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Abstract: A novel polymeric acid catalyst immobilized on a membrane substrate was found to
possess superior catalytic activity and selectivity for biomass hydrolysis. The catalyst consists of
two polymer chains, a poly(styrene sulfonic acid) (PSSA) polymer chain for catalyzing carbohydrate
substrate, and a neighboring poly(vinyl imidazolium chloride) ionic liquid (PIL) polymer chain for
promoting the solvation of the PSSA chain to enhance the catalytic activity. In order to elucidate the
mechanism and determine the energetics of biomass catalytic processing using this unique catalyst,
classical molecular dynamics (MD) coupled with metadynamics (MTD) simulations were conducted
to determine the free energy surfaces (FES) of cellulose hydrolysis. The critical role that PIL plays in
the catalytic conversion is elucidated. The solvation free energy and the interactions between PSSA,
PIL, and cellulose chains are found to be significantly affected by the solvent.
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1. Introduction

Cellulose is one of the major polymers in the plant cell wall. Deconstruction of cellulosic
biomass is a critical step in the production of sugars and biofuels, as an alternative to depleting
fossil fuels [1–7]. In the biochemical platform of biomass conversion, a pretreatment step is required
to open up the biomass structures, relocate lignin, or to partially hydrolyze hemicelluloses [8–11].
Dilute acid pretreatment is one of the leading technologies, among several other approaches [12–14].
The disadvantages of the dilute acid pretreatment include the high equipment cost, and the detrimental
effect on the environment with regard to acid disposal and recycling. The pretreated lignocellulosic
biomass is typically further hydrolyzed to monomeric sugars using an enzyme cocktail [15,16].
However, enzymatic conversion is slow and expensive [17].

Cel48F is a widely used cellulase to catalyze cellulose hydrolysis [18,19]. The mechanism involved
in the Cel48F hydrolysis involves two reaction steps. The first step is to break the intermolecular
hydrogen bonds formed between cellulose chains, followed by the second step of hydrolyzing the
individual cellulose chain to glucose and shorter oligosaccharides. Earlier studies using classical
molecular dynamics (MD) simulations have gained insights into the catalytic mechanisms of cellulases
such as TmCel12A [20], Cel7A [21], and Cel48F [18,19]. Amino acid residues on cellulases play
important roles in adapting their conformations for the entry, breakage, and exit of cellulose chains in
the catalytic tunnel, as well as in transferring water molecules into the hydrolysis site for breaking
down the glycosidic bond. The microenvironment in the catalytic tunnel inside cellulase is partially
dehydrated. Previously, we have performed ab initio molecular dynamics simulations coupled with
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metadynamics (CPMD-MTD) simulations [22–31] to elucidate the energetics and mechanisms of
acid-catalyzed catalytic conversions, including cellulose hydrolysis, glucose ring opening, glucose
dehydration, and isomerization reactions. The barriers of these reactions are found to strongly affect
by the solvent. A partially dehydrated environment could potentially reduce the activation barrier
and facilitate the hydrolysis reaction.

Inspired by action of cellulase enzymes, a polymeric solid acid catalyst consisting of two adjacent
nanostructures was synthesized and immobilized on a porous membrane substrate to mimic the
function of cellulase. The poly(styrene sulfonic acid) (PSSA) chain hydrolyzes the β-1,4-glycosidic
bonds, whereas the neighboring poly(vinyl imidazolium chloride) ionic liquid (PIL) chain enhances the
solvation of the PSSA chain and facilitates the dissolution of cellulose by breaking the intermolecular
hydrogen bonds between the neighboring cellulose chains. The schematic interaction between the
polymeric acid catalyst and cellulose is shown in Figure 1. The polymeric acid catalyst can operate
at higher temperatures than cellulase enzymes, overcoming the limitations of biocatalysts to speed
up the reaction rates significantly [32,33]. This designed polymeric acid catalyst was successfully
synthesized and studied [34–36]. More than 97% total reduction of sugar (TRS) yield was obtained in
1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) solution using cellulose as a substrate at a mild
temperature of 130 ◦C. More recently, the depolymerization of lignocellulosic corn over the biomass
was conducted using the optimized polymeric catalyst. Near-quantitative TRS yields were obtained in
IL and IL/H2O mixed solvents for dilute acid, base, and stream-pretreated samples obtained from the
National Renewable Energy Laboratory [35]. In addition, over 50% glucose yield was obtained for
acid-pretreated wheat straw in mixed solvents consisting of ionic liquid and γ-valerolactone (GVL) [36].
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calculations were performed in this work to investigate the direct interactions between PSSA, PIL, 
and cellulose chains using classical MD simulations coupled with metadynamics (MTD) [37–40] 
simulations to determine its associated free energy surface (FES). Elucidating the catalytic mechanism 
will provide an insight and understanding to the biomass hydrolysis process, and it is valuable for 
developing better catalysts. 

MTD simulations have been used extensively in our previous investigations to map out the free 
energy surfaces [25,27–31] for xylose and glucose condensation reactions, glucose ring opening, 
glucose-to-hydroxymethylfurfural (HMF) dehydration, and glucose-to-fructose isomerization 
reactions. It was found that the solvent plays a critical role in all of these reactions, and that the 
barriers are largely solvent-induced. Here MD-MTD simulations are used to investigate the FES for 
cellulose hydrolysis in the presence of explicit solvent ([EMIM]Cl and water) molecules. 

Figure 1. The proposed interaction between PSSA, PIL and cellulose chains in the hydrolysis.
Intramolecular hydrogen bonds in the cellulose chain are the black dashed line. Hydrogen bonds
formed between PIL/PSSA and cellulose chains are the green dashed line.

To elucidate the mechanism of cellulose hydrolysis using the polymeric catalyst, theoretical
calculations were performed in this work to investigate the direct interactions between PSSA, PIL,
and cellulose chains using classical MD simulations coupled with metadynamics (MTD) [37–40]
simulations to determine its associated free energy surface (FES). Elucidating the catalytic mechanism
will provide an insight and understanding to the biomass hydrolysis process, and it is valuable for
developing better catalysts.

MTD simulations have been used extensively in our previous investigations to map out
the free energy surfaces [25,27–31] for xylose and glucose condensation reactions, glucose ring
opening, glucose-to-hydroxymethylfurfural (HMF) dehydration, and glucose-to-fructose isomerization
reactions. It was found that the solvent plays a critical role in all of these reactions, and that the barriers
are largely solvent-induced. Here MD-MTD simulations are used to investigate the FES for cellulose
hydrolysis in the presence of explicit solvent ([EMIM]Cl and water) molecules.
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2. Computational Methods

MD-MTD simulations allow for efficient sampling of free energy surfaces of two interacting
molecules without the formation and breakage of a covalent bond in an accelerated time scale of
less than one microsecond (µs) by filling the potential wells with repulsive bias potentials [37–40].
As shown in Figure 2, the bias potential is added to the local minima to facilitate barrier crossing.
Once one local minimum is filled close enough to the barrier, the system crosses the barrier and moves
to the neighboring minimum. When all the local minima are filled, the FES becomes flat and the system
can move back and forth without any barrier. The FES is subsequently reconstructed based on the
amount of bias potentials added. This method assumes that several collective variables (CVs) can be
used to describe the process, distinguishing different states of the interacting system. Many variables
including the number of hydrogen bonds formed, the coordination number, bond distance, bond angle,
and dihedral angles, can be used as CVs. To describe the interacting system consisting of one polymer
chain from the catalyst and one cellulose substrate accurately, the number of formed hydrogen bonds
between the polymer chain and cellulose substrate was used as the CV, as shown in Equation (1).
Because the catalytic polymer chain can be both the donor and the acceptor of a hydrogen bond,
two CVs were used. One CV was the hydrogen bonds formed between one polymer chain (donor,
group i), and one cellulose chain (acceptor, group j), and the other CV had the opposite setting of the
donor and the acceptor.

CVhydrogen bonds = ∑
ij

1 −
( dij

r0

)n

1 −
( dij

r0

)m (1)

where dij is the distance between atom i and atom j; r0 is the hydrogen bond cutoff distance. m and n
are high-power integers used to determine the formation of hydrogen bond. The values m = 12, n = 6,
and r0 = 2.5 Å are typically chosen for calculating the hydrogen bonds.
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It is found that polymer chain length plays a critical role in the catalytic activity based on our
previous experiment results [34]. MD simulations were conducted for two different chain lengths with
degree of polymerization (DP) of 10 and 20 for PSSA, PIL, and cellulose chains. Earlier studies [41–44]
showed that the properties of ionic liquids (ILs) using an OPLS (optimized potentials for liquid
simulations) force field from MD simulations agreed well with experimental results. The OPLS
force field [45], if available, was used for PSSA and PIL chains for the catalysts. Additional force
fields parameters of PSSA, PIL, and [EMIM]Cl were parameterized based on quantum mechanics
(QM) calculations using SCAN in Gaussian09 [46]. The monomer units in PSSA and PIL chains were
terminated by two methyl groups to mimic the polymeric environment. The scan ranges of bond length,
bond angle and dihedrals were 0.2 Å, 10◦, and 360◦ respectively. Geometries for the neutral species
were optimized at the MP2/6-31G** level in gas phase. The single point energy was subsequently
calculated with the same method and the same basis set for each scanned structure. For PIL and
ionized PSSA, the force field parameters were determined at the same level, and the same basis set
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but with the implicit solvent model. The atomic charges were derived from electrostatic potentials
(ESP [47]) calculation using Gaussian09 at the MP2/6-31G** level based on the RESP (restrained
ESP) protocol [48–51]. The force field parameters for [EMIM]Cl were improved based on previous
studies [41,44], and it has been validated in our earlier work [52].

The improved sampling MTD simulations were conducted using AMBER [53], coupled with
PLUMED1.3 [54] to reconstruct the FESs of interactions between PSSA, PIL, and cellulose chains
in aqueous solution as well as in [EMIM]Cl. The initial polymeric structures were constructed by
AMBERTOOLS package [55]. The GLYCAM06 [56] force field was used for cellulose. The TIP3P was
used for water model [57]. The initial distance between the polymer chains and the simulation cell
edge was 10 Å. All simulations were conducted at constant temperatures (300 K in aqueous solution
and 353 K in [EMIM]Cl) and pressure (1 bar) under the periodic boundary condition with the Langevin
dynamics thermostat [58]. A 10 Å cutoff was used for both the real part of the electrostatic and van
der Waals (VdW) interactions. The time step was chosen to be 1 femtosecond (fs). The force field
parameters of conuterions Na+, Cl− were from ion08 [59] in AMBER. The criteria for the formation
of a hydrogen bond are that the distance between the two heavy atoms A and B is equal to or less
than 3.5 Å and that the angle A—H···B is equal to or greater than 130◦. As mentioned, a partially
dehydrated microenvironment can facilitate the hydrolysis reaction. Solvation-free energies were
calculated based on the thermodynamics integration [60] (TI) method for DP 10 and DP 20 polymer
chains in [EMIM]Cl and aqueous solutions.

3. Results and Discussion

The MD-MTD simulations commenced when the two polymer chains were close to each other of
about 5 Å apart. The simulations were conducted for a total of between 100 to 200 ns. Although the
initial intermolecular distances were relatively short, interactions between PSSA, PIL, and cellulose
chains appeared to be different in [EMIM]Cl and aqueous solutions. In [EMIM]Cl, PSSA or PIL chains
can quickly form hydrogen bonds with the cellulose chain soon after the simulations started. However,
both PSSA and PIL chains moved apart from cellulose chain during the initial 20–30 ns simulations
in aqueous solution. The different behaviors of polymeric catalysts and cellulose chains are critically
affected by the solvent. [EMIM]Cl is an excellent solvent of cellulose, and has been widely applied
to study cellulose hydrolysis catalyzed by different catalysts [61–64]. On the contrary, cellulose is
almost insoluble in aqueous solutions because water molecules hardly disrupt the intermolecular
hydrogen bonds between the cellulose chains [65]. In MD-MTD simulations, the direct interactions
between polymeric catalysts and cellulose chains are energetically favorable in [EMIM]Cl. In aqueous
solution, the separated states are more favorable. The free energy for the direct interaction between the
polymeric catalyst and cellulose chains were found to arise largely in aqueous solution, because water
molecules form an extensive hydrogen bonding network and prevent PSSA, PIL, and cellulose chains
from moving close to each other. Water molecules between the PSSA, PIL, and cellulose chains have
to be removed so that the polymer chains can interact directly and form hydrogen bonds with each
other. In MD-MTD simulations, biased potentials were continuously added into the system so that
PSSA/PIL and cellulose chains can overcome different dehydration energy barriers to interact directly,
as shown in Figure 3.
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Figure 3. The free energy barrier before the formation of hydrogen bonds between the polymer chains
for the four interacting systems (A: DP 20 ionized PSSA, DP 20 Cellulose; B: DP 10 PSSA, DP 10
Cellulose; C: DP 20 PSSA, DP 20 PIL; D: DP 10 PIL, DP 10 Cellulose) in aqueous solution.

A represents DP 20 ionized PSSA interacting with DP 20 cellulose in aqueous solution. B represents
DP 10 neutral PSSA interacting with DP 10 cellulose in aqueous solution. C represents DP 20 PSSA
and DP 20 PIL interacting system in water. D represents DP 10 PIL interacting with DP 10 cellulose
in water. Figure 3 shows the barriers that need to be overcome in order for the two polymer chains
to form any direct contact interaction. The dehydration energy barrier between the ionized PSSA
and cellulose chains was about 21 kcal/mol. The neutral PSSA slightly increased the barrier to about
28 kcal/mol. This was surprising, as the ionized species typically had stronger solvation free energies,
as shown in Figure 4. However, since the polymer chains in A were only half of those in B, polymer
chain length also contributed to the energy barriers. Short chains had stronger solvation free energies
per DP compared to the longer PSSA and ionized PSSA chains. More significantly, the entropic cost for
an unattached short chain to bind was higher than that of a longer chain. As a result, the barrier in B
was slightly higher than that of in A. The dehydration energy barrier for C between PIL and PSSA
increased to about 40 kcal/mol. This was due to the much stronger solvation free energy of the PIL
chains in water, as shown in Figure 4. The solvation free energies of the various polymer chains in
water and ionic liquid will be discussed in more detail later. System D, involving interactions between
PIL and cellulose, has the highest dehydration energy barrier, of about 123 kcal/mol. This is again due
to the much stronger solvation free energy of the PIL chain, and the chains are much shorter.
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aqueous solutions.

The affinity between solute and solvent molecules significantly affects the interactions between
polymeric catalysts and cellulose chains. To better understand the behaviors of PSSA, PIL, and cellulose
in different solvents. The TI method was used to calculate the solvation free energies in [EMIM]Cl and
aqueous solutions. Figure 4 shows the solvation free energy of each polymer chain per monomer unit
in water and [EMIM]Cl. It can be seen clearly that the cellulose and PSSA chains, irrespective of their
polymer chain length, had solvation free energies of between 10–30 kcal/mol, with the only exception of
DP 10 ionized PSSA chain, which had 34 kcal/mol solvation free energy per monomer unit. For neutral
and ionized PSSA chains, shorter chains had a slightly higher solvation free energy per monomer
unit compared to that of the longer chains in both water and [EMIM]Cl. This was understandable,
as shorter chains had overall more solvent molecules surrounding them. The differences in solvation
free energies of the same polymer chain in water and the [EMIM]Cl solvents were small, with only
a few kcal/mol per monomer unit for the neutral polymers. Both water and [EMIM]Cl are highly
polar solvents. However, for ionized PSSA chains, solvation free energies were larger compared
to the corresponding neutral PSSA chains. This was due to the fact that charged residues typically
have stronger solvation free energies arising from the increased dipole-dipole interaction between the
polymer and solvent.

What was really surprising was the solvation free energies for the PIL chains in both water and
[EMIM]Cl. The solvent free energies increased to about 80–90 kcal/mol per monomer unit in water,
compared to the values of about 10–30 kcal/mol for PSSA and cellulose chains. This dramatic increase
in solvation free energy was due to the polyelectrolyte nature of the PIL chains. The solvent free
energies further increased to about 1000 kcal/mol for PIL chains in [EMIM]Cl solvent, a more than
10-fold increase than in water. This drastic increase in solvation free energy of the PIL chain was one of
the main reasons that our catalyst was very effective in catalyzing the cellulose in [EMIM]Cl solvent,
as well as in the mixed solvent of [EMIM]Cl/H2O [34–36]. Since both of our polymeric solid acid
catalysts and cellulose substrates were in the solid state, solid–solid reactions are generally slow and
ineffective due to the limited surface interactions. However, in the case of our PSSA/PIL catalyst,
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the significantly larger solvation free energy of the PIL chain rendered the polymeric catalyst more
solvable in [EMIM]Cl, and to some extent, in aqueous solutions as well. The solvated PIL chains open
up the polymer catalyst and allows the cellulose chains to move in and to be hydrolyzed by the PSSA
acid chains. The inclusion of the PIL chains was critically important for our designed polymeric solid
acid catalyst.

The reconstructed free energy surfaces (FES) can better demonstrate how PSSA or PIL interacts
with cellulose in [EMIM]Cl and aqueous solutions. The FES were reconstructed for systems of different
combinations of PSSA, PIL, and cellulose chains. The bias potentials were used to determine the
FES after the hydrogen bonds started to form (CVs are larger than 0) for all the systems investigated.
CV1 and CV2 describe the number of hydrogen bonds formed between the two polymer chains.
The sampling of the free energy surfaces during the MD-MTD simulations was considered to be
completed when the two CVs moved back and forth between different values randomly.

Figure 5 is the reconstructed 2D free energy contour plot for the FES of system A (DP 10 neutral
PSSA and cellulose in aqueous solution). Two regions of local minima were found, with an interaction
of free energies at around −5.5 kcal/mol. The first region of the interaction minimum was located at
CV1 = 0.2–3.8 and CV2 = 0.3–0.8, indicating the initial intermolecular interaction between the PSSA
and cellulose chains. An energy barrier of 1.5 kcal/mol needed to be overcome to reach the second
region of the minimum at CV1 = 1.0–4.4 and CV2 = 1.3–1.9. It appears that partial intermolecular
interactions were more stable than the completely dehydrated interactions. An additional barrier of
5.5 kcal/mol was needed to be overcome, in order to form more hydrogen bonds between the PSSA
and the cellulose chains. However, this stronger PSSA–cellulose interaction state appeared not to be
favorable energetically, probably due to the decrease of entropy as a result of greater constraint on the
polymer chains.
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Figure 6 shows the 2D free energy contour plot for the FES of the system B (DP 20 ionized PSSA,
cellulose in aqueous solution). The FES appeared to be quite different, with the doubling of polymer
chain length with the values of CVs at minima being almost twice that of system A. The longer PSSA
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and cellulose chains formed more hydrogen bonds. The global minima were found in the region
at around CV1 = 3.8–6.1 and CV2 = 0.8–1.6. Conformational analysis at the global minima showed
that a small fragment of PSSA was close to cellulose, to form a partially direct contact interaction.
An energy barrier of about 5.5 kcal/mol had to be overcome in order to completely remove the water
molecules and to form a direct contact interaction between the two chains, similar to the situation in
system A.
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Figures 7 and 8 show the 2D free energy contour plots for the FES reconstructed from the system C
(DP 20 neutral PSSA and 20 DP cellulose in [EMIM]Cl) and D (DP 20 neutral PSSA and 20 DP cellulose
in [EMIM]Cl) respectively. Experimentally, the cellulose hydrolysis in [EMIM]Cl was much more
efficient and selective [34–36]. In [EMIM]Cl, no desolvation barrier was observed, and the PSSA chain
was seen to readily form direct contacts with the cellulose chain. The free energy minima in Figures 7
and 8 are for complexes when PSSA and the cellulose chains form partial direct contact. The lowest
interaction free energies in the two systems are similar, at around ~−11–12 kcal/mol. This significantly
enhanced interaction free energy is largely due to the [EMIM]Cl solvent used. Water molecules form
strong hydrogen bonds with both cellulose and PSSA, thereby reducing the strength of the interaction
between the cellulose and PSSA chains.



Appl. Sci. 2018, 8, 1767 9 of 14
Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 14 

 

Figure 7. The 2D free energy surface contour plot for system C involving DP 20 neutral PSSA and DP 
20 cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed 
between them. 

 

Figure 8. The 2-D free energy surface contour plot for system D involving DP 20 ionized PSSA and 
DP 20 cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed 
between them. 

Figures 9 and 10 show the 2-D free energy contour plots reconstructed from system E (DP 10 PIL 
and DP 10 cellulose chains in water) and F (DP 20 PIL and DP 20 cellulose chains in [EMIM]Cl) 
respectively. The free energy landscape for the system in aqueous solution had one minimum at CV1 

Figure 7. The 2D free energy surface contour plot for system C involving DP 20 neutral PSSA and
DP 20 cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed
between them.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 14 

 

Figure 7. The 2D free energy surface contour plot for system C involving DP 20 neutral PSSA and DP 
20 cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed 
between them. 

 

Figure 8. The 2-D free energy surface contour plot for system D involving DP 20 ionized PSSA and 
DP 20 cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed 
between them. 

Figures 9 and 10 show the 2-D free energy contour plots reconstructed from system E (DP 10 PIL 
and DP 10 cellulose chains in water) and F (DP 20 PIL and DP 20 cellulose chains in [EMIM]Cl) 
respectively. The free energy landscape for the system in aqueous solution had one minimum at CV1 

Figure 8. The 2-D free energy surface contour plot for system D involving DP 20 ionized PSSA and
DP 20 cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed
between them.

Figures 9 and 10 show the 2-D free energy contour plots reconstructed from system E (DP 10
PIL and DP 10 cellulose chains in water) and F (DP 20 PIL and DP 20 cellulose chains in [EMIM]Cl)
respectively. The free energy landscape for the system in aqueous solution had one minimum at
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CV1 = 0 and CV2 = 0 as seen from Figure 9. This indicates that PIL and cellulose chains are not likely
to interact directly in water. In [EMIM]Cl, there is a region at CV1 = 2.0–3.0 and CV2 = 1.1–1.9 that
favors the partial direct cellulose and PIL interaction, as seen in Figure 10. The lowest interaction free
energy was about −15 kcal/mol.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 14 

= 0 and CV2 = 0 as seen from Figure 9. This indicates that PIL and cellulose chains are not likely to 
interact directly in water. In [EMIM]Cl, there is a region at CV1 = 2.0–3.0 and CV2 = 1.1–1.9 that favors 
the partial direct cellulose and PIL interaction, as seen in Figure 10. The lowest interaction free energy 
was about −15 kcal/mol.  

 

Figure 9. The 2D free energy surface contour plot for system E involving DP 10 PIL and DP 10 
cellulose in water. CV1 and CV2 represent the numbers of hydrogen bonds formed between them. 

 

Figure 10. The 2D free energy surface contour plot for system F involving DP 20 PIL and DP 20 
cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed 
between them. 

Figure 9. The 2D free energy surface contour plot for system E involving DP 10 PIL and DP 10 cellulose
in water. CV1 and CV2 represent the numbers of hydrogen bonds formed between them.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 14 

= 0 and CV2 = 0 as seen from Figure 9. This indicates that PIL and cellulose chains are not likely to 
interact directly in water. In [EMIM]Cl, there is a region at CV1 = 2.0–3.0 and CV2 = 1.1–1.9 that favors 
the partial direct cellulose and PIL interaction, as seen in Figure 10. The lowest interaction free energy 
was about −15 kcal/mol.  

 

Figure 9. The 2D free energy surface contour plot for system E involving DP 10 PIL and DP 10 
cellulose in water. CV1 and CV2 represent the numbers of hydrogen bonds formed between them. 

 

Figure 10. The 2D free energy surface contour plot for system F involving DP 20 PIL and DP 20 
cellulose chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed 
between them. 

Figure 10. The 2D free energy surface contour plot for system F involving DP 20 PIL and DP 20 cellulose
chains in [EMIM]Cl. CV1 and CV2 represent the numbers of hydrogen bonds formed between them.



Appl. Sci. 2018, 8, 1767 11 of 14

Figure 11 shows the 2-D free energy contour plot for the FES reconstructed from the system G
(DP 20 PSSA and DP 20 PIL chains in water). The conformational analysis at the lowest energy region
at CV1 = 0.3–0.6 and CV2 = 0–1 showed a partially dehydrated interaction between the ends of the
PSSA and PIL chains. The lowest interaction free energy was about −11 kcal/mol. The FESs for
PSSA–cellulose, PIL–cellulose, and PSSA–PIL interactions in aqueous and [EMIM]Cl solutions were
mapped out using combined MD-MTD simulations. The conformational interactions were found to be
largely affected by the solvent. In aqueous solution, the PSSA and cellulose interaction was relatively
weak, leading to a slow hydrolysis reaction. In [EMIM]Cl, the PSSA and cellulose interaction was
much stronger and extensive, leading to a more efficient breakdown of the cellulose chains in excellent
agreement with experimental observations. Moreover, the PIL chain had a significantly stronger
solvation in both water and [EMIM]Cl, compared to the PSSA and cellulose chains, which led to a more
effective catalytic conversion of the cellulose in a solid PSSA/PIL catalyst–solid substrate reaction
process. Moreover, the solvation free energy of the PIL chain in [EMIM]Cl was more than 10 times
larger than that in water. This indicates the effectiveness of the [EMIM]Cl for cellulose hydrolysis and
that the critical role that PIL plays for the catalytic conversion of cellulose, by enhancing the solubility
of both the cellulose substrate and the PSSA/PIL catalyst.
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4. Conclusions

Our MD-MTD simulations clearly demonstrate that the solvent plays a critical role in the cellulose
hydrolysis reaction catalyzed by novel enzyme mimic polymeric PSSA/PIL catalysts. The PSSA and
cellulose could form stronger hydrogen bonding interactions, thereby disrupting the hydrogen bonding
network in the cellulose substrate. Moreover, the [EMIM]Cl solvent strengthens the PSSA/cellulose
interaction, making the hydrolysis reaction more effective. The PIL chain in the catalyst plays a vital
role in enhancing the catalytic activity of our unique polymer catalyst. The PIL chain has much stronger
solvation free energies in both water and [EMIM]Cl solvents, which enhances the solubility of the
PSSA chains, as well as the cellulose substrate.
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