitude error propagation, which is an indirect
measurement. To solve the problem, a general Euler angle error model of SINS is proposed. Based on
Euler angle error propagation analysis, relative Euler angle errors, and convected Euler angle errors
are introduced to compose the general Euler angle error model. Simulation experiments are carried
out to verify the proposed model.

Keywords: attitude error model; navigation error propagation; relative Euler angle error; convected
Euler angle error

1. Introduction

Inertial navigation systems (INS) can generally be classified into gimbaled inertial navigation
systems (GINS) and strapdown inertial navigation systems (SINS) [1–3]. For SINS, gyro output
is used to maintain a digital computational platform as its reference frame [4,5]. Compared with
GINS, SINS have many advantages, such as small size, light weight, low cost, easy maintenance, etc.,
gradually replacing GINS [6,7]. Whether in GINS or in SINS, attitude error models play an important
role in analyzing the characteristics of navigation error propagation, implementing the Kalman filter
for aided navigation systems, and detecting failures in real-time [8,9].

Attitude error formulations of GINS, including those of Psi-angle, Phi-angle, were developed
for local level platform navigators [10]. With the development of SINS, Silva et al. derived attitude
error formulations for stationary SINS [11]. The static model had a better application in research
for its simple structure, but it did not apply to a dynamic base. Hao et al. established the dynamic
error model based on the static model, where vehicle location changes would directly affect the error
characteristics of SINS [12]. Assuming that the propagation characteristics of the navigation errors are
linear, some linearized attitude error formulations are also modeled [13,14]. Goshen and Bar presented
a SINS error model which contains all of the known models in the same framework [8]. Chen et al.
proved that these linearized error models are equivalent to each other [15], but linearized error models
are not effective for nonlinear systems where large navigation errors, such as in-flight alignment,
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are generated [16]. Savage introduced a rotation vector error and brought in white noise for error
differential equations to analyze the large attitude errors of SINS [17]. Then, quaternion and dual
quaternion errors were developed to describe attitude error propagation [18,19]. As quaternions and
Euler angles are not in one-to-one correspondence, both the converting relation and the corresponding
relation have to be taken into consideration during an attitude control process [20]. The SINS attitude
error formulations above mainly focus on misalignment for a specific computational frame rather
than Euler angle errors. However, misalignment error formulations cannot describe attitude error
propagation directly [21].

Euler angles are the most intuitive measurements of attitude movements, especially large-angle
attitude movements. Real-time attitude information can be obtained by using Euler angles to
express the attitude movement in controlled areas [22,23], then appropriate optimization can be
made. An adaptive Euler-angle-based unscented Kalman filter (UKF) is utilized to analyze attitude
in real-time [24]. The manipulator control process is a large-angle attitude movement process which
is very sensitive to Euler angles [25,26]. The controllers for each degree of freedom are Euler angles.
There are some specific applications, such as 6-DOF robot manipulators with Euler wrists [27,28],
and robotic-wheelchair controllers combined with multi-sensors to obtain accurate orientation in the
form of Euler angles [29]. Additionally, Jing proposed a quasi-Euler angle to control the attitude,
where the terminal attitude of a satellite can be determined [20]. The control approaches mentioned
above are based on Euler angles, and the Euler angle method turns out to be superior to the others in
the applications because it shows better numerical accuracy, stability, and robustness [30,31].

The misalignment angle is characterized by the calculation of the three-axis deviation angle
between the computational frame and the navigation frame, which cannot directly reflect and optimize
a body’s attitude movement. The initial attitude of the navigation system is in Euler angle form [32].
Since the output attitudes of SINS are Euler angles, it is necessary to analyze the Euler angle error
model which can reflect attitude measurement accuracy more directly.

To address the above issues, a general Euler angle error modeling method of SINS is proposed.
Firstly, based on the operation principles of SINS, the Euler angle solution formulation is given.
Then the differential formulation of relative Euler angle errors induced by angular velocity errors
can be derived. Secondly, the differential formulation of convected Euler angle errors induced by
an inaccurate attitude matrix is proposed based on the Euler angle differential equations. Then,
general Euler angle error formulations of SINS are modeled, and the mechanisms and characteristics of
Euler angle error propagation in SINS are analyzed. Finally, some simulation experiments are carried
out to verify the proposed models. The general Euler angle error model can be used to analyze the
attitude movements in real-time, and an optimal control strategy can be designed based on the general
Euler angle error model.

2. The Proposed General Euler Angle Error Model

The general Euler angle error model contains the relative Euler angle error model and the
convected Euler angle error model. The relative Euler angle error model indicates the relationship
between Euler angle errors and angular velocity errors of the body frame with respect to the navigation
frame denoted in the body frame. The convected Euler angle error model indicates the relationship
between Euler angle errors and Euler angles.

2.1. Attitude Solution by Euler Angle Differential Equations

Replacing the inertial platform of GINS, the digital computational platform of SINS,
the computational frame inside the navigation computer, is theoretically equivalent to the local
level navigation frame when there are no navigation errors. Gyro output is used to maintain the
digital computational platform, and the specific force measurements from the accelerometer triads
are resolved, then the velocity and position are acquired by double integration as shown in Figure 1.
However, no matter which reference frame is chosen, all quantities must be transformed to the
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computational frame prior to integration. How to determine the body attitude matrix is vital, because it
represents the transformation of the body frame with respect to the navigation frame.
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Figure 1. The operational principle of SINS (strapdown inertial navigation systems).

The body attitude matrix can be calculated by Euler angles ϕ, θ, and γ in turn along the head,
pitch, and roll axes. These Euler angles can be resolved in real-time using the angular velocities of the
body frame with respect to the navigation frame denoted in the body frame, and the angular velocity
can be calculated by:
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As shown in Figure 2, in order to accurately derive the Euler angle error differential equations,
the transformation relation between the angular velocity of the body frame with respect to the
navigation frame denoted in the body frame and the Euler angle velocities in head, pitch, and roll with
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where ωb
nbi is the angular velocity of the body frame with respect to the navigation frame denoted in

the body frame along i axis, R2
y(γ), R1

x(θ), and Rn
z (ϕ) respectively represent attitude transformation

matrixes induced by Euler angles γ, θ, and ϕ along the roll, pitch, and head. Equation (3) can be further
rewritten by Euler angles:
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where ϕ0, θ0, and γ0 respectively represent the initial head, pitch, and roll of the SINS. According to
Equations (6)–(8), the body attitude matrix from the navigation frame to the body frame can be
expressed by Euler angles ϕ, θ, and γ in the head, pitch, and roll:

Cb
n =

 cos(γ) cos(ϕ)− sin(γ) sin(ϕ) sin(θ) cos(γ) sin(ϕ) + sin(γ) cos(ϕ) sin(θ) − sin(γ) cos(θ)
− sin(ϕ) cos(θ) cos(ϕ) cos(θ) sin(θ)

sin(γ) cos(ϕ) + cos(γ) sin(ϕ) sin(θ) sin(γ) sin(ϕ)− cos(γ) cos(ϕ) sin(θ) cos(γ) cos(θ)



=

 T11 T12 T13

T21 T22 T23

T31 T32 T33


(9)

where Tij is the element of the transformation matrix Cb
n with i = 1, 2, 3; j = 1, 2, 3.

2.2. Modeling of Relative Euler Angle Errors

The coordinate systems and transformation relation for SINS are shown in Figure 3.
The misalignment are computational platform angle errors with respect to the navigation frame
in the navigation system [33]. Generally, it is a small angle from the navigation frame onxnynzn to the

SINS computational frame ocxcyczc, and can be expressed by a variable Φ =
[

φE φN φV

]T
with

φi being misalignment along the east, north, and vertical directions. The coordinate transformation
matrix from the navigation frame onxnynzn to the computational frame ocxcyczc is referred to as an
attitude matrix, and can be written as:
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 0 −φV φN
φV 0 −φE
−φN φE 0

 = I − (Φ×)

(10)

where φE, φN , φV are small angles, and cos(φE) = cos(φN) = cos(φV) ≈ 1, sin(φE) ≈ φE,
sin(φN) ≈ φN , sin(φV) ≈ φV . According to Equations (9) and (10), the body attitude matrix from the
computational frame to the body frame can be calculated as:

Cb
c = Cb

nCn
c =

 T11 T12 T13

T21 T22 T23

T31 T32 T33


 1 −φV φN

φV 1 −φE
−φN φE 1



=

 cos(γc) cos(ϕc)− sin(γc) sin(ϕc) sin(θc) cos(γc) sin(ϕc) + sin(γc) cos(ϕc) sin(θc) − sin(γc) cos(θc)

− sin(ϕc) cos(θc) cos(ϕc) cos(θc) sin(θc)

sin(γc) sin(ϕc) + cos(γc) sin(ϕc) sin(θc) sin(γc) sin(ϕc)− cos(γc) cos(ϕc) sin(θc) cos(γc) cos(θc)



=

 C11 C12 C13

C21 C22 C23

C31 C32 C33



(11)

where ϕc, θc, and γc are the head, pitch, and roll with respect to the computational frame ocxcyczc,
and Cij is an element of the transformation matrix Cb

c with i = 1, 2, 3; j = 1, 2, 3.
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Figure 3. The coordinate systems and transformation relation for SINS.

Since the misalignment Φ from the navigation frame onxnynzn to the computational frame ocxcyczc,
according to Equation (11), the transformation relation among attitude matrixes can be expressed as:

Cc
b = Cc

nCn
b = [I − (Φ×)]Cn

b (12)

δCn
b = Cc

b − Cn
b = −(Φ×)Cn

b (13)

δ
.
C

n
b = −

( .
Φ×

)
Cn

b − (Φ×)Cn
b ωb

nb× (14)

where δCn
b represents the error of attitude transformation matrix from the body frame obxbybzb to the

navigation frame onxnynzn. The differential equation of attitude transformation matrix for SINS can be
given by:

.
C

n
b = Cn

b (ω
b
nb×) = Cn

b

[(
ωb

ib − Cb
nωn

in

)
×
]
= Cn

b

[(
ωb

ib − Cb
n(ω

n
ie + ωn

en)
)
×
]

(15)

The SINS output includes not only sensing the angular velocity ωb
ib, but also harmful measurement

error δωb
ib and random drift of gyros εb, and can be expressed as:

ω̂b
ib = ωb

ib + δωb
ib + εb (16)

The computational angular velocity of the computational frame with respect to the inertial frame
denoted in the computational frame has errors, and can be expressed as:

ωc
ic = ωn

in + δωn
in = ωn

ie + ωn
en + δωn

ie + δωn
en (17)

where δωn
in is the angular velocity error of the navigation frame with respect to the inertial frame

denoted in the navigation frame δωn
in = δωn

ie + δωn
en, and δωn

ie is the angular velocity error of the
Earth frame with respect to the inertial frame denoted in the navigation frame. δωn

en is the angular
velocity error of the navigation frame with respect to the earth frame denoted in the navigation frame.

According to Equation (15), the differential equation of attitude transformation matrix from the
body frame obxbybzb to the computational frame ocxcyczc can be given by:

.
C

c
b = Cc

b

[(
ω̂b

ib − Cb
c ωc

ic

)
×
]

(18)
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According to Equation (13), the differential equation of attitude transformation matrix
.
C

c
b can also

be given by:
.
C

c
b =

.
C

n
b + δ

.
C

n
b (19)

Substituting Equations (16), (17) and (19) into Equation (18), the differential equation of the
attitude transformation matrix can be rewritten as:

.
C

n
b + δ

.
C

n
b = [I − (Φ×)]Cn

b

{[
ωb

ib + δωb
ib + εb − Cb

n(I + Φ×)(ωn
in + δωn

in)
]
×
}

(20)

Substituting Equation (15) into Equation (20), supposing that the attitude error is slight and
ignoring the term as small as the second order and the high-order terms of error products, it is easy to
obtain the differential equation of attitude transformation matrix errors:

δ
.
C

n
b = Cn

b

(
δωb

ib×
)
+ Cn

b

(
εb×

)
− Cn

b

[(
Φ × ωb

in

)
×
]
− Cn

b

(
δωb

in×
)
− (Φ×)Cn

b

(
ωb

nb×
)

(21)

Substituting Equation (14) into Equation (21), the differential equation of attitude transformation
matrix errors can be rewritten as:

−
( .

Φ×
)

Cn
b − (Φ×)Cn

b
(
ωb

nb×
)
= Cn

b
(
δωb

ib×
)
+ Cn

b
(
εb×

)
− Cn

b
[(

Φ × ωb
in
)
×
]
− Cn

b
(
δωb

in×
)
− (Φ×)Cn

b
(
ωb

nb×
)

(22)

The differential equation of misalignment of SINS can be further rewritten as:( .
Φ×

)
= −[(ωn

in × Φ)×] + (δωn
in×)−

[(
Cn

b δωb
ib

)
×
]
−
[(

Cn
b εb
)
×
]

(23)

.
Φ = −ωn

in × Φ + δωn
in − Cn

b δωb
ib − Cn

b εb (24)

The differential equation of misalignment errors can be expanded as:


.
φE.
φN.
φV

 =


0 −

(
ωie sin(L) + VE tan(L)

(RN+H)

) (
ωie cos(L) + VE

(RN+H)

)
(

ωie sin(L) + VE tan(L)
RN+H

)
0 − VN

(RM+H)

−
(

ωie cos(L) + VE
(RN+H)

)
VN

(RM+H)
0


 φE

φN
φV



+


− δVN

(RM+H)
+ VN

(RM+H)2 δH + δωn
ibE + εE

δVE
(RN+H)

− ωie sin(L)δL − VE
(RN+H)2 δH + δωn

ibN + εN

tan(L)δVE
(RN+H)

+
(

ωie cos(L) + VE sec2(L)
(RN+H)

)
δL − tan(L)VE

(RN+H)2 δH + δωn
ibV + εV



(25)

According to Equations (16) and (17), the angular velocity error vector of the body frame obxbybzb
with respect to the navigation frame onxnynzn denoted in the body frame obxbybzb is a main factor
leading to the Euler angle error, and can be expressed by:

δωb
nb = δωb

ib + εb − δωb
in =

 δωb
ibx + εb

x − δωb
inx

δωb
iby + εb

y − δωb
iny

δωb
ibz + εb

z − δωb
inz

 (26)

The angular velocity error vector of the navigation frame with respect to the inertial frame denoted
in the body frame can be rewritten as:

δωb
in = ωb

ic −ωb
in = Cb

c ωc
ic −Cb

nωn
in = Cb

c (ω
n
in + δωn

in)−Cb
c (I − Φ×)ωn

in = Cb
c δωn

in +Cb
c Φ×ωn

in (27)
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where ωn
in is the angular velocity vector of the navigation frame with respect to the inertial frame

denoted in the navigation frame, and can be found in Equation (2). δωn
in is an angular velocity error

vector of the navigation frame with respect to the inertial frame denoted in the navigation frame,
as shown in Equation (17). According to Equation (27), the angular velocity error of the navigation
frame with respect to the inertial frame denoted in the body frame is rewritten as:

 δωb
inx

δωb
iny

δωb
inz

 =

 c11 c12 c13

c21 c22 c23

c31 c32 c33



 0 −φV φN

φV 0 −φE
−φN φE 0


 ωn

inx
ωn

iny
ωn

inz

+

 δωn
inx

δωn
iny

δωn
inz




=

 c11 c12 c13

c21 c22 c23

c31 c32 c33



 0 −φV φN

φV 0 −φE
−φN φE 0




− VN
(RM+H)

ωie cos(L) + VE
(RN+H)

ωie sin(L) + VE tan(L)
(RN+H)

+


− δVN

(RM+H)
+ VN

(RM+H)2 δH
δVE

(RN+H)
− ωie sin(L)δL − VE

(RN+H)2 δH
tan(L)δVE
(RN+H)

+
(

ωie cos(L) + VE sec2(L)
(RN+H)

)
δL − tan(L)VE

(RN+H)2 δH




(28)

where δωb
inx, δωb

iny, δωb
inz are angular velocity errors of the navigation frame with respect to the inertial

frame denoted in the body frame.
According to Equations (5) and (28), the differential equation of the relative Euler angle error

caused by angular velocity errors of the body frame with respect to the navigation frame denoted in
the body frame, can be written as:

 δ
.
θ
⊗

δ
.
γ
⊗

δ
.
ϕ
⊗

 ≈ 1
cos(θc)

 cos(θc) cos(γc) 0 cos(θc) sin(γc)

sin(θc) sin(γc) cos(θc) − sin(θc) cos(γc)

− sin(γc) 0 cos(γc)


 δωb

nbx
δωb

nby
δωb

nbz


= 1

cos(θc)

 cos(θc) cos(γc) 0 cos(θc) sin(γc)

sin(θc) sin(γc) cos(θc) − sin(θc) cos(γc)

− sin(γc) 0 cos(γc)


 δωb

ibx + εb
x − δωb

inx
δωb

iby + εb
y − δωb

iny
δωb

ibz + εb
z − δωb

inz


= 1

cos(θc)

 cos(θc) cos(γc) 0 cos(θc) sin(γc)

sin(θc) sin(γc) cos(θc) − sin(θc) cos(γc)

− sin(γc) 0 cos(γc)




 δωb
ibx + εb

x
δωb

iby + εb
y

δωb
ibz + εb

z

−

 c11 c12 c13

c21 c22 c23

c31 c32 c33





 0 −φV φN
φV 0 −φE
−φN φE 0




− VN
(RM+H)

ωie cos(L) + VE
(RN+H)

ωie sin(L) + VE tan(L)
(RN+H)

+


− δVN
(RM+H)

+ VN δH
(RM+H)2

δVE
(RN+H)

− ωie sin(L)δL − VEδH
(RN+H)2

tan(L)δVE
(RN+H)

+
(

ωie cos(L) + VE sec2(L)
(RN+H)

)
δL − tan(L)VEδH

(RN+H)2







(29)

According to Equation (29), the relative Euler angle error can be written as: δθ⊗

δγ⊗

δϕ⊗

 =

 δθ0 +
∫ t

t0 δ
.
θ
⊗

dt
δγ0 +

∫ t
t0 δ

.
γ
⊗dt

δϕ0 +
∫ t

t0 δ
.
ϕ
⊗dt

 (30)

where δθ⊗, δγ⊗, δϕ⊗ are Euler angle errors caused by δωb
nbx, δωb

nby, δωb
nbz, and these Euler angle errors

are called the relative Euler angle errors.

2.3. Modeling of Convected Euler Angle Errors

For SINS, there are Euler angle errors between head ϕc, pitch θc, and roll γc with respect to the
computational frame ocxcyczc and head ϕ, pitch θ, and roll γ with respect to the navigation frame
onxnynzn. These Euler angle errors are different from misalignment, and can be expressed as: δϕ

δθ

δγ

 =

 ϕc

θc

γc

−

 ϕ

θ

γ

 (31)
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According to Equations (5) and (31), the differential equations of Euler angle errors in head, pitch,
and roll can be obtained. The differential equation of the pitch angle error is written by:

δ
.
θ =

.
θ

c
−

.
θ = cos(γc)ωb

nbx + sin(γc)ωb
nbz −

[
cos(γc − δγ)ωb

nbx + sin(γc − δγ)ωb
nbz

]
= [1 − cos(δγ)]

[
cos(γc)ωb

nbx + sin(γc)ωb
nbz

]
+
[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
sin(δγ)

(32)

By Taylor expansion, sin(δγ) ≈ δγ, cos(δγ) ≈ 1 − (δγ)2/2, and the differential equation of pitch
angle error can be rewritten as:

δ
.
θ =

[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
δγ + (δγ)2

[
cos(γc)ωb

nbx + sin(γc)ωb
nbz

]
/2 (33)

Ignoring the term as small as the second order, the differential equation of pitch angle errors can
be written as:

δ
.
θ ≈

[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
δγ (34)

Similarly, the differential equation of the roll angle error can be obtained as:

δ
.
γ =

.
γ

c − .
γ = tan(θc)

[
sin(γc)ωb

nbx − cos(γc)ωb
nbz

]
+ ωb

nby − tan(θc − δθ)
[
sin(γc − δγ)ωb

nbx − cos(γc − δγ)ωb
nbz

]
− ωb

nby (35)

Based on Taylor expansion, tan(θc − δθ) = tan(θc)− sec2(θc)δθ, sin(δθ) ≈ δθ, and the differential
equation of roll angle error can be rewritten as:

δ
.
γ = tan(θc)

{[
cos(γc)ωb

nbx + sin(γc)ωb
nbz

]
δγ +

[
sin(γc)ωb

nbx − cos(γc)ωb
nbz

]
(δγ)2/2

}
+

sec2(θc)δθ
{[

sin(γc)ωb
nbx − cos(γc)ωb

nbz

]
−
[
cos(γc)ωb

nbx + sin(γc)ωb
nbz

]
δγ −

[
sin(γc)ωb

nbx − cos(γc)ωb
nbz

]
(δγ)2/2

} (36)

Ignoring the term as small as second order, the differential equation of the roll angle error can be
rewritten as:

δ
.
γ = tan(θc)

[
cos(γc)ωb

nbx + sin(γc)ωb
nbz

]
δγ + sec2(θc)

[
sin(γc)ωb

nbx − cos(γc)ωb
nbz

]
δθ (37)

Assuming cos(δθ) ≈ 1 − (δθ)2/2, cos(δγ) ≈ 1 − (δγ)2/2, sin(δθ) ≈ δθ, sin(δγ) ≈ δγ, and the
differential equation of the head angle error can be written as:

δ
.
ϕ =

.
ϕ

c − .
ϕ = − 1

cos(θc)

[
sin(γc)ωb

nbx − cos(γc)ωb
nbz

]
+ 1

cos(θc−δθ)

[
sin(γc − δγ)ωb

nbx − cos(γc − δγ)ωb
nbz

]

≈ 1
cos(θc)[cos(δθ)+tan(θc)δθ]



[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
[cos(δθ) + tan(θc)δθ]+[

sin(γc)− sin(γc)(δγ)2/2 − cos(γc)δγ
]
ωb

nbx−[
cos(γc)− cos(γc)(δγ)2/2 + sin(γc)δγ

]
ωb

nbz



= 1
cos(θc)[cos(δθ)+tan(θc)δθ]



[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
tan(θc)δθ−[

cos(γc)ωb
nbz − sin(γc)ωb

nbx

]
(δθ)2/2−[

cos(γc)ωb
nbx + sin(γc)ωb

nbz

]
δγ+[

cos(γc)ωb
nbz − sin(γc)ωb

nbx

]
(δγ)2/2



(38)

Based on Taylor expansion, sec(θc − δθ) ≈ sec(θc) − sec(θc) tan(θc)δθ, and the differential
equation of the head angle error can be rewritten as:

δ
.
ϕ = [sec(θc)− sec(θc) tan(θc)δθ]


[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
tan(θc)δθ −

[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
(δθ)2/2−[

cos(γc)ωb
nbx + sin(γc)ωb

nbz

]
δγ −

[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
(δγ)2/2

 (39)
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When ignoring the term as small as second order, the differential equation of head angle error can
be rewritten as:

δ
.
ϕ ≈ sec(θc)

{[
cos(γc)ωb

nbz − sin(γc)ωb
nbx

]
tan(θc)δθ −

[
cos(γc)ωb

nbx + sin(γc)ωb
nbz

]
δγ
}

(40)

According to Equations (34), (37) and (40), the differential equation of the convected Euler angle
errors can be obtained as:

 δ
.
θ
∗

δ
.
γ
∗

δ
.
ϕ
∗

 =


0 − sin(γc)ωb

nbx + cos(γc)ωb
nbz 0

sec2(θc)
(

sin(γc)ωb
nbx − cos(γc)ωb

nbz

)
tan(θc) cos(γc)ωb

nbx + tan(θc) sin(γc)ωb
nbz 0

sec2(θc)sin(θc)
(
− sin(γc)ωb

nbx + cos(γc)ωb
nbz

)
− sec(θc)

(
cos(γc)ωb

nbx + sin(γc)ωb
nbz

)
0


 δθ

δγ

δϕ

 (41)

According to Equation (41), the convected Euler angle errors can be written as: δθ∗

δγ∗

δϕ∗

 =

 δθ0 +
∫ t

t0 δ
.
θ
∗
dt

δγ0 +
∫ t

t0 δ
.
γ
∗dt

δϕ0 +
∫ t

t0 δ
.
ϕ
∗dt

 (42)

From Equations (41) and (42), some conclusions can be obtained. Firstly, the convected Euler
angle errors of SINS are affected by ωb

nbx and ωb
nbz, the angular velocity of the body frame with respect

to the navigation frame is denoted in the body frame along the X and Z axes, not ωb
nby along the Y axis.

Secondly, the convected Euler angle errors are affected by the initial pitch error δθ0 and roll error δγ0,
rather than the initial head error δϕ0. Finally, the pitch magnitude greatly affects the propagation rules
of convected Euler angle errors in the head and roll, but not pitch.

Since the state is an error vector, Equation (43) is an approximate expression which ignores the
term as small as second order. According to Equations (29) and (41), the differential equation of the
general Euler angle errors, including relative Euler angle errors and convected Euler angle errors,
can be modeled as:

 δ
.
θ

δ
.
γ

δ
.
ϕ

 =

 δ
.
θ
∗

δ
.
γ
∗

δ
.
ϕ
∗

+

 δ
.
θ
⊗

δ
.
γ
⊗

δ
.
ϕ
⊗



=


0 − sin(γc)ωb

nbx + cos(γc)ωb
nbz 0

sec2(θc)
(

sin(γc)ωb
nbx − cos(γc)ωb

nbz

)
tan(θc) cos(γc)ωb

nbx + tan(θc) sin(γc)ωb
nbz 0

sec2(θc)sin(θc)
(
− sin(γc)ωb

nbx + cos(γc)ωb
nbz

)
− sec(θc)

(
cos(γc)ωb

nbx + sin(γc)ωb
nbz

)
0


 δθ

δγ

δϕ

+
1

cos(θc)

 cos(θc) cos(γc) 0 cos(θc) sin(γc)

sin(θc) sin(γc) cos(θc) − sin(θc) cos(γc)

− sin(γc) 0 cos(γc)




 δωb
ibx + εb

x
δωb

iby + εb
y

δωb
ibz + εb

z

−

 c11 c12 c13

c21 c22 c23

c31 c32 c33





 0 −φV φN
φV 0 −φE
−φN φE 0




− VN
(RM+H)

ωie cos(L) + VE
(RN+H)

ωie sin(L) + VE tan(L)
(RN+H)

+


− δVN
(RM+H)

+ VN δH
(RM+H)2

δVE
(RN+H)

− ωie sin(L)δL − VEδH
(RN+H)2

tan(L)δVE
(RN+H)

+
(

ωie cos(L) + VE sec2(L)
(RN+H)

)
δL − tan(L)VEδH

(RN+H)2







(43)

According to Equation (43), the general Euler angle errors can be calculated by introducing the
integral operation:  δθ

δγ

δϕ

 =

 δθ0 +
∫ t

t0 δ
.
θdt

δγ0 +
∫ t

t0 δ
.
γdt

δϕ0 +
∫ t

t0 δ
.
ϕdt

 (44)

The singularity of the Euler angle error method can be avoided by different Euler angle
rotation orders. Similarly, the differential equation of general Euler angle errors and conclusions
can be obtained.
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3. Simulation Experiments

The Euler angles are used for large-angle attitude movements, which are direct outputs of SINS.
Compared with misalignment, the Euler angle error model is more important in some applications.
The general Euler angle error model can be classified as the relative Euler angle error model or the
convected Euler angle error model. In order to prove the validity of the proposed model, simulation
experiments are carried out.

The simulation experiments are designed in large-angle attitude movements. Firstly, the proposed
Euler angle error model can be established according to Equations (41)–(44). Then, the initial attitude,
the initial Euler angle errors, and the rotational angular velocity can be set to describe large-angle
attitude movements. Finally, the simulation experiments are carried out to verify the accuracy of the
proposed model.

3.1. Simulation and Analysis of Convected Euler Angle Errors

In order to validate the proposed convected Euler angle error models (Equations (41) and (42))
and their conclusions, four simulation experiments are carried out, where the initial attitude of SINS is
supposed by

[
θ0 γ0 ϕ0

]
=
[
−45◦ −45◦ −45◦

]
. In the first group simulation, there is the

coupling of initial Euler angle errors in three axes
[

δθ0 δγ0 δϕ0

]
=
[

0.1◦ 0.1◦ 0.1◦
]

and the
rotation angular velocity of the body frame with respect to the navigation frame denoted in the body
frame along the Y axis ωb

nby = 1 ◦/s. The second group simulation presents the coupling of initial
head errors δϕ0 = 0.1◦, the rotation angular velocity of the body frame with respect to the navigation
frame denoted in the body frame ωb

nb =
[

1 ◦/s 1 ◦/s 1 ◦/s
]
. The coupling of initial Euler angle

errors in three axes
[

δθ0 δγ0 δϕ0

]
=
[

0.1◦ 0.1◦ 0.1◦
]

and the rotation angular velocity of
the body frame with respect to the navigation frame denoted in the body frame along the X axis
ωb

nbx = 1 ◦/s are given in the third group simulation. In the fourth group simulation, there is the

coupling of initial Euler angle errors in three axes
[

δθ0 δγ0 δϕ0

]
=
[

0.1◦ 0.1◦ 0.1◦
]

and the
rotation angular velocity of the body frame with respect to the navigation frame denoted in the body
frame, ωb

nb =
[

1 ◦/s 1 ◦/s 1 ◦/s
]
.

The results of the four group simulation experiments are given in Figures 4–7, respectively.
The convected Euler angle error model can precisely describe the attitude error propagation rules
of SINS. When the SINS’ attitude errors are regarded as error references, the root mean square error
(RMSE) of the attitude angle error calculated by the convected Euler angle error model is superior to
0.4441”, as shown in Figures 4–7 and Table 1. The angular velocity in the Y axis ωb

nby and the initial
head error δϕ0 does not affect the convected Euler angle errors, which are greatly affected by the pitch
magnitude. The conclusions above have been validated.
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Table 1. Attitude angle errors (RMSE (root mean square error)) solved by the convected Euler angle 
error model. 

Simulations Head Error δϕ∗
 (″) Pitch Error δθ ∗

 (″) Roll Error δγ ∗

 (″) Maximum Error (″) 

First group I 2.168 × 10−9 2.067 × 10−9 1.471 × 10−9 2.168 × 10−9 
Second group II 8.484 × 10−10 4.571 × 10−10 8.967 × 10−10 8.967 × 10−10 
Third group III 0.4441 0.1350 0.2573 0.4441 

Fourth group IV 0.2437 0.0405 0.2847 0.2847 

Figure 5. The second group II simulation with the initial head error δϕ0.
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Table 1. Attitude angle errors (RMSE (root mean square error)) solved by the convected Euler angle
error model.

Simulations Head Error δϕ∗ (”) Pitch Error δθ∗ (”) Roll Error δγ∗ (”) Maximum Error (”)

First group I 2.168 × 10−9 2.067 × 10−9 1.471 × 10−9 2.168 × 10−9

Second group II 8.484 × 10−10 4.571 × 10−10 8.967 × 10−10 8.967 × 10−10

Third group III 0.4441 0.1350 0.2573 0.4441
Fourth group IV 0.2437 0.0405 0.2847 0.2847
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Figure 7. The fourth group IV simulation with coupling of the initial Euler angle errors and rotation 
in three axes. 
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3.2. Simulation and Analysis of General Euler Angle Errors

In order to validate the proposed general Euler angle error models (Equations (43) and (44)),
three group simulation experiments are carried out, where the initial attitude and initial Euler
angle errors of the SINS are respectively supposed as

[
θ0 γ0 ϕ0

]
=
[
−45◦ −45◦ −45◦

]
,[

δθ0 δγ0 δϕ0

]
=
[

0.1◦ 0.1◦ 0.1◦
]
. In the three experiments, the SINS is driven to rotate with

1 ◦/s in turn along the X, Y, and Z axes.
The results of three group simulation experiments are given in Figures 8–10. The general Euler

angle error model can precisely describe the attitude error propagation rules of the SINS. When the
SINS’ attitude error is regarded as the reference, the RMSE of attitude angle errors calculated by the
general Euler angle error model is shown in Figures 8–10 and Table 2. The RMSE of the proposed Euler
angle error model is superior to 0.3195”, which is accurate enough. The simulation results prove the
validity of the general Euler angle error model proposed.

The general Euler angle error model can accurately describe attitude error propagation rules,
and it can be applied in the attitude movements. The proposed Euler angle error model can direct
the response attitude movement status, especially in large-angle attitude movements. The attitude
movement optimization can also be analyzed.

Table 2. Attitude angle errors (RMSE) calculated by the general Euler angle error model.

Simulations Head Error δϕ∗ (”) Pitch Error δθ∗ (”) Roll Error δγ∗ (”) Maximum Error (”)

First group I 0.1204 0.1536 0.1381 0.1536
Second group II 0.0018 0.0002 0.0015 0.0018
Third group III 0.1349 0.3195 0.1176 0.3195
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Figure 8. The Euler angle error propagation with coupling of three initial Euler angle errors and 
rotation in the X axis. 
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Figure 9. The Euler angle error propagation with coupling of three initial Euler angle errors and 
rotation in the Y axis. 

Figure 8. The Euler angle error propagation with coupling of three initial Euler angle errors and
rotation in the X axis.
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Euler angles ϕ, θ, and γ, in turn along with head, pitch, and roll axes, have singularities at 90 degrees
at the same time. Meanwhile, Euler angles are the direct output of the attitude change, and Euler angle
errors can more accurately and rapidly characterize the attitude error propagation. The computational
burden of the proposed method is reduced by avoiding attitude transformation compared with the
conventional misalignment method. Consequently, the proposed method is applicable in most cases.
Future work will address its application in a nonlinear environment.

5. Conclusions

The existing misalignment angle error model cannot directly describe the attitude error
propagation, especially in large-angle attitude movements. The misalignment angle is a small angle,
which is characterized by the calculation of the three-axis deviation angle between the computational
frame and the navigation frame. Compared with the proposed general Euler angle error model, it does
not reflect and optimize the body’s attitude movement directly. Euler angles are the most intuitive
measurements of attitude movements. The Euler angle errors of SINS, different from the misalignment
of platform inertial navigation systems, comprise two parts: relative Euler angle errors and convected
Euler angle errors. The proposed convected Euler angle error model and the general Euler angle error
model, as well as their conclusions, have been validated by the simulation experiments. The general
Euler angle error model can accurately describe attitude error propagation rules, which contribute to
the design and operation of SINS. The attitude can be measured in real-time, then attitude movements
can be optimized in large-angle attitude movements.
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Nomenclature

Notation
H Height, m
L Latitude, degree
ω Angular velocity vector, rad/s
Φ Misalignment, degree

δωb
inx

The angular velocity error of the navigation frame with respect to
the inertial Frame denoted in the body frame along X axis, rad/s

δωb
iny

The angular velocity error of the navigation frame with respect to
the inertial Frame denoted in the body frame along Y axis, rad/s

δωb
inz

The angular velocity error of the navigation frame with respect to
the inertial Frame denoted in the body frame along Z axis, rad/s[

δθ⊗ δγ⊗ δϕ⊗
]T The relative Euler angle error, rad

[
δ

.
θ
∗

δ
.
γ
∗

δ
.
ϕ
∗
]T

The convected Euler angle error, rad

Subscripts
i The inertial frame
b The body frame
n The navigation frame
e The Earth frame
c The computational frame
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