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Abstract: Adaptive intelligent sliding mode control methods are developed for a single-phase
photovoltaic (PV) grid-connected transformerless system with a boost chopper and a DC-AC inverter.
A maximum power point tracking (MPPT) method is implemented in the boost part in order to extract
the maximum power from the PV array. A global fast terminal sliding control (GFTSMC) strategy is
developed for an H-bridge inverter to make the tracking error between a grid reference voltage and the
output voltage of the inverter converge to zero in a finite time. A fuzzy-neural-network (FNN) is used
to estimate the system uncertainties. Intelligent methods, such as an adaptive fuzzy integral sliding
controller and a fuzzy approximator, are employed to control the DC-AC inverter and approach the
upper bound of the system nonlinearities, achieving reliable grid-connection, small voltage tracking
error, and strong robustness to environmental variations. Simulation with a grid-connected PV
inverter model is implemented to validate the effectiveness of the proposed methods.

Keywords: grid-connected inverter; sliding mode; photovoltaic; maximum power point tracking;
fuzzy neural network

1. Introduction

Photovoltaic (PV) generation is attracting significant interests since it is a clean renewable energy.
An inverter is indispensable in a PV generation system; therefore, it is necessary to convert PV power
into AC power. The advantages of a grid-connected transformerless inverter are its light weight,
small size, and low price. A two-stage single-phase PV grid-connected inverter mainly includes
a boost chopper and DC-AC converter, where boost and maximum power point tracking (MPPT)
are implemented in the boost part, while the conversion from DC to AC is accomplished in the
DC-AC converter.

Some MPPT methods [1–6], such as constant voltage tracking (CVT), incremental conductance
(INC) method, intelligent method, and particle swarm optimization, are developed to track the MPPT
to increase the efficiency of the PV inverter. Intelligent methods are utilized to control the PV inverter
and active power filter [7–11]. Some scholars have employed sliding mode control (SMC) to control
the PV grid-connected inverter. A novel robust adaptive sliding-mode controller for a grid-connected
PV inverter was proposed in Reference [12]. Backstepping sliding control and fuzzy sliding control
were investigated in References [13–19] to improve the performance of PV inverters and dynamic
systems. An adaptive fuzzy controller and a neural network controller have been developed for a
PV grid-connected inverter in References [20–22]. Motivated by the above discussion, an adaptive
intelligent sliding control is proposed for a PV inverter, and an MPPT algorithm is presented by
using an INC method with an adaptive step size. An adaptive fuzzy sliding mode control (AFSMC)
method is developed to control the inverter. An adaptive fuzzy neural network global fast terminal
sliding mode control (FNNGFTSMC) strategy is utilized for the DC-AC converter. A global fast
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terminal sliding surface and controller are designed to make the output voltage’s tracking error in the
inverter converge to zero in finite time. A FNN whose weights are updated in real time is employed to
approximate and adapt the system uncertainties.

The structure of the paper is arranged as follows. The system description of the PV inverter is
introduced in Section 2. In Section 3, the MPPT algorithm is introduced. The AFSMC and GFTSMC are
proposed in Sections 4 and 5, respectively. Simulation studies and the discussion are given in Section 6
and the final section gives the conclusions.

2. System Description

Figure 1 is a typical two-stage single-phase grid-connected PV inverter without an isolation
transformer mainly including a boost converter and a DC-AC inverter. The DC-AC inverter is
connected to the grid, and it is required that its output voltage is consistent with the reference voltage
of the grid.
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Figure 1. Single-phase grid-connected PV inverter model.

The following paragraphs describe the model of the two parts.

2.1. Boost Model

Figure 2 is the schematic diagram of a boost chopper, where upv and ipv are the output voltage
and current of the PV array respectively. The boost converter is composed of switch S, inductance Lpv,
and capacitance Cdc, together with diode Dpv.

Assumption 1. The inductance Lpv and capacitance Cdc of the converter are large enough that the current ipv

and voltage udc keep constant during the switch S on and off time.

It is assumed that the conduction duty cycle of S is Db. Since the energy accumulated by the
inductor in one cycle is equal to its released energy, we obtain:

upvipvDb = (udc − upv)ipv(1− Db) (1)

The relation upv = (1− Db)udc can be derived from (1).
Actually, Lpv and Cdc of the converter are finite, and udc may decrease somewhat. However, when

Lpv and Cdc is large enough, the error can be ignored.
If 0 ≤ Db ≤ 1, then udc > upv, proving the characteristic of the voltage boosting in the boost

chopper. Moreover, upv and Db vary inversely when udc keeps constant. A suitable PV voltage can be
obtained by adjusting Db such that the PV inverter can work at the stage of the maximum power point.
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Figure 2. Boost DC-DC chopper.

2.2. DC-AC Inverter Model

The DC power is transferred to the grid through the DC-AC inverter. As shown in Figure 3, the
DC-AC inverter is composed of four power switches. S1 − S4 are all fully-controlled power switches,
and Cac and Lac are the filter capacitance and inductance in the grid side, respectively, RL is the load.
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Figure 3. DC-AC inverter model.

Some ideal conditions are assumed to derive the dynamic model of the inverter.

Assumption 2. S1–S4 are all ideal switches with zero turn-on impedance, no dead time, and no capacitive or
inductance effects. There is no parasitic resistance existing on inductance Lac and capacitance Cac. There is only
one group of switches on at any time, and the opening time and shutdown time for each switch can be ignored
since it is small enough.

According to Kirchoff’s Current Law (KCL) and Kirchoff’s Voltage Law (KVL), it can be
obtained that:

While S1, S4 are on: {
−udc + Lac

diac
dt + uac = 0

iac − 1
RL

uac − Cac
duac

dt = 0
(2)

While S2, S3 are on: {
Lac

diac
dt + udc + uac = 0

−iac + Cac
duac

dt + 1
RL

uac = 0
(3)

Assuming that D is the duty cycle of S1 and S4, then the duty cycle of S2 and S3 is one dimensional.
According to the state space average model, the mathematical expression of the inverter can be
expressed as: {

Lac
diac
dt = (2D− 1)udc − uac

Cac
duac

dt = iac − 1
RL

uac
(4)
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Then, the derivative equation is obtained as:

d2uac

dt2 = − 1
RLCac

duac

dt
− 1

LacCac
uac +

2D− 1
LacCac

udc (5)

In practical applications, parameter variations and external disturbances always have an influence
on the inverter. Considering the uncertainties in the inverter, Equation (5) can be rewritten as:

d2uac

dt2 = −( 1
RLCac

+ ∆1)
duac

dt
− (

1
LacCac

+ ∆2)uac + (
2D− 1
LacCac

+ ∆3)udc + d(t) (6)

where the parameter variations are ∆1, ∆2, and ∆3, and external disturbances are d(t), which result
from the instability of udc. Let g(t) = −∆1

duac
dt − ∆2uac + ∆3udc + d(t), and the dynamic model of the

inverter is obtained as Equation (7):

d2uac

dt2 = − 1
RLCac

duac

dt
− 1

LacCac
uac +

2D− 1
LacCac

udc + g(t) (7)

where uac and its derivative, as well as udc, can be measured.

3. MPPT Approach

Since environmental factors can easily affect the PV arrays, its working point is going to vary.
Figure 4 plots the P-U characteristics of PV cells. The maximum power point is the peak of the P-U
characteristic curve of PV cell, satisfying the following condition:

dP
dUpv

=
d(Upv Ipv)

Upv
= Ipv + Upv

dIpv

dUpv
= 0 (8)

which can be rewritten as:
dIpv

dUpv
= −

Ipv

Upv
(9)
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From Section 2, unit A, it is known that the boost chopper satisfies: upv = (1− Db)udc, where the
duty cycle of the power switch S is Db, the output voltage is upv, and the output of the boost part is
udc. When udc is kept constant, upv and Db will change inversely. The work point of PV arrays can be
changed by adjusting Db.
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Using the adaptive step size as λ
∣∣∣ dP

dUpv

∣∣∣, where λ is a positive constant, then the iteration algorithm
of INC with this step size can be expressed as:

Db(k) = Db(k− 1)± λ

∣∣∣∣ dP
dUpv

∣∣∣∣ (10)

The position of the current point determines the sign in Equation (9). Moreover, in order to avoid
too large a step, a threshold is set for the step size. Figure 5 describes the algorithm INC with adaptive
size in detail.
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4. Adaptive Fuzzy Sliding Mode Control

A grid-connected PV inverter is used to guarantee that the output voltage of the inverter can
follow the grid reference voltage. The block diagram of the AFSMC algorithm is shown in Figure 6.
First, an integral sliding surface is selected, then the equivalent (EQ) controller is calculated by setting
.
s = 0 without the nonlinearities. The total control is composed of the EQ controller and a switching
(SW) controller that is employed to compensate the unknown nonlinearities. Finally, a fuzzy controller
is used to estimate the upper bound of the nonlinearities in the switching (SW) controller. Then, the
controller output is transferred to the Pulse Width Modulation (PWM) to control the inverter. The
output of the inverter Uac is used as a feedback signal to the reference input Uacr to constitute a tracking
error signal.
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4.1. Sliding Mode Control

An integral sliding surface is designed as in Equation (11):

s(t) =
.
uac(t)−

t∫
0

[
..
uacr(t)− k1

.
e(t)− k2e(t)]dt (11)

where uacr is the grid reference voltage, e = uac − uacr is the tracking error between uac and uacr, and
k1 and k2 are positive constants.

The derivative of the integral sliding surface becomes:

.
s = − 1

RLCac

.
uac −

1
LacCac

uac +
2D− 1
LacCac

udc + g− ..
uacr + k1

.
e + k2e (12)

Ignoring the system nonlinearities and setting
.
s = 0 and g yields the equivalent controller Deq as:

Deq = 0.5[1 +
LacCac

udc
(

1
RLCac

..
uac +

1
LacCac

uac +
..
uacr − k1

.
e− k2e)] (13)

Then, considering the system nonlinearity, a comprehensive controller is proposed as:

D = Deq + Dsw (14)

Dsw = −0.5 ∗ LacCac

udc
gEsgn(s) (15)

where |g| < gE, gE is the upper bound of the system nonlinearities, and sgn(s) is the sign of
s. The sliding controller is designed to compensate for the unknown nonlinearities to satisfy the
sliding condition.

4.2. Adaptive Fuzzy Sliding Mode Control

Since it is difficult to measure the upper bound of nonlinearities in practical applications, a fuzzy
system is proposed to adaptively estimate the optimal upper bound of the nonlinearities.

The tracking error e is selected as the input of the fuzzy controller, and the upper bound of the
uncertainties is its output.

According to the universal approximation theory, there exists an optimal parameter satisfying
g∗E = gE + ε = a∗Tξ, where a is an adjustable parameter, a∗ is an optimal parameter, ξ is a fuzzy basis
function vector, and ξi =

wi
∑ wi

, i = 1,2,3 ....... m, ε is the approximation error bounded by |ε| < E, where
E is a positive constant.
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A fuzzy system ĝE is employed to approximate the upper bound of system nonlinearities as:

ĝE = âTξ (16)

where â is the estimation of a∗.
Replacing gE in Equation (15) by ĝE and combining Equations (13) and (14) yields the new

controller as Equation (17):

D = 0.5[1 +
LacCac

udc
(

1
RLCac

..
uac +

1
LacCac

uac +
..
uacr − k1

.
e− k2e− ĝEsgn(s))] (17)

Substituting Equation (17) into Equation (12) obtains:

.
s = g− ĝEsgn(s) (18)

Define ã = â− a∗ as the estimation error.
Selecting a Lyapunov function as:

V =
1
2

s2 +
1

2η
ãT ã (19)

where η is a positive constant.
The derivative of V becomes:

.
V = s

.
s + 1

η ãT
.
ã

= s(g− ĝEsgn(s)) + 1
η ãT

.
ã

= s(g− âTξsgn(s)) + 1
η (â− a∗)T .

ã

= sg− âTξ|s|+ 1
η (â− a∗)T .

ã

(20)

An adaptive law can be obtained as:

.
â =

.
ã = η|s|ξ (21)

Substituting Equation (21) into Equation (20) yields:

.
V = sg− |s|a∗Tξ

≤ |s|g− |s|a∗Tξ

= −(gE − g + ε)|s|
≤ 0

(22)

.
V is negative semi-definite, which implies that the closed-loop system is asymptotically stable,

where V → 0 as t→ ∞ , and therefore e→ 0 as t→ ∞ , meaning the output of inverter can track the
grid reference voltage.

5. Adaptive Fuzzy Neural Network Terminal Sliding Mode Control

Terminal sliding mode with a nonlinear sliding surface has a good property to converge to an
equilibrium state in a finite time.

5.1. Sliding Surface Design

Define the tracking error as:
e = uac − uacr (23)

where uac is the output voltage of the DC-AC inverter, and uacr is the grid reference voltage.
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A global fast terminal sliding function is designed as:

s =
.
e + αe + βe

q
p (24)

where α, β are both are positive constants, and p, q(p > q) are positive integers. Note that p and q must

be odd integers so that for any real number e, βe
q
p is always a real number.

When s = 0, the system dynamics is expressed by the following differential equation:

s =
.
e + αe + βe

q
p = 0 (25)

The convergence rate is mainly determined by the nonlinear term βe
q
p . By properly choosing

α, β, p, q, for any initial state e(0) 6= 0, the dynamics of Equation (25) will reach e = 0 in a finite time. In
addition, by solving Equation (25), the exact time to converge to an equilibrium state from any initial
state ts is derived as:

ts =
p

α(p− q)
ln

αe(0)(p−q)/p + β

β
(26)

5.2. Global Fast Terminal Sliding Mode Control

A global fast terminal sliding controller is designed for the inverter in this part.
Select a Lyapunov function candidate as given in Equation (27):

V1 =
1
2

s2 (27)

The derivative of V1 is

.
V1 = s(

..
e + α

.
e + β

q
p e

q
p−1 .

e)

= s(
..
e + (α + β

q
p e

q
p−1

)
.
e)

= s(
..
uac −

..
uacr + (α + β

q
p e

q
p−1

)
.
e)

= s(− 1
RLCac

.
uac − 1

LacCac
uac +

2D−1
LacCac

udc

+g− ..
uacr + (α + β

q
p e

q
p−1

)
.
e)

(28)

A control law is designed as:

D = 0.5[1 +
LacCac

udc
(

1
RLCac

.
uac +

1
LacCac

uac +
..
uacr − (α + β

q
p

e
q
p−1

)
.
e− gEsgn(s)− k · s)] (29)

where gE >|g|max, gE is the upper bound of the system uncertainties, and k · s is a linear compensation
term, where k is a positive constant.

Applying Equation (29) to Equation (28) gives:

.
V = s(g− gEsgn(s)− ks)
= sg− |s|gE − ks2

≤ |s||g|max − |s|gE − ks2

= −(gE − |g|max)|s| − ks2 ≤ 0

(30)

.
V1 is negative semi-definite, guaranteeing the stability of the system.
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5.3. Fuzzy Neural Network Global Fast Terminal Sliding Mode Control

The block diagram of the proposed FNNGFTSMC structure is described in Figure 7. The output
of FNN ĝ is designed to approximate the system uncertainties g as:

ĝ = wTξ(x) (31)

where w gives the connection weights of FNN, and x = [uac uacr] is the input vector.
The global fast terminal sliding controller with FNN to estimate the system uncertainties g is

proposed as in Equation (32):

D = 0.5[1 +
LacCac

udc
(

1
RLCac

.
uac +

1
LacCac

uac +
..
uacr − (α + β

q
p

e
q
p−1

)
.
e− ĝ− k · s− εmsgn(s))] (32)

where ĝ is the estimation value of g, k is a positive constant, and εm >|ε|max, where |ε|max is a
positive constant
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where ĝ  is the estimation value of g, k  is a positive constant, and max| |mε ε> , where max| |ε  is a 
positive constant 

e s D

 

Figure 7. Block diagram of an FNNGFTSMC. 

The derivative of the sliding function, Equation (24), is: 

1

1

1

1

 ( )

 ( )

1 1 2 1 

      ( )

q
p

q
p

q
p

ac acr

ac ac dc
L ac ac ac ac ac

q
p

acr

qs e e e e
p
qe e e
p

qu u e e
p

Du u u
R C L C L C

qg u e e
p

α β

α β

α β

α β

−

−

−

−

= + +

= + +

= − + +

−= − − +

+ − + +

   

 

  



 

 (33) 

Applying Equation (32) to Equation (33) yields: 

ˆ sgn( )ms g g k s sε= − − ⋅ −  (34) 

Selecting a Lyapunov function candidate as: 

21 1
2 2

TV s w w
r

= +    (35) 

where ˆw w w∗= −  is the estimation error, and r  is a positive constant. 
The derivative of Equation (35) becomes: 

Figure 7. Block diagram of an FNNGFTSMC.

The derivative of the sliding function, Equation (24), is:

.
s =

..
e + α

.
e + β

q
p e

q
p−1 .

e

=
..
e + (α + β

q
p e

q
p−1

)
.
e

=
..
uac −

..
uacr + (α + β

q
p e

q
p−1

)
.
e

= − 1
RLCac

.
uac − 1

LacCac
uac +

2D−1
LacCac

udc

+g− ..
uacr + (α + β

q
p e

q
p−1

)
.
e

(33)

Applying Equation (32) to Equation (33) yields:

.
s = g− ĝ− k · s− εmsgn(s) (34)

Selecting a Lyapunov function candidate as:

V =
1
2

s2 +
1
2r

w̃Tw̃ (35)

where w̃ = ŵ− w∗ is the estimation error, and r is a positive constant.
The derivative of Equation (35) becomes:
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.
V = s

.
s + 1

r w̃T
.

w̃
= s(g− ĝ− k · s− εmsgn(s)) + 1

r w̃T
.

w̃
= s(g∗ + ε− ĝ− k · s)− εm|s|+ 1

r w̃T
.

w̃
= s(g∗ − ĝ) + sε− ks2 − εm|s|+ 1

r w̃T
.

w̃
= −sw̃Tξ + sε− ks2 − εm|s|+ 1

r w̃T
.

w̃

(36)

An adaptive law is designed as:
.

w̃ =
.

ŵ = rsξ (37)

Substituting Equation (37) into Equation (36) results in:

.
V = sε− εm|s| − ks2

≤
∣∣s∣∣ε− εm

∣∣s∣∣−ks2

= −(εm − ε)
∣∣s∣∣−ks2 ≤ 0

(38)

.
V is negative semi-definite, which ensures that V, s,

.
s are all bounded, and V(t) < V(0) < ∞.

Furthermore,
.

V ≤ −ks2 implies that s is square-integrable as
∫ t

0 s2dt ≤ 1
k (V(0)− V(t)). Since

.
s is

bounded, according to the Barbalat lemma, s→ 0 as t→ ∞ .

6. Simulation Results and Discussion

A grid-connected PV inverter is built in MATLAB/Simulink with SimPower Systems Toolbox
(Figure 8) to verify the feasibility of the proposed strategies.

The PV module is composed of two 250 W photovoltaic components connected in series with the
parameters as:

Isc = 8.81 A, Im = 8.36 A, Vm = 29.9 V, Voc = 37.3 V. Boost chopper component parameters are
set as Cpv = 10−3 F, L = 3× 10−4 H, and Cdc = 10−4 F. Parameters of the DC-AC inverter are chosen
as Lac = 0.048 H, Cac = 2× 10−5 PF, RL = 400 Ω. In the MPPT strategy, Φ = 60, λ = 10−6.

The FNNGFTSMC parameters are chosen as α = 8000, β = 10, p = 5, and q = 1. The grid
reference voltage is sinusoidal with a frequency 50 Hz and amplitude 311 V.
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6.1. MPPT Performance

The environment of the PV inverter often changes. The initial insolation level is set to be 880 w/m2

(88%), and at time 0.25 s, it is changed from 880 w/m2 to 1000 w/m2 (100%), and again at time 0.4 s, it
is changed to 740 w/m2 (74%).
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Figure 9 shows that the power of PV modules was greatly determined by the insolation level,
proving the effectiveness of the proposed MPPT strategy.

Figures 10 and 11 show the performance of the proposed FNNGFTSMC scheme and AFSMC
scheme, respectively, where the solid line (uacr) is the reference voltage, and the dotted line uac

is the output voltage. The proposed FNNGFTSMC and AFSMC strategies can achieve a reliable
grid-connection, the voltage tracking error converges to zero, and the proposed strategy has strong
robustness to environment variations.
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6.2. Performance of Inverter

6.2.1. Parameter Variations

When t = 0.1–0.15 s, a random disturbance 2 × 10−6 rand(1) PF is added to the capacitance
parameter Cac, and while t = 0.3–0.35 s, the inductance parameter varies by adding a random
disturbance with amplitude 10−3, shown in Figure 12.
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6.2.2. Voltage Fluctuation in the Grid Side

Voltage fluctuation in the grid side is tested at time 0.2 s, the grid voltage varies from 311 V to
280 V, and then returns to a normal level (311 V) at time 0.24 s. Figure 13 shows the adaptabilities of
the inverter under grid voltage fluctuation, showing the tracking error can decrease to zero quickly.

In order to study the advantages of the proposed controller, a comparison with sliding control is
implemented under the same conditions. The sliding mode surface is designed as s =

.
e + c · e, and

the sliding term ηsgn(s) is utilized to compensate for the influence of the system uncertainties. The
parameters are c = 4000 and η = 6× 106. A random disturbance is added when t = 0.2–0.4 s. The
comparisons of the steady performance for the inverter are studied in Figures 14–16, showing the
tracking error with SMC is much bigger than that with FNNGFTSMC and AFSMC.
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7. Conclusions 

This paper proposed an intelligent adaptive sliding mode scheme to make the inverter track 
the grid reference voltage. An AFSMC strategy is presented to control the DC-AC inverter, and the 
fuzzy system is employed to estimate the upper bound of the unknown system nonlinearities. The 
global fast terminal sliding mode control is utilized to make the tracking error in the inverter go to 
zero in a finite time. A simulation study is implemented to show the feasibility of the proposed 
strategies compared with the SMC method. 
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Figure 16. Tracking performance of the SMC scheme.

7. Conclusions

This paper proposed an intelligent adaptive sliding mode scheme to make the inverter track the
grid reference voltage. An AFSMC strategy is presented to control the DC-AC inverter, and the fuzzy
system is employed to estimate the upper bound of the unknown system nonlinearities. The global
fast terminal sliding mode control is utilized to make the tracking error in the inverter go to zero in
a finite time. A simulation study is implemented to show the feasibility of the proposed strategies
compared with the SMC method.
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