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Abstract: This paper presents a novel control algorithm for optimising operational costs of a combined
domestic micro-CHP (combined heat and power), battery and heat storage system. Using a minute
by minute basic time-step, this work proposes a simple and computationally efficient rule based
whole-system management, developed from empirical study of realistic simulated domestic electricity
and heat loads. The CHP availability is considered in two binary states which, together with
leveraging storage effectively, maximises CHP efficiency, and gives the algorithm increased real
world feasibility. In addition, a novel application of a dual battery system is proposed to support the
micro-CHP with each battery supplying just one of the distinctive morning and evening electrical load
peaks, and thus inherently improving overall battery system lifetime. A case study is presented where
the algorithm is shown to yield approximately 23% energy cost savings above the base case, almost
3% higher savings than that of the closest previous work, and 96.8% of the theoretical minimum
cost. In general, the algorithm is shown to always yield better than 88% of the theoretical minimum
cost, a ratio that will be considerably higher when real-world CHP limitations are factored into the
theoretical minimum calculation.

Keywords: multi-energy system; system optimisation; dual battery; binary CHP control; rule based
control; domestic building

1. Introduction

Recently, large industrial and commercial customers have begun to participate in Smart Grid
(SG) programs, for example, demand side management (DSM) and demand response (DR), to save
energy costs and reduce CO2 emissions. However, the domestic sector has shown less interest in SG
technologies, because of their individually smaller impact on the grid and the technical difficulties in
aggregating large numbers of customers [1,2].

However, as reported by the U.S. Department of Energy, buildings consume more energy
compared with other broad sectors of energy consumption, such as industry and transportation,
approximately 40% compared to 30% each respectively [3]. Since domestic buildings are a very
significant share of total buildings, households are responsible for a large proportion of CO2 emissions,
through end use of both electricity and gas (or other fossil fuel) [4]. It is therefore urgent to develop
cost-effective and practical methods to control energy consumption in residential dwellings.

In order to meet emission reduction targets, renewable energy has been deployed in an
increasingly localised and decentralised manner, in the form of distributed generation (DG) [5].
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Distributed generation has the added advantage of increasing system robustness and reducing
transmission losses [6]. At building level, this takes the form of micro-generation, reducing the
reliance on the grid. Energy independence can be increased still further with appropriate energy
storage at building level so that local renewably generated energy can be stored until it is required,
which increases the self-consumption of renewably generated energy [7–9]. Moreover, with increasing
uptake of SG technologies (especially smart meter technology), electrical power in buildings can be
consumed more efficiently compared with conventional buildings, through change in user behaviour
and automation of building services, such as lighting and heating [10,11]. These technologies play
important roles to optimise electricity consumption at building level; however they have less impact
on other forms of energy use, such as gas space heating and domestic hot water.

Researchers have therefore recently begun to focus on synergies between various kinds of energy
carriers such that a holistic treatment can minimise the total overall energy use. In this context,
a concept called ‘Energy Hub’ (EH) was proposed to model various forms of energy transformation,
conversion and storage considered holistically in a single entity [12]. By integrating different energy
carriers, the EH model increases internal and external types of dependencies among different energy
carriers. For a multi-energy system, internal dependency is managed by the system operator through
applying control strategies to the infrastructures, while external dependency is due to the choice
of the energy supply according to customer preferences [13]. Due to the fact that the EH model
can improve the dependencies of multi-energy system, it is widely used in recent literature to
model the aforementioned technologies in a domestic setting and thus solve household energy
optimisation problems.

A comparison of two different heat storage systems is proposed in [14] to analyse the technology
and cost of heat storage systems for residential micro-CHP. In [15], an application of multi-agent
systems for cyber-enabled energy management of building structures (CEBEMS) is investigated;
the CEBEMS models the building cooling, heat and power zones and finally energy zones, coordinates
local generation to optimise building energy usage. In [16], the Monte Carlo valuation method for
Energy Hubs is proposed. Together with DSM, this method solves the system uncertainty problem
and improves system flexibility. However, in [14–16], system scheduling and optimisation are only
based on heat demand, and electricity demand is neglected.

A multi-time scale structure rule is built to optimise a micro-grid energy system in [17]. It is
also claimed that rule based optimisations for energy systems are preferable to algorithm-based
optimisations, because they are computationally more efficient and easier to implement in real-world
applications in [17]. The types and capacity of DG and storage devices are optimised in [18] using a
number of hybridised techniques. By introducing sensitive and non-sensitive load concepts (sensitive
loads are those loads in which delivery of power to them should be guaranteed under any conditions.),
Moradi, M.H. et al. also develop an operational energy management strategy in micro-grids in [18].
However, in both approaches described in [17,18], the householder’s comfort may be compromised;
due to requirements of DR in [17] and considering the non-sensitive load in [18].

In [19], a smart Energy Hub is modelled and multi-energy networks based on an integrated
demand side management technique are proposed. Similar to [20,21], the simulation time period for
this work is one hour, which does not sufficiently consider dynamic changes of the EH modelled at
domestic level.

For integrated energy systems, a combined heat and power (CHP) unit can be used to couple
the heat and electricity carriers. Residential buildings can benefit from micro-CHP to simultaneously
generate heat and power, and thus provide energy services at increased overall efficiency. Based
on [22], the overall capacity for micro-CHP is normally below 15 kW. In some work, for example [4,19],
the heat efficiency and electricity efficiency of CHP are assumed to be constant. However, since the
output of most micro-CHP may be varied, the efficiency also varies with any dynamic operation.
Additionally, a CHP system requires some ramp up time to reach a steady state after it switched on
or to match actual output after a set point is changed [23]. Finally, micro-CHP presents the problem
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of whether to best schedule the output to meet electricity demand, heat demand or a compromise
between the two, a problem addressed in this paper with the control rules and the energy storage.

In most work on building level Energy Hub optimisation, instead of attempting to predict load,
it is assumed systems have perfect forecasts and so know energy demand in advance [2,4]. However,
load prediction at building and micro-grid level can require long computation times and often performs
poorly (an average error of 4.8% is given in [24] based on a number studies including [25–27]).
Alternatively, in [28], a stochastic optimal strategy is proposed to solve the uncertainty of demands.
This method can offer more accurate simulation results, however it increases the complexity of
computation. It is therefore important to include improved load prediction in future work and always
take into account its performance and computation time in the context of overall optimisation.

In this paper, a rule based system optimisation model will be proposed. Moreover, considering
the difficulties to precisely predict heat and electricity load at building level, this paper proposes a
‘CHP switch’ (CHPS) algorithm to control energy generation. This algorithm simultaneously considers
the heat load and electricity load, which reduces the errors caused by energy prediction. The system
time step is set as one minute, and thus will better track the true dynamic changes of the hybrid energy
system. The optimisation model presented here further reduces energy cost, by 22.9% compared with
20% in [10].

The major contributions of this paper are: (1) developing the rule based control method;
(2) constructing a ‘CHP switch’ algorithm; (3) introducing dual battery operation in this context
and (4) demonstrating the efficacy of the overall control strategy against a theoretical minimum.
The overall optimisation algorithm for the Energy Hub at building level proposed in this paper is
summarised in Figure 1.

Appl. Sci. 2018, 8, 0008  3 of 19 

In most work on building level Energy Hub optimisation, instead of attempting to predict load, 
it is assumed systems have perfect forecasts and so know energy demand in advance [2,4]. However, 
load prediction at building and micro-grid level can require long computation times and often 
performs poorly (an average error of 4.8% is given in [24] based on a number studies including [25–
27]). Alternatively, in [28], a stochastic optimal strategy is proposed to solve the uncertainty of 
demands. This method can offer more accurate simulation results, however it increases the 
complexity of computation. It is therefore important to include improved load prediction in future 
work and always take into account its performance and computation time in the context of overall 
optimisation. 

In this paper, a rule based system optimisation model will be proposed. Moreover, considering 
the difficulties to precisely predict heat and electricity load at building level, this paper proposes a 
‘CHP switch’ (CHPS) algorithm to control energy generation. This algorithm simultaneously 
considers the heat load and electricity load, which reduces the errors caused by energy prediction. 
The system time step is set as one minute, and thus will better track the true dynamic changes of the 
hybrid energy system. The optimisation model presented here further reduces energy cost, by 22.9% 
compared with 20% in [10]. 

The major contributions of this paper are: (1) developing the rule based control method; (2) 
constructing a ‘CHP switch’ algorithm; (3) introducing dual battery operation in this context and (4) 
demonstrating the efficacy of the overall control strategy against a theoretical minimum. The overall 
optimisation algorithm for the Energy Hub at building level proposed in this paper is summarised in 
Figure 1. 

 
Figure 1. Energy Hub optimisation algorithm proposed in this paper. 

The rest of this paper is organised as follows. In Section 2, the EH model, CHPS algorithm and 
modified CHPS algorithm are introduced. In addition, the heat and electrical storage system (HESS) 
control rule is proposed. Moreover, a method is introduced to calculate theoretical daily minimum 
operation cost. In Section 3, a case study is used to examine the proposed models and rules. 
Optimisation results will be compared with theoretical daily minimum operation cost in Section 4. 
Finally, this paper is concluded in Section 5. 

2. Optimisation Methods and Modelling 

2.1. The Energy Hub (EH) Model 

An Energy Hub is a conceptual model of any bounded area’s energy infrastructure, where 
different forms of energy can be converted, transmitted and stored [29]. It connects inputs and 
outputs of multiple energy carriers. Figure 2 gives an example of an Energy Hub. 

 

Start End

CHP Switch control (Based on 
simple demand prediction 

model)

Modify CHP Switch Control 
(Using the ‘Remove Glitch’ 
and the ‘Fill Gap’Methods)

Electrical Storage Control 
(Two groups of Batteries used 

to meet the demand at high 
price time)

Heat Storage Control (Collect 
redundant heat generated by 

CHP)

Get daily system 
optimal result

CHP Control Algorithm Energy Storage Control Rule

Results

Start End

CHP Switch control (Based on 
simple demand prediction 

model)

Modify CHP Switch Control 
(Using the ‘Remove Glitch’ 
and the ‘Fill Gap’Methods)

Electrical Storage Control 
(Two groups of Batteries used 

to meet the demand at high 
price time)

Heat Storage Control (Collect 
redundant heat generated by 

CHP)

Get daily system 
optimal result

CHP Control Algorithm Energy Storage Control Rule

Results

Figure 1. Energy Hub optimisation algorithm proposed in this paper.

The rest of this paper is organised as follows. In Section 2, the EH model, CHPS algorithm
and modified CHPS algorithm are introduced. In addition, the heat and electrical storage system
(HESS) control rule is proposed. Moreover, a method is introduced to calculate theoretical daily
minimum operation cost. In Section 3, a case study is used to examine the proposed models and rules.
Optimisation results will be compared with theoretical daily minimum operation cost in Section 4.
Finally, this paper is concluded in Section 5.

2. Optimisation Methods and Modelling

2.1. The Energy Hub (EH) Model

An Energy Hub is a conceptual model of any bounded area’s energy infrastructure, where different
forms of energy can be converted, transmitted and stored [29]. It connects inputs and outputs of
multiple energy carriers. Figure 2 gives an example of an Energy Hub.
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Figure 2. An example of Energy Hub model that contains a combined heat and power (CHP), a boiler,
a hybrid electrical storage system and a water tank heat storage system.

There are two common ways to establish a matrices equation for an Energy Hub. The first one
uses forward-coupling matrices to determine for a set of given inputs, how the dispatch factors and
conversion efficiencies determine system outputs [30]. In this way, an Energy Hub model can be
mathematically expressed as:

L = CP−ME = [C− S] [
P
.
E

] (1)

where C represents the coupling matrix. Normally the terms in this matrix are the product of the
energy converters efficiencies and the dispatch factor that denotes the proportion of energy flowing
into the converter. L and P are the different energy carrier outputs and inputs power matrix in an
Energy Hub respectively. ME is an equivalent storage power exchange vector. S and

.
E represent the

storage coupling matrix and steady-state energy storage vector respectively.

P = DL + ME (2)

However, in order to reduce energy consumption, it is often a requirement to get the minimum
input power for a given output power (demand) [31,32]. Therefore, in this way, the EH model can be
mathematically where the supplies are explicitly expressed in terms of the loads:

In Equation (2), D represents the backwards coupling matrix. Energy Hubs can be modelled in
either way, and both approaches are effective in optimising energy consumption. For a house holder,
the daily energy cost optimisation problem can then be formulated as:

Minimise F(x) (3)

Subject to g(x) = 0 (4)

h(x) ≤ 0 (5)

where F(x) is a scalar-valued objective function, g(x) normally comes from the conservation of power
and h(x) normally comes from limitations, e.g., maximum output power, or number of converters.

To optimise the Energy Hub model, it is important to predict the demands (heat and electricity)
precisely, because the predicted demands can be used to inform on control of energy generation systems
and energy storage system over a considered time horizon. In Section 2, part 2, short term prediction
will be introduced to control power generation system (CHP system control) and in Section 2, part 3,
long term prediction will be used to control the energy storage system.
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2.2. CHP Switch (CHPS) Algorithm

As mentioned in the Introduction, energy prediction at building level has an average error of
approximately 5% [24] whilst short-term prediction level has worse performance. This suggests that a
more precise model should be proposed to control the power generation system (CHP system).

Close study of household electrical demand has revealed that it usually changes rapidly and after
changing will remain in the same state for several minutes or longer. However, the heating demand
fluctuates more smoothly and on slower time scales. After careful study of these two time series, in [33]
it was found that the electricity consumption and heat consumption in every minute can be effectively
predicted with the following simple equations:

Ppele(n + 1) = Pele(n) (6)

Ppheat(n + 1 ) =
i=n−9

∑
i=n

Pheat(i)
10

(7)

In Equations (6) and (7), Ppele(n + 1) and Ppheat(n + 1) represent the predicted electricity demand
and heat demand in (n + 1)th minute, respectively. Pele(n) is the electricity consumption in the nth
minute and Pheat(i) is the heat consumption in ith minute. In order to evaluate the accuracy of this
load prediction approach, more than a hundred sets of daily load time series were tested. This data
showed that on a minute by minute base 90.5% of the time the electrical demand is identical to the
previous minute.

Clearly there will be some errors between the predicted demands and actual demands by using
Equations (6) and (7). This is shown in [33]. However, this has very small influence if heat and
electricity generation are considered together. Moreover, the main novelty of [33] is that this paper
treats the predicted demands as a reference input just to control the CHP binary switch, whereas other
studies, using more sophisticated statistical methods to predict demand, must deal with the whole
system’s optimisation. Used specifically to control the switching of CHP, Equations (6) and (7) yield a
very low error rate of 3% in terms of time dimension, and have vastly reduced computation times and
complexity compared to statistical methods.

After calculating the predicted demands, the benefit that CHP will give in the next minute can be
expressed as:

Bchp = Hchp ×
Hp

Heff
× 100 + Echp × Ep (8)

In Equation (8), Bchp is the benefit, in monetary terms that CHP can generate at the next minute
if it is switched ‘on’. Hchp and Echp are the effective value of heat and electrical power contribution
due to CHP. Hp and Ep represent the gas and electricity prices. Heff is gas to heat transfer efficiency.
The cost to implement CHP in the next minute can be written as:

Cchp = Rchp × Hp (9)

where Cchp is the energy cost of CHP working at the state of rated power and Rchp represents the rated
power (including heat power, electrical power and losses) of the CHP system. By comparing with
the benefit that CHP can generate and the energy cost of CHP working at the state of rated power,
the state of CHP can be decided.

This algorithm significantly reduces the error introduced by energy prediction, because it uses the
predicted heat demand and electricity demand together to control the ‘CHP switch’. The heat output
of CHP is normally much greater than the electricity output (two to four times higher), and the errors
of heat prediction are relatively small. This will reduce the error of ‘CHP switch’ model to some extent.
Additionally, when the capacity of CHP is carefully designed and considering the fact that the domestic
electricity price is usually much higher than the domestic gas price, the state of CHP is influenced by
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the benefit that CHP can yield. As long as the benefit of implementing CHP is greater than the energy
cost of CHP working at the state of rated power, CHP will be switched on. This means, the CHP
control system does not need to know the exact heat and electricity demand. Instead, it only needs to
know whether the benefit of implementing CHP is greater than the cost, which further reduces the
errors introduced by energy prediction. Finally, the short-term prediction is only used in CHP switch
control and not for other parts of the system.

2.3. Modified ‘CHP Switch’ Algorithm

This algorithm offers a new way to control the ‘CHP switch’, however, the result is the state
of CHP may be changed very frequently in a short time period. However, as mentioned in the
introduction, the state of CHP cannot be changed too frequently due to operational restrictions such
as ramp up time. Therefore, a modified ‘CHP switch’ algorithm is proposed in this paper to reduce
the switching frequency of CHP. This algorithm ideally requires the load to be recorded for at least a
year a beforehand. If this data is not available then the daily load can be approximated using heating
degree days and total aggregated energy bills, or the load simulators such as those used in [34].

There are two ways to reduce switching frequency of CHP. The first one is to keep CHP on when
it should be off, defined in this paper as ‘Fill Gap’, and the second way is to keep CHP off when it
should be on, defined in this paper as ‘Remove Glitch’.

The ‘Fill Gap’ method is normally used when the CHP is switched off in a short time period and
the energy price is relatively high. On the contrary, ‘Remove Glitch’ is normally used when the CHP is
switched on for a very short time period and the energy price is relatively low. By using both ‘Fill Gap’
and ‘Remove Glitch’, the switching frequency can be reduced, which mitigates the cycling stress on the
CHP unit and allows it to reach a steady state with maximum operating efficiency. However, for short
periods, the CHP will generate surplus energy in the ‘Fill Gap’ and fail to meet load in the ‘Remove
Glitch’ mode. This will decrease the efficiency slightly, but can be mitigated with energy storage,
and supplemented by the grid if necessary.

When using ‘Fill Gap’ or ‘Remove Glitch’ to reduce CHP switching frequency, it is necessary to
have knowledge of the states of CHP in next few following minutes. To obtain states of the CHP in the
next few more minutes, ‘probability of CHP switch on’ at each minute in a day is calculated based on
historical data.

To get the ‘probability of CHP switch on’ in a day, four steps are required. First, select all the
relevant recorded daily energy consumption data from last year as sampling data i.e., data from the
corresponding month of the previous year(s). Second, data that covers unusual events need to be
removed from the sampling data (for example, days in which the occupants were absent or there was
increased occupancy). When combined with occupancy data, for example from occupancy sensors, this
process can be easily automated. If this leaves insufficient data to analyse, more data can be acquired
from the year before last year or the load can be estimated as mentioned before through simulation
and historical weather data. The third step is to record the states of CHP switch in every minute for all
sampling data. This is obtained using the previous year’s recorded demand and calculated using the
basic control described in Section 2.2. The last step is to calculate the ‘probability of CHP switch on’ in
each minute in a day using the following equation:

Pi
on =

Ni
on

N
(10)

In Equation (10), Pi
on is the ‘probability of CHP switch on’ in the ith minute, Ni

on is the number of
days that CHP is switched on in the ith minute and N is total days in the sampling data.

After getting the ‘probability of CHP switch on’ in each minute in a day, CHPS algorithm can be
modified as:

• Step 1: Using Equations (6) and (7) to predict the next minute’s electricity demand and gas demand;
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• Step 2: Comparing the benefit and cost of CHP in the next minute. If the benefit is greater than
the cost, the state of CHP is set as ‘possible on’ and if the benefit is less than the cost, the state of
CHP is set as ‘possible off’.

• Step 3: If the switch is ‘on’ at present and the state of CHP in next minute is predicted as ‘possible
on’, the CHP is kept ‘on’ in the next minute. On the other hand, if the switch is ‘on’ at present
and the state of CHP in the next minute is predicted as ‘possible off’, the state of CHP in the next
minute will depend on the possible state of CHP in the next few minutes (10 min are used here).
If in the next ten minutes, ‘the probability of CHP switch on’ is less than 50% for every individual
minute—CHP will be shut down; otherwise CHP will be kept ‘on’.

• Step 4: If the switch is off at present and the state of CHP in the next minutes is predicted as
‘possible off’ the CHP will be kept ‘off’ in the next minute; however, if the state of CHP in the
next minute is ‘possible on’; two situations should be taken into account. If the ‘probability of
CHP switch on’ is less than 20% in all of the next ten individual minutes, this ‘possible on’ will be
treated as a ‘Glitch’ and will be held in the off state. Otherwise CHP will be switched on in the
following minute. To attempt to make full use of CHP, in this case, ‘probability of CHP switch on’
is set as 20%, rather than 50% as in step 3.

It is important to note that for all cases, the CHP cannot be switched on, if ‘switch off’ time
between two ‘switch on’ times is shorter than CHP re-start time. Figure 3 is a flow diagram to show
modified CHPS algorithm.
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2.4. HESS Control Rule

Storage systems play an increasingly important role in modern energy systems. By regulating
demand, they improve energy efficiency and thus reduce emissions. The energy cost can be greatly
reduced, provided the HESS can be operated optimally. Moreover, storage technology has improved
very quickly in recent years, specifically, smaller and lighter physical footprints and reduced cost [35],
making them more practical in the domestic context. However, with the addition of a storage system,
the energy systems’ complexity is greatly increased. With the inclusion of storage, the EH model
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requires a time domain treatment such that the full charge cycle of storage is considered, greatly
increasing computational complexity. Additionally, it needs many converters, transformers and
switches to connect HESS to the main energy system giving a more complex system topology.

2.4.1. Electrical Storage System (ESS) Control Rule

The purpose of the ESS is to support the CHP by reducing the reliance on grid imports during
peak price periods and storing the surplus energy from the CHP switching, thus reducing the overall
running cost of meeting the loads. However, this requires a precise control rule. Two things need to be
considered carefully in advance—the amount of energy required to meet each electrical peak demand
and the exact time to begin charging.

An ESS normally consists of a group of batteries, but in an Energy Hub system at building level,
it is desirable to have more than one group of batteries due to the high frequency of charge cycles
required. Compared with large electrical systems, the electricity demand at building level has higher
uncertainty, thus the states (charging and discharging) of ESS may need to be changed very frequently.
However, the life span of batteries will be significantly reduced if the states of batteries are changed
too frequently. In [36], the authors describe that a simple two-battery system has a longer life span
compared with a single battery system which has the same capacity.

In this paper, the ESS consists of two groups of batteries, and two batteries are used separately to
supply the electrical load at the two daytime peak demands (shown in Figure 4).
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In Figure 4, the first battery is charged before the morning peak, TP1, and discharged to
compensate energy shortage for the first peak demand time TP2. (The energy shortage in the first
peak demand time is the difference between electrical energy generated by CHP and the building’s
electrical demand). The second battery is charged from very early in the morning to the beginning of
the second peak TP1 to TP3 and then discharged to compensate energy shortage for the second peak,
TP4. The electricity used to charge batteries is normally the surplus electricity generated by the CHP
system. Very occasionally, electricity from the grid is used to charge the battery.

The two-battery storage system control algorithm is shown in the flowchart in Figure 5 and is
as follows.Appl. Sci. 2018, 8, 0008  9 of 19 
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Figure 5. Electrical Energy control rule.

Step 1: Find each of the two daily peak demand start and end times and calculate how much
energy should be stored in advance for each peak. This can be done by analysing the historical data
from the same month of the previous year and using the curve fitting algorithm described in [33].

Step 2: After finding the first peak demand start time (tfs), and the amount of energy shortage for
the first peak demand (Efp), the amount of theoretical surplus electrical energy (ETheo in kilowatt hour)
generated in each minute before the first peak can be calculated.

Ei
Theo =

PCHP × ηele × t − Ei
his

1000 × 60
(11)

In Equation (11), PCHP is CHP rated power in Watts, ηele is CHP electrical efficiency, t is time in
minutes and Ei

his is the average historical electricity consumption in the ith minute, in Joules. Ei
Theo is

the theoretical surplus electrical energy that can be stored in the ith minute.
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Step 3: Then, the ETheo vector needs to be modified to get the total surplus electrical energy (ETotal)
in each minute generated by CHP before the beginning of the first peak. To be specific, change all
the values in the ETheo vector whose value is less than zero to zero, and keep other terms the same,
producing a modified vector E′Theo. The formula of total energy can be stored before first peak start can
be written as:

Ei
Total =

t=first peak start time

∑
t=i

E′iTheo (12)

Step 4: Comparing Ei
Total and E f p, find the highest value of i that makes Ei

Total greater than E f p.
Record the value of i and i is the best time to charge the first battery (tb f ).

Step 5: Use the same method to calculate the total theoretical surplus electrical energy E′iTotal in
each minute generated by the CHP between the start of the first peak and the start of the second peak.
Compare E′iTotal with energy shortage for the second peak (Esp), if E′iTotal is greater than Esp, record the
value of i′, and this is the theoretical best time to charge the second battery. However, if E′iTotal is less
than Esp, calculate the difference between the two values and record it as E′sp, and then calculate the

total theoretical surplus electrical energy E
′′i
Total in each minute generated by CHP before the best time

to charge the first battery (tb f ). Comparing E
′′i
Total and the E′sp, find the maximum value of i′′ and that

is the theoretical best time to charge the second battery.
Step 6: Set the initial energy of the two groups of batteries. By carefully choosing the battery

initial energy, ESS efficiency can be improved. Because the standby loss will be greater, if the initial
energy in batteries is too high; on the other hand, if the initial energy is very low, the life span of battery
will be reduced and less energy can be used as backup energy when the peak demand time extends or
it comes earlier. This step is empirical and dependent on the particular system parameters, an example
is shown in Section 4.3.

Step7: After the end of the second peak, both batteries need to be charged or discharged to the
initial value. This usually involves charging both batteries since they have previously supplied the
two load peaks. Therefore, even if the CHP cannot be used to recharge the batteries, this approach
uses cheaper grid electricity during the cheaper night time period.

2.4.2. Heat Storage System (HSS) Control Rule

Compared with ESS, the Heat Storage System (HSS) has lower overall efficiency (i.e., charging
efficiency and discharging efficiency), and a higher standby loss as quantified in Section 3. In addition,
the gas price is likely to remain static on an hourly basis whereas domestic electricity price will soon
become dynamic in most developed countries. Despite this, the static gas price is likely to remain
always cheaper for some time. Therefore, under these conditions, the use of a boiler to heat water in
advance is not justified. For HSS control, HSS is only charged by the redundant heat generated by
CHP and discharged when it is required. Heat is then dispatched when it is needed, from the supplies
with the following priority order 1. CHP (if it is ‘ON’), 2. HSS, 3. Gas via the boiler.

2.5. Theoretical Minimum Daily Operation Cost

To evaluate the performance of the proposed EH optimisation, this section will introduce a
method to calculate the theoretical minimum daily operation cost for the EH shown in Section 2.1.
This calculation assumes the system has perfect load predication, the CHP output can be varied from 0
to its maximum rated output, the efficiency at any output is its rated efficiency and there is no delay
between the set point and actual output. Therefore, it gives the most conservative base case against
which to evaluate the efficacy of the algorithm proposed in this paper.

This calculation consists of five steps. First, by comparing the electrical demand and maximum
electrical output of CHP, find the first and last time that the electrical demand is greater than CHP
electrical output in each high/intermediate price time. Calculate the amount of electrical energy
shortage (EES) during each high price time and intermediate price time based on Equation (13):
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Esn =
t=ne

∑
t=ns

E(t)− PCHP × ηele × T (13)

In Equation (13), Esn is EES for the nth high/intermediate price time.
t=ne
∑

t=ns
E(t) is the sum of the

electrical energy consumption calculated during the nth high/intermediate price time when electrical
energy generated by CHP is less than demand and T is the total time that electrical energy generated by
CHP is less than demand during nth high/intermediate price period. This assumes the CHP capacity
is rated such that at certain peak times of electrical demand it will not be able to meet the demand.

Second, calculate redundant electrical energy that can be stored during nth high/intermediate
price period if the CHP is working at rated power.

Enstore= (P CHP × ηele× T′ −
t=ne

∑
t=ns

E(t ′)) × ηb (14)

where Enstore is total electrical energy that can be stored for nth high/intermediate price time.
t=ne
∑

t=ns
E(t′)

is the sum of the electrical energy consumption calculated during the nth high/intermediate price time
when electrical energy generated by CHP is greater than electrical demand and T’ is the total time that
electrical energy generated by CHP is greater than demand during nth high/intermediate price period.
ηb is battery charging efficiency.

The third step is to find the differences between EES in step 1, and redundant energy that can be
stored during the nth high/intermediate price period from step 2. Using the same method as proposed
in Section 2.4, find the best time that CHP needs to work at the rated power to charge the battery.
Using the maximum CHP output here avoids storage standby losses as much as possible because
charging occurs at the latest possible period before the energy is required.

After finding the time that CHP should work at the rated power, the next step of this calculation
is to control the output power of CHP at other times of day. At these times, if the electrical demand is
greater than CHP electrical power generation, CHP must work at its rated power. If electrical demand
is less than rated CHP electrical output, CHP output power should just meet electrical demand.
This step considers the electricity tariff and battery overall efficiencies. Also at this step, redundant
heat generated by CHP can be stored by the heat storage system and when the CHP output cannot
meet the heat demand, the heat storage system will be prioritised to supply the heat load.

Finally, calculate the electricity and the gas bought from the grid. The gas price contains two
components: gas used to supply the boiler and gas used to supply the CHP. The theoretical minimum
operation cost of an Energy Hub can be written as:

CTheo= Cgrid + Cchp + Cboiler (15)

In Equation (15), CTheo, Cgrid, Cchp and Cboiler are the theoretical minimum operation cost, electricity
costs bought from grid, CHP operation cost and boiler operation cost. In the following section, a case
study will be used to illustrate both the aforementioned methodology and compared against the
minimum theoretical cost.

3. A Case Study

In this paper, a detached domestic building in the UK of approximately 30 years in age, occupied
by four people is analysed. Daily electricity consumption in this paper was randomly generated by
the CREST electricity model [37]. In order to simulate statistically realistic historical data, 50 groups
of each month’s electricity consumption time series were generated with this model is used test the
proposed algorithm. The electricity tariff is obtained in [38], which proposes a dynamic system of
tariffs which vary on a half hourly timescale. Daily heat consumption in this building was generated
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by the model developed by Strathclyde University [34]. The daily gas price is based on current UK
domestic gas price which is around 5 pence/kWh. Figures 6 and 7 are used to show daily energy
tariffs and average energy demands.

The Energy Hub model of this building is shown in Figure 2. In this building, the boiler burns
gas to generate heat. Additionally, a high cost, high efficiency energy generator—a fuel cell CHP
unit is used to generate heat and electricity together. Moreover, redundant electricity and heat can
be stored in the batteries and water tank storage system to improve energy efficiency and reduce
daily operation cost. The output power of CHP is 3 kW and its heat conversion efficiency is 66%
and electricity conversion efficiency 22%. For heat boiler, gas to heat conversion efficiency is 88%.
The overall efficiency of the battery system is 80% [39] and the standby loss for battery system is 3%
per month [3]. The overall efficiency of heat storage system is 75% [40] and standby loss is 15% a day.

It is worth noting that this paper is designed to verify the efficacy of the proposed algorithm
for a domestic user who has already installed the aforementioned infrastructures, with no need to
consider the optimal capacity for each infrastructure, because the rated capacities of the aforementioned
infrastructures used in this paper are based on the references of [41,42], in which many constraints,
for example, battery SOC, are considered when sizing CHP and batteries. Additionally, the depreciation
of energy infrastructures is not considered in this paper.Appl. Sci. 2018, 8, 0008  12 of 19 

 
Figure 6. Electricity and gas tariffs. 

 
Figure 7. An example of daily heat demand and Electrical Demand. 

4. Optimisation Results 

For a domestic building, the energy tariffs and demands which are shown in Figures 6 and 7, 
yield a daily gas cost of 293 pence and a daily electricity cost of 308.45 pence. In this case, the daily 
operational cost for a domestic building is 601 pence without any optimisation Algorithm. The 
following section will be used to show daily operational cost with CHP control algorithm. 

4.1. CHP Control Algorithm Optimisation 

To get a more precise CHP control result, load prediction plays a crucial role. Based on simple 
load prediction rule proposed by Equations (6) and (7), Figure 8 shows the differences between the 
actual demands and the predicted demands. Figure 8 reveals that the electrical demand prediction 
error can be very high compared to the heat demand prediction error. However, when using the 
predicted demands just to control binary CHP, as discussed in Section 2.2 and shown in [33], this 
approach gives a low error rate, which is 2.9% in this particular case study. Figure 9 shows the times 
that the CHP control algorithm generates errors in typical day. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

14

16

18

Time (hour)
Electricity price Gas price

Pr
ic

e 
(p

en
ce

/k
W

h)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

14

16

18

Time (hour)
Electricity price Gas price

Pr
ic

e 
(p

en
ce

/k
W

h)

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

Time (hour)

Po
w

er
 (W

)

Heat demand Electrical demand

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

Time (hour)

Po
w

er
 (W

)

Heat demand Electrical demand

Figure 6. Electricity and gas tariffs.

Appl. Sci. 2018, 8, 0008  12 of 19 

 
Figure 6. Electricity and gas tariffs. 

 
Figure 7. An example of daily heat demand and Electrical Demand. 

4. Optimisation Results 

For a domestic building, the energy tariffs and demands which are shown in Figures 6 and 7, 
yield a daily gas cost of 293 pence and a daily electricity cost of 308.45 pence. In this case, the daily 
operational cost for a domestic building is 601 pence without any optimisation Algorithm. The 
following section will be used to show daily operational cost with CHP control algorithm. 

4.1. CHP Control Algorithm Optimisation 

To get a more precise CHP control result, load prediction plays a crucial role. Based on simple 
load prediction rule proposed by Equations (6) and (7), Figure 8 shows the differences between the 
actual demands and the predicted demands. Figure 8 reveals that the electrical demand prediction 
error can be very high compared to the heat demand prediction error. However, when using the 
predicted demands just to control binary CHP, as discussed in Section 2.2 and shown in [33], this 
approach gives a low error rate, which is 2.9% in this particular case study. Figure 9 shows the times 
that the CHP control algorithm generates errors in typical day. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

14

16

18

Time (hour)
Electricity price Gas price

Pr
ic

e 
(p

en
ce

/k
W

h)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

14

16

18

Time (hour)
Electricity price Gas price

Pr
ic

e 
(p

en
ce

/k
W

h)

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

Time (hour)

Po
w

er
 (W

)

Heat demand Electrical demand

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1000

2000

3000

4000

5000

6000

7000

Time (hour)

Po
w

er
 (W

)

Heat demand Electrical demand

Figure 7. An example of daily heat demand and Electrical Demand.



Appl. Sci. 2018, 8, 8 13 of 19

4. Optimisation Results

For a domestic building, the energy tariffs and demands which are shown in Figures 6 and 7, yield
a daily gas cost of 293 pence and a daily electricity cost of 308.45 pence. In this case, the daily operational
cost for a domestic building is 601 pence without any optimisation Algorithm. The following section
will be used to show daily operational cost with CHP control algorithm.

4.1. CHP Control Algorithm Optimisation

To get a more precise CHP control result, load prediction plays a crucial role. Based on simple load
prediction rule proposed by Equations (6) and (7), Figure 8 shows the differences between the actual
demands and the predicted demands. Figure 8 reveals that the electrical demand prediction error
can be very high compared to the heat demand prediction error. However, when using the predicted
demands just to control binary CHP, as discussed in Section 2.2 and shown in [33], this approach gives
a low error rate, which is 2.9% in this particular case study. Figure 9 shows the times that the CHP
control algorithm generates errors in typical day.Appl. Sci. 2018, 8, 0008  13 of 19 
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Figure 8. Heat and electrical demand prediction error by using proposed prediction algorithm.
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Figure 9. The CHP control algorithm errors in sampling date.

By applying the CHP control algorithm, the domestic building energy operational cost is reduced
to 563 pence, which offers 38 pence saving a day. However, by applying this algorithm, the state of CHP
changes very frequently, especially at night peak demand time. This is shown in Figure 11. In Figure 11,
the dotted line shows the state of CHP in a day with the CHP control algorithm. To reduce dynamic
ramp up times and cycling stress on the CHP, it is necessary to reduce the CHP switching frequency.
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4.2. Modified CHP Control Algorithm

To reduce the CHP switching frequency, ‘Remove Glitch’ and ‘Fill Gap’ methods are used in
this paper, as described in Section 2.3. In order to distinguish a CHP state signal as ‘Glitch’ or ‘Gap’,
the probability of CHP ‘switch on’ in each minute needs to be acquired in advance. Figure 10 shows
the probability of CHP ‘switch on’ of all the days in averaged. After getting the probability of CHP
switch on, the modified CHP switch state can be acquired and it is shown in Figure 11. In Figure 11,
the solid line shows modified CHP state in that day.
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Figure 10. The probability of CHP Switch ‘ON’.
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Figure 11. The states of CHP by applying CHP control algorithm and modified CHP control algorithm.

Compared to the standard CHP control algorithm, the modified CHP switch algorithm has
successfully reduced switching frequency through ‘Fill Gap’ and ‘Remove Glitch’. However, ‘Fill Gap’
and ‘Remove Glitch’ increases system operational cost slightly to 566 pence, which is about 3 pence
higher than the CHP control model. Simply using CHP control model can reduce the energy cost for
the domestic building; however, energy efficiency is reduced due to the redundant energy generated
by CHP. Figure 12 shows the total electrical energy and heat energy that can be stored if the energy
storage system is available. After calculation, total redundant heat generated by the CHP is 0.197 kWh
and the redundant electricity is 1.33 kWh.



Appl. Sci. 2018, 8, 8 15 of 19

Appl. Sci. 2018, 8, 0008  14 of 19 

 
Figure 11. The states of CHP by applying CHP control algorithm and modified CHP control algorithm. 

Compared to the standard CHP control algorithm, the modified CHP switch algorithm has 
successfully reduced switching frequency through ‘Fill Gap’ and ‘Remove Glitch’. However, ‘Fill 
Gap’ and ‘Remove Glitch’ increases system operational cost slightly to 566 pence, which is about 3 
pence higher than the CHP control model. Simply using CHP control model can reduce the energy 
cost for the domestic building; however, energy efficiency is reduced due to the redundant energy 
generated by CHP. Figure 12 shows the total electrical energy and heat energy that can be stored if 
the energy storage system is available. After calculation, total redundant heat generated by the CHP 
is 0.197 kWh and the redundant electricity is 1.33 kWh. 

 
Figure 12. The accumulative redundant energy can be stored in energy storage system by applying 
the modified CHP control algorithm. 

4.3. Energy Storage System Control Algorithm 

Aforementioned in Section 2.4, by carefully choosing the initial value of energy storage system, 
the operational cost for energy storage system can be reduced to some extent. Considering the high 
standby loss of the heat storage system and the flat rate of gas price, it is preferable not to store heat 
in advance. Thus, the initial heat in HSS is set to 0 kWh. However, considering the electricity tariff 
can change significantly in a day and the standby loss for electrical storage system is relatively small, 
storing a reasonable amount of electrical energy in advance can improve overall system cost. Figure 
13 shows electricity cost of the domestic building against initial energy stored in the electrical 
storage system. This was produced using a fixed base case combining the overall management 
system shown in Figure 1 and the initial parameters in Section.3. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)
CHP control algorithm Modified CHP switch algorithm

St
at

e o
f C

H
P

ON

ON

 

Time (hour)

En
er

gy
 (k

W
h)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

0.2

0.4

0.6

0.8

1

1.2

1.4

Amount of electricity can be stored in a day Amount of electricity can be stored in a day Amount of heat can be stored in a dayAmount of heat can be stored in a day

Time (hour)

En
er

gy
 (k

W
h)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

0.2

0.4

0.6

0.8

1

1.2

1.4

Amount of electricity can be stored in a day Amount of heat can be stored in a day

Figure 12. The accumulative redundant energy can be stored in energy storage system by applying the
modified CHP control algorithm.

4.3. Energy Storage System Control Algorithm

Aforementioned in Section 2.4, by carefully choosing the initial value of energy storage system,
the operational cost for energy storage system can be reduced to some extent. Considering the high
standby loss of the heat storage system and the flat rate of gas price, it is preferable not to store heat
in advance. Thus, the initial heat in HSS is set to 0 kWh. However, considering the electricity tariff
can change significantly in a day and the standby loss for electrical storage system is relatively small,
storing a reasonable amount of electrical energy in advance can improve overall system cost. Figure 13
shows electricity cost of the domestic building against initial energy stored in the electrical storage
system. This was produced using a fixed base case combining the overall management system shown
in Figure 1 and the initial parameters in Section 3.Appl. Sci. 2018, 8, 0008  15 of 19 

 
Figure 13. Battery initial energy in (kWh) vs domestic building daily electricity cost. 

From Figure 13, the daily electricity cost will be the lowest if initial electrical energy is set as 0.8 
kWh. After setting the initial energy for the energy storage system and operating it as demonstrated 
in Section 2.4, the amount of imported gas, electricity and the state of CHP can be acquired. Figure 14 
shows the state of CHP, the amount of imported gas and electricity in a day based on proposed 
Energy Hub optimisation rules in this paper. Figure 15 shows the amount of energy which is stored 
in battery one, battery two and the hot water tank respectively. 

 

Figure 14. The state of CHP and the amount of imported gas and electricity in a day. 

 

Figure 15. Energy Stored in hot water tank and batteries. 

 

0 1 2 3 4 5 6 7 8 9 10
90

100

110

120

130

140

150

160

170

180

190

X:0.8
Y:95.66

X:2.7
Y：95.52

Initial electricity (kWh)

Co
st 

(p
en

ce
)

0 1 2 3 4 5 6 7 8 9 10
90

100

110

120

130

140

150

160

170

180

190

X:0.8
Y:95.66

X:2.7
Y：95.52

Initial electricity (kWh)

Co
st 

(p
en

ce
)

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

1000

2000

3000

4000

5000

6000

Po
w

er
 (W

)

Time (hour)
State of CHP Heat generated by boiler Electricity imported from grid

St
at

e 
of

 C
H

P

ON

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

1

2

3

4

5

T
ot

al
 e

ne
rg

y 
in

st
al

le
d 

(k
W

h)

Time (hour)
First battery Second battery Heat storage

Figure 13. Battery initial energy in (kWh) vs domestic building daily electricity cost.

From Figure 13, the daily electricity cost will be the lowest if initial electrical energy is set as
0.8 kWh. After setting the initial energy for the energy storage system and operating it as demonstrated
in Section 2.4, the amount of imported gas, electricity and the state of CHP can be acquired. Figure 14
shows the state of CHP, the amount of imported gas and electricity in a day based on proposed Energy
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Hub optimisation rules in this paper. Figure 15 shows the amount of energy which is stored in battery
one, battery two and the hot water tank respectively.
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Figure 14. The state of CHP and the amount of imported gas and electricity in a day.
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Figure 15. Energy Stored in hot water tank and batteries.

With the installation of the energy storage system, daily energy cost can yield a further reduction.
Based on the control algorithm, total operational cost now reduces to 464 pence, which saves about
£1.38 a day. Specifically, the cost of electricity imported from grid is 91 pence, the gas that used to
supply heat demand is 74 pence and the remaining cost of 299 pence is used to import gas to supply
the CHP. With the proposed optimisation rules, the total cost reduction is 22.9%, which is a 2.9%
improvement on previous similar work which reduces cost by 20% [10]. Therefore, the algorithm
represents a 14.5% improvement on previous work.

4.4. Theorectical Minimum

As shown in Table 1, using the calculation shown in Section 2.5, the theoretical minimum operation
cost for sampling day is 449 pence. To get the theoretical minimum, the cost of electricity imported
from the grid is 58 pence, the gas that is used to supply the heat demand is 31 pence and the remaining
cost of 360 pence is used to import gas to supply the CHP.

Table 1. Energy cost for in case study without algorithm, proposed algorithm and theoretical minimum.

Algorithm Gas Price (Used
for CHP) (Pence)

Gas Price (Used
for Heat) (Pence)

Electricity Price
(Pence) Total Price (Pence)

No algorithm 293 293 309 602
Proposed algorithm 299 74 91 464

Theoretical minimum 360 31 58 449
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By comparing two results, it is easy to find that the cost from the combined hub control algorithm
is very close to the theoretical minimum, and the ratio of cost from the theoretical minimum to the
combined hub control algorithm cost is over 96.8%. This ratio varied from 88.8% to 97% after testing
the whole year’s data and clearly strongly depends on the daily load profile. If the daily average
electrical load is very high, the CHP may need to operate at the rated power for the whole day, and this
will reduce the difference between the proposed algorithm’s cost and theoretical minimum. Thus,
in this case the ratio is very high and the proposed method is very effective. However, it is worth
noting that the theoretical minimum is calculated using conservative assumptions such as perfect CHP
efficiency and instantaneous output. Therefore, the whole range of ratios will be somewhat improved
when real world imperfections are accounted for. It can thus be stated with some confidence that the
algorithm presented here always yields better than 88% of the theoretical minimum cost.

5. Conclusions

The proposed rule based Energy Hub optimisation algorithm reduces the complexity of
computation, improves system dynamic performance (the time step in this paper is one minute
compared to previous work which an hour or half hour) and further reduces system operational cost
by 2.92% a day compared with previous work, representing a 14.5% improvement on previous work.
The optimisation approach is more real world feasible, because in this paper, it is assumed that CHP
has binary states of operation. This assumption reduces the time delay between set points and actual
output arising from dynamic operation of CHP, therefore reducing inaccuracy in the optimisation
when deployed in the real world. Meanwhile, it maximises the CHP efficiency by reducing energy
loss since when in operation the plant operates for longer at full capacity. Finally, the modified CHP
control algorithm reduces the cycling stress on the CHP extending the plant lifetime. For the first time
in the context of domestic CHP, dual battery storage systems are deployed together to store surplus
electricity thus extending the life time of each battery.

The daily energy cost from the combined hub control algorithm is 464 pence, which gives about
£1.38 energy saving a day. In the case study, the ratio between the control algorithm’s savings and
the theoretical minimum savings are over 96.8%, and are shown to be always over 88% for a whole
year’s data, using conservative theoretical minimum assumptions, showing that this is a very powerful
algorithm to optimise energy consumption in a domestic building.

To further increase daily saving, there are four suggested approaches. The first one is to increase
cost from the combined hub control algorithm to theoretical minimum ratio. To increase this rate,
more precise ‘Gap’ and ‘Glitch’ diagnostic system needs to be built. However, this will significantly
extend computation time and system complexity. The second way is to reduce theoretical minimum
cost itself which can be achieved by improving storage system efficiencies and improving CHP
generation efficiencies. This will happen as individual technologies improve. Thirdly, careful sizing
of the CHP capacity is important because too small a plant will lead to an energy shortage that must
be supplied by the grid, whereas too large will not justify the benefit of CHP turn-on to meet load.
By optimising the CHP capacity both the efficacy of the combined hub control algorithm in reaching
the theoretical minimum can be increased, and at the same time, the theoretical minimum itself can
be reduced. This is the most promising way to reduce optimal operational cost. Finally, as suggested
by [43], domestic users may benefit from building interconnection with many local energy systems
through importing energy from different local energy systems based on the price factor.
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