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Abstract

:

Session initiation protocol (SIP) is the most widely used application layer control protocol for creating, modifying, and terminating session processes. Many authentication schemes have been proposed for SIP aimed at providing secure communication. Recently, a new authentication and key agreement scheme for SIP has been proposed, and it was claimed that it could resist a variety of attacks. However, in this paper, we show that this scheme is vulnerable to an offline password guessing attack and a stolen memory device attack. Furthermore, we show that it lacks the verification mechanism for a wrong password, and that the password updating process is not efficient. To mitigate the flaws and inefficiencies of this scheme, we design a new robust mutual authentication with a key agreement scheme for SIP. A security analysis revealed that our proposed scheme was robust to several kinds of attacks. In addition, the proposed scheme was simulated by the automatic cryptographic protocol tool ProVerif. A performance analysis showed that our proposed scheme was superior to other related schemes.
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1. Introduction


Session initiation protocol (SIP) is an application layer control protocol proposed and studied by the Internet Engineering Task Force (IETF) on the Internet Protocol (IP) network for multimedia communication. SIP is used to create, modify, and terminate one or more participants’ session processes. It supports five aspects in establishing and maintaining the termination of a multimedia session: User location, user effectiveness, user ability, session establishment, and session management. An important feature of SIP is that it does not define the type of a session to establish, but only defines how to manage a session. Because of this flexibility, SIP can be used in many applications and services including interactive games; music and video on demand; and voice, video, and Web conferences. SIP reuses a Multipurpose Internet Mail Extensions (MIME) type description as an e-mail client, so that the conversational related applications can be automatically activated. Moreover, SIP reuses several existing mature Internet services and protocols, such as Domain Name System (DNS), Real-time Transport Protocol (RTP), Resource Reservation Protocol (RSVP), and so on. Therefore, since many parts of the infrastructure are in place or ready for use, there is no need to introduce new services to support the SIP infrastructure.



Although users enjoy the services provided by SIP, security has emerged as a major issue because the transmitted data usually contains people’s sensitive and private information. To guarantee a secure communication in SIP, a secure authentication with a key agreement scheme should be executed before the communication begins. For this reason, many related schemes for SIP have been proposed [1,2,3,4,5,6,7,8,9,10,11] in the past few years.



In 2014, Zhang et al. [1] proposed a flexible smart card based authentication scheme for SIP and claimed that it has strong security. However, Irshad et al. [2] pointed out that Zhang et al.’s scheme is vulnerable to a DOS attack, and that it could become more secure by adding a few modifications. They then proposed an improved SIP scheme [2]. Unfortunately, Arshad et al. [3] later found that the scheme of Irshad et al. cannot resist a user impersonation attack. To overcome this weakness, Arshad et al. proposed a new efficient and secure scheme based on ECC [3]. Very recently, Lin et al. [4] demonstrated that the scheme of Arshad et al. is vulnerable to a server spoofing attack, a DOS attack, a privilege insider attack, and that it cannot achieve user anonymity. To mitigate these weaknesses, they proposed a new scheme for SIP using ECC.



In this paper, we analyze the security of Lin et al.’s anonymous authentication and key agreement SIP scheme. We show that their scheme cannot withstand an offline password guessing attack nor a stolen memory device attack. Furthermore, Lin et al.’s scheme lacks a verification mechanism for a wrong password and the password updating process is not efficient. To overcome these flaws and inefficiencies, we propose a robust mutual authentication with a key agreement scheme.



This paper is organized as follows: In Section 2, a review of Lin et al.’s scheme is presented. In Section 3, the flaws and inefficiencies of their scheme are described. In Section 4, a SIP scheme is introduced and described in detail. A security analysis of the proposed scheme is given in Section 5. In Section 6, an automatic cryptographic protocol tool, ProVerif, is used to simulate the proposed scheme. A performance analysis is given in Section 7. Lastly, conclusions and our findings are given in Section 8.




2. Review of Lin et al.’s Scheme


This section presents Lin et al.’s scheme, which includes two phases: The registration phase, and the login and authentication phase. For convenience, the notations used in the rest of the paper are listed in Table 1.



2.1. Registration Phase


A client registers on a remote server via a secure channel by following the steps listed below:

	Step 1: 

	
The client selects an identity IDi, a password PWi, a random number Nc, and computes Vi=h(IDi||PWi||Nc). Then, the client submits a registration message {IDi,Vi} to the server.




	Step 2: 

	
When the registration message is received, the server first checks the validity of IDi. Then, it computes Ai = h(IDi||ks), Bi=h(Ai||ks), and Ci=EBi(Vi). Next, it stores {Ai,Ci,Es(·),Ds(·)} into the memory device and issues it to the client.




	Step 3: 

	
On receiving the memory device, the client stores Nc into it.










2.2. Login and Authentication Phase


A legal client can log in to the server by either Case-1 or Case-2. When a client does not want to update his password, Case-1 is used; otherwise, Case-2 is used. The steps of these two cases are described in the following section, and the corresponding procedures are illustrated in Figure 1 and Figure 2.



2.2.1. CASE-1: Login and Authentication Phase without Password Updating


	Step 1: 

	
The client inserts the memory device and inputs IDi and PWi. Then, Vi = h(IDi||PWi||Nc) is computed. Next, a random integer rc and current timestamp T1 are generated, and Rc= rc·P, Fi = h(Vi||Ai||Ci||T1), k1= rcKs, Hi= Ek1(realm||Fi||Ai||Ci||T1) is computed. Lastly, the REQUEST message {Hi,Rc} is sent to the server.




	Step 2: 

	
When the server receives the REQUEST message, it obtains the data {realm||Fi||Ai||Ci||T1} by decrypting Hi with k2 = ksRc. Then, it verifies the validity of T1. If T1 is valid, Bi′ = h(Ai||ks) is computed and Vi′ is obtained by decrypting Ci. Next, it computes Fi′ = h(Vi′||Ai||Ci||T1) and checks whether Fi′ = Fi holds or not. If it holds, then the server executes Step 3; otherwise, the authentication process is stopped.




	Step 3: 

	
The server generates a random integer rs, timestamp T2, and computes Rs = rs·P,Ji = h(Vi′⊕Fi′⊕rsRc⊕T2), session key SK = h(Vi′⊕rsRc⊕T2), and Li = Ek2(Rs||Ji||T2||realm). Finally, the server sends the ACCEPT message {Li} to the client.




	Step 4: 

	
On receiving the ACCEPT message, the client obtains {Rs||Ji||T2||realm} by decrypting Li with k1. Then, the client verifies the validity of T2, and if it is valid, Ji′ = h(Vi⊕Fi⊕rcRs⊕T2) is computed and checks whether Ji′ = Ji holds or not. If it holds, then the session key SK = h(Vi⊕rcRs⊕T2) is computed; otherwise, the authentication process is stopped.








2.2.2. CASE-2: Login and Authentication Phase with Password Updating


	Step 1: 

	
The client inserts the memory device and inputs IDi and PWi. Then, Vi = h(IDi||PWi||Nc) is computed. Next, the client generates a random integer rc and current timestamp T1, and computes Rc = rc·P, Fi = h(Vi||Ai||Ci||T1).




	Step 2: 

	
The client selects new password PWinew, and computes Vinew = h(IDi||PWinew||Nc), Gi = h(Vinew⊕Vi⊕T1⊕Rc), k1 = rcKs, and Hi = Ek1(realm||Fi||Ai||Ci||T1||Vinew||Gi||CHANGEPW). Lastly, the client sends the REQUEST message {Hi,Rc} to the server.




	Step 3: 

	
When the server receives the REQUEST message, it obtains the data {realm||Fi||Ai||Ci||T1||Vinew||Gi||CHANGEPW} by decrypting Hi with k2 = ksRc. Then, the server verifies the validity of T1, and if it is valid, Bi′ = h(Ai||ks) is computed Vi′ is obtained by decrypting Ci. Next, the server computes Fi′ = h(Vi′||Ai||Ci||T1), Gi′ = h(Vinew⊕Vi′⊕T1⊕Rc) and checks whether Fi′ = Fi and Gi′ = Gi hold or not. If they do, then the server executes Step 4; otherwise, the server stops the authentication process.




	Step 4: 

	
The server generates a random integer rs, timestamp T2, and computes Rs = rs·P, Ji = h(Vi′⊕Fi′⊕rsRc⊕T2), Cinew = EBi′(Vinew), SK = h(Vi′⊕rsRc⊕T2), and Li = Ek2(Rs||Ji||T2||Cinew||realm). Finally, the server sends the ACCEPT message {Li} to the client.




	Step 5: 

	
On receiving the ACCEPT message, the client obtains {Rs||Ji||T2||Cinew||realm} by decrypting Li with k1. Then, the client verifies the validity of T2. If T2 is valid, Ji′ = h(Vi⊕Fi⊕rcRs⊕T2) is computed and checks whether Ji′= Ji holds or not. If it holds, SK = h(Vi⊕rcRs⊕T2) is computed and Ci is replaced with Cinew; otherwise, the authentication process is stopped.










3. Flaws and Inefficiencies of Lin et al.’s Scheme


Although Lin et al. claimed that their scheme could resist various types of attacks, we have found that their scheme cannot withstand an offline password guessing attack nor a stolen memory device attack. Furthermore, their scheme lacks a verification mechanism for a wrong password, and the password updating process is not efficient. In this section, we describe our findings in detail.



We first illustrate the attacker model under a three-factor authentication scheme [12,13,14]. Assume that an attacker A has the following capabilities.



	
A has the full control of the public channel, but not the secure channel. That means A can obtain all the transmitted data in the login and authentication phase.



	
A can alter, delete, or replay the data that was captured from the public channel.



	
A has the ability to read or extract the secret data from the stolen smart card issued to a user.



	
A knows the authentication scheme since A can be an outsider user or a legal user.






3.1. Offline Password Guessing Attack


Lin et al. claimed in their work that even when attacker A extracts secret data {Ai,Ci,Ni} stored in the memory device and has the capability to guess the client’s identity and password at the same time, a true password still cannot be obtained. However, that is not true in reality. The following steps show that A can successfully launch an offline password guessing attack to obtain the client’s password.



	Step 1: 

	
A extracts the secret data {Ai,Ci,Ni} stored in the memory device.




	Step 2: 

	
A selects an identity IDa = Ai, a password PWa, and a random number Na, and then computes Vi = h(IDa||PWa||Na). Then, A submits the registration message {IDa,Va} to the server.




	Step 3: 

	
When the server receives the registration message from A, it checks IDa. Then, the server computes Aa = h(IDa||ks) = h(Ai||ks) = Bi, Ba = h(Aa||ks), and Ca = EBa(Va). After that, the server stores {Aa,Ca,Es(·),Ds(·)} into the memory device and issues it to the client.




	Step 4: 

	
On receiving the memory device, A obtains Vi by decrypting Ci with the key Aa(Aa=Bi).




	Step 5: 

	
A guesses the client’s identity IDi∗ and password PWi∗, and then computes Vi∗ = h(IDi∗||PWi∗||Nc).




	Step 6: 

	
A compares Vi∗ with Vi. If these two values are equal, then A believes that PWi∗ is a true password and returns it; otherwise, A repeats Step 5.








3.2. Stolen Memory Device Attack


A stolen memory device attack means that an attacker A steals a certain user’s memory device and extracts the data stored in it, and then A can impersonate the user to log in to the system.



From the above-stated analysis, we can conclude that when a memory device is lost or stolen, and the secret data stored in it are extracted, it is easy for A to obtain the client’s registered value Vi. In the following, it will be shown that Lin et al.’s scheme cannot withstand a stolen memory device attack since A can impersonate a certain client with Vi. Case-1 of Lin et al.’s login and authentication phase is taken as an example.



	Step 1: 

	
A extracts the secret data {Ai,Ci,Ni} stored in a memory device.




	Step 2: 

	
A obtains Vi with the assistance of memory device using Steps 1 to 4 presented in Section 3.1.




	Step 3: 

	
A generates a random integer ra and timestamp T1, and then computes Ra = ra·P, Fa = h(Vi||Ai||Ci||T1), k1 = raKs, Ha = Ek1(realm||Fa||Ai||Ci||T1). Lastly, the REQUEST message {Ha,Ra} is sent to the server.




	Step 4: 

	
When the server receives the REQUEST message from A, it obtains data {realm||Fa||Ai||Ci||T1} by decrypting Ha with k2 = ksRa. Then, the server verifies T1, which is valid, computes Ba′ = h(Ai||ks), and obtains Vi′ by decrypting Ci. Next, the server computes Fa′ = h(Vi′||Ai||Ci||T1) and checks Fa′. The same as T1, the value passes the verification.




	Step 5: 

	
The server generates rs and timestamp T2, and then computes k2 = ksRa, Rs = rs·P, Ja = h(Vi′⊕Fa′⊕rsRa⊕T2), SK = h(Vi′⊕rsRa⊕T2), and La = Ek2(Rs||Ja||T2||realm). Finally, it sends the ACCEPT message {La} to A.




	Step 6: 

	
On receiving the ACCEPT message, A obtains {Rs||Ja||T2||realm} by decrypting La with k1. Then, the shared session key SK = h(Vi⊕raRs⊕T2) is computed. Until now, A was seen as a legal client and established a session key SK with server. This means that A can pretend to be a legal user to log in and obtain the user’s personal information.








3.3. Absence of a Verification Mechanism for a Wrong Password


As stated in [15,16], in real life, people need to manage a large number of accounts for different applications, so it can easily happen that someone inputs a wrong password. The verification mechanism for a wrong password at a device is an ideal feature for the authentication protocol, which can not only reduce needless communication, but also save calculation costs. However, this valuable mechanism is absent in Lin et al.’s scheme. The consequence of this shortcoming is that a session initiated by a wrong password will be continued until the server finds some errors, and the client will not realize there is a password error until the request is out of time. In this way, much communication and computational resources are wasted, and the authentication process is made ineffective.




3.4. Inefficiency of Password Updating


By analyzing some of the related memory-based authentication schemes [15,16,17,18], we found that a trend in password updating operations was to carry out this operation without help from a server. However, in Lin et al.’s scheme, when a client wants to update his password, he must log in and establish a session key with the server even when the client does not want to access any of the server’s services. Although this is not necessarily wrong, it is absolutely not efficient.





4. The Proposed Scheme


To mitigate the flaws and inefficiencies mentioned above, we propose a robust mutual authentication with a key agreement scheme for SIP. Compared with Lin et al.’s scheme, the proposed scheme has the following advantages:

	
If a user desires to update his password, he does not need help from the server.



	
We add a verification mechanism for a wrong password. This can reduce needless communication and computation cost.



	
To prevent an offline password guessing attack or a stolen memory device attack, we redesign the equations used in the login and authentication phase.








Our proposed scheme contains four phases: Initialization phase, registration phase, login and authentication phase, and password change phase.



4.1. Initialization Phase


In the initialization phase of our proposed scheme, the server initializes some parameters: it selects an elliptic curve equation Ep(a,b), a base point P∈Ep(a,b), a secure one-way hash function h(·), and symmetric key encryption/decryption functions Es(·)/Ds(·). In addition, it selects a high entropy integer ks as its secret key and computes Ks = ks·P.




4.2. Registration Phase


When a client desires to access any service provided by a remote server, the client must first register on that server. The steps of registration phase are illustrated in Figure 3 and described below:

	Step 1: 

	
The client selects an identity IDi, a password PWi, and a random number b. Then, the client computes HPWi = h(PWi||b) and sends the registration message {IDi,HPWi} to the server.




	Step 2: 

	
On receiving the registration message, the server generates a random integer m and then computes Ai =h(IDi||ks), Bi =h(h(IDi||HPWi)modm), and Ci =Ai⊕HPWi⊕Bi. After that, the server issues the data {Bi,Ci,m,Ks,Es(·),Ds(·),h(·)} into a memory device and sends it to the client.




	Step 3: 

	
When the memory device is received from the server, the client stores b into it. Finally, the memory device contains {Bi,Ci,m,b,Ks,Es(·),Ds(·),h(·)}.










4.3. Login and Authentication Phase


A legal client can submit a login request message to a remote server and obtain various services after being authenticated. The steps of login and authentication are shown in Figure 4 and explained below:



	Step 1: 

	
The client inserts the memory device and inputs IDi and PWi. Then, the client computes HPWi = h(PWi||b), Bi∗ = h(h(IDi||HPWi)modm). After that, Bi∗ is compared with Bi. If they are equal, the client executes Step 2; otherwise, the process is stopped.




	Step 2: 

	
The client generates a random integer rc, the current timestamp T1, and then computes Ai = Ci⊕HPWi⊕Bi, Rc =rcAiP, k1 = rcAiKs, and Hi = Ek1(realm||IDi||Ai||T1). Lastly, the client sends the REQUEST message {Hi,Rc} to the server.




	Step 3: 

	
When the REQUEST message is received, the server obtains the data {realm||IDi||Ai||T1} by decrypting Hi with k2(ksRc). Then, the server verifies the validity of T1. If T1 is valid, Ai∗ = h(IDi||ks) is computed and Ai∗ = Ai checks whether the validity holds or not. If it holds, then the server executes Step 4; otherwise, it stops the process.




	Step 4: 

	
The server generates a random integer rs and timestamp T2, and then computes Rs = rs·P, Ji = rsRc, SK = h(Ji||T1||T2), and Li = Ek2(IDi||Rs||Ji||T2||realm). Finally, the server sends the ACCEPT message {Li} to the client.




	Step 5: 

	
On receiving the ACCEPT message, the client obtains {IDi||Rs||Ji||T2||realm} by decrypting Li with k1. Then, the client verifies the validity of T2, and if it is valid, the client computes Ji′ = rcAiRs and checks whether Ji′ = Ji holds or not. If it holds, the client computes the session key SK = h(Ji′||T1||T2); otherwise, the client stops the process.








4.4. Password Change Phase


When a client wants to make a password change, then the following steps must be performed without any help from a remote server.



	Step 1: 

	
The client inserts the memory device and inputs IDi and PWi. The client is authenticated before executing Step 2.




	Step 2: 

	
The client inputs a new PWinew and computes HPWinew= h(PWinew||b), Binew = h(h(IDi||HPWinew)modm), and Cinew = Ci⊕HPWi⊕Bi⊕HPWinew⊕Binew.




	Step 3: 

	
The client uses Binew and Cinew to replace Bi and Ci in the memory device.









5. Security Analysis


This section presents the security performance of our proposed scheme, and reveals that our scheme is resistant to several kinds of attacks, such as an offline password guessing attack, a stolen memory device attack, a privileged insider attack, etc.



5.1. User Anonymity


In our scheme, even if an attacker A has obtained the message {Hi,Rc,Li} transmitted via the public channel, then A cannot obtain the true identity IDi because Hi, Rc, and Li are protected by random integer rc and the server’s secret key ks, which are unknown to A. Therefore, our proposed scheme provides user anonymity.




5.2. Untraceability


In our scheme, the REQUEST message {Hi,Rc} submitted in the login and authentication phase is different in each communication due to randomly selected integer rc. Similarly, the back ACCEPT message {Li} is also different. Therefore, an attacker A cannot link any two messages nor trace the client. In this way, untraceability is achieved.




5.3. Offline Password Guessing Attack


Suppose an attacker A has obtained client’s memory device and extracted secret data {Bi,Ci,m,b,Ks} stored in it. A can then start to guess the possible pair IDi∗, PWi∗, and compute Bi∗ = h(h(IDi∗||h(PWi∗||b))modm). However, even if Bi∗ is equal to Bi, then A still cannot be sure if the guessed IDi∗ and PWi∗ are correct. This is because there are various pairs of (IDi∗, PWi∗) which can obtain the same Bi∗. Therefore, the proposed scheme resists offline password guessing attacks.




5.4. Stolen Memory Device Attack


Stolen memory device attacks happen when an attacker A steals a memory device, extracts the data stored in it, and logs in to the server as a legal client [19,20]. In our proposed scheme, with the data {Bi,Ci,m,b,Ks} stored in the memory devices, to log in to the server, A has to construct a legal REQUEST message {Hi′,Rc′}. However, without the client’s true identity IDi and the server’s private key ks, A cannot recreate Ai = h(IDi||ks), which is essential in Hi and Rc. Therefore, our proposed scheme resists stolen memory device attacks.




5.5. User Impersonation Attack


Assume that an attacker A has obtained the REQUEST message {Hi,Rc} and extracted the data {Bi,Ci,m,b,Ks} stored in the client’s memory device. When A intends to impersonate the user, Hi′ and Rc′ need to be constructed. However, as we mentioned before, without the client’s true identity IDi and server’s secret key ks, A cannot recreate Ai. Therefore, our proposed scheme resists user impersonation attacks.




5.6. Server Spoofing Attack


Assume that an attacker A has obtained all the transmitted messages {Hi,Rc,Li} and intends to masquerade as a server to deceive the client. In this case, A needs to construct a legal ACCEPT message {Li′}. Unfortunately, without the server’s secret key ks, A cannot decrypt Hi to acquire IDi, which is used in Li′. Therefore, our proposed scheme resists server spoofing attacks.




5.7. Privileged Insider Attack


In our proposed scheme, we assume that a privileged insider has obtained IDi, HPWi=h(PWi||b) of a certain legal client in the registration phase. However, without knowing b, the attacker A can guess, but cannot obtain, the right password PWi. Therefore, our proposed scheme resists privilege insider attacks.




5.8. Replay Attack


In our proposed scheme, if an attacker A intercepts the REQUEST message {Hi,Rc} and replays it later, the server will detect it by checking the timestamp T1. On the other hand, if A replays the ACCEPT message {Li} from the server, then the client can recognize it by checking T2. Therefore, our proposed scheme resists replay attacks.




5.9. Stolen Verifier Attack


Stolen verifier attacks [21,22] occur when an attacker A obtains some precious information that is stored on a server’s end. In our scheme, the only information about IDi is stored in a database. Hi and Li are enciphered, and Rc is protected by ks. Thus, A cannot utilize IDi to obtain other values. Therefore, our proposed scheme resists stolen verifier attacks.




5.10. Forward Secrecy


Forward secrecy means that all past session keys remain secure even though a server’s master key is compromised by an attacker A. In our proposed scheme, SK= h(Ji||T1||T2) = h(rsAiRc||T1||T2) = h(rcAiRs||T1||T2). When A obtains the server’s secret key ks, A can compute ksRc. With this value, A can decrypt Hi to obtain T1,IDi and decrypt Li to obtain T2, Rs. Furthermore, A can compute Ai = h(IDi||ks). However, the values of rs and rc are out of the range of A. Therefore, even if A knows the server’s master key, A cannot know any past session keys. Therefore, our proposed scheme provides forward secrecy.




5.11. Known Key Security


Our proposed scheme can provide known key security, which means that when the authentication and key agreement protocol is executed, both the client and server generate a unique session key. In other words, the disclosure of some session keys has no effect on the security of the others. In our proposed scheme, SK = h(Ji||T1||T2) =h(rcrsAiP||T1||T2), where timestamps and random integers are exploited in the computation. Therefore, even if A knows some session keys, without knowing the timestamps and random integers generated in a certain communication, A cannot obtain the needed session key. Hence, our proposed scheme provides known key security.




5.12. Perfect Forward Secrecy


Perfect forward secrecy means that when using the secret keys of the server and client, an attacker A still cannot obtain the previous session keys. In our proposed scheme, the secret key of the server is ks, and that of the client is the data {Bi,Ci,m,b,Ks} stored in the memory device. With the above assumption, A can obtain T1, T2, Ai, Rc, and Rs. However, when A intends to compute the shared session key SK = h(Ji||T1||T2)= h(rsAiRc||T1||T2) = h(rcAiRs||T1||T2), A faces difficulties in extracting rc from Rc or rs from Rs. Therefore, A cannot obtain the previous session keys. Thus, our proposed scheme provides perfect forward secrecy.





6. Formal Verification


ProVerif is an automatic cryptographic protocol verifier, which is widely used to specify and analyze the security of authenticated key agreement protocols [23,24,25,26,27].



In this section, we used the automatic cryptographic protocol tool ProVerif to show that our proposed scheme is secure. ProVerif was used because it can implement one-way hash function, symmetric and asymmetric encryption, digital signatures, etc. Moreover, various attacks can be reconstructed by ProVerif. The code of the scheme is illustrated below.



There were two types of channels, the private channel for transmitting sensitive messages and the public channel for transmitting general messages. The declarations of variables, functions, keys, and other related parameters are shown in Figure 5. The processes performed by the client and server are presented in Figure 6 and Figure 7, respectively. The main process is shown in Figure 8.



The results of our proposed scheme are presented in Figure 9. It can be concluded from these results that the session key is out of an attacker’s reach.




7. Comparison


In this section, the security features and communication cost of the proposed scheme and other related schemes are compared.



7.1. The Security Features


The proposed scheme was compared with other related schemes [1,2,3,4]. The comparison results are presented in Table 2, from which it is clear that our proposed scheme performed better in terms of security features.




7.2. Performance Discussion


In this subsection, the estimated time of the proposed scheme was compared with other related protocols [1,2,3,4]. First, a personal smart device (iPhone 6s with ARM(armv8-a) CPU, 2GB RAM, and iOS 10.1.1 operating system) was used to calculate the execution time of SHA-256, symmetric encryption/decryption operation (AES-GCM), scalar multiplication on ECC (256bits), and modular multiplication. Our experiment was based on Pairing-Based Cryptography (PBC) library. The PBC library is a free C library that performs the mathematical operations underlying pairing-based cryptosystems.



Each operation was executed 1000 times and the average running times were computed. The experimental result are shown in Table 3. Because the computation of the XOR operation, point addition operation, and modular inversion operation are very trivial, they can be ignored.



The computation costs of all the schemes are listed in Table 4, but it is the authentication and key agreement phase which is frequently utilized.





8. Conclusions


In this paper, we first analyzed an anonymous and secure authentication scheme for SIP proposed by other authors. Although the authors claimed that their scheme could resist various attacks, we found that it is not robust to an offline password guessing attack nor a stolen memory device attack. Moreover, it lacks a verification mechanism for wrong password insertion, and its password updating is not efficient. To mitigate these flaws and inefficiencies and enhance security, we designed a new robust mutual authentication with a key agreement scheme. The results of security and performance analyses showed that our proposed scheme is superior to the other related schemes.
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Figure 1. Login and authentication phase without password updating. 
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Figure 2. Login and authentication phase with password updating. 
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Figure 3. Registration phase of our proposed scheme. 
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Figure 4. Login and authentication phase of our proposed scheme. 
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Figure 5. The declarations of variables, functions, keys, and other related parameters. 
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Figure 6. The client’s process. 
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Figure 7. The server’s process. 
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Figure 8. The main process. 
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Figure 9. The results. 
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Table 1. Notations used in this paper.
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	Notation
	Description





	IDi
	Client’s identity



	PWi
	Client’s password



	P
	Base point on ECC



	ks
	Server’s secret key



	Ks
	Server’s public key (Ks=ksP˙)



	||
	Concatenatio operation



	⊕
	Exclusive-or operation



	Es(·)
	Symmetric key encryption under the key s



	Ds(·)
	Symmetric key decryption under the key s
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Table 2. Comparison of security features.
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	C1
	C2
	C3
	C4
	C5
	C6
	C7
	C8
	C9
	C10





	[1]
	N
	Y
	N
	N
	Y
	Y
	Y
	Y
	Y
	Y



	[2]
	N
	Y
	Y
	N
	Y
	Y
	Y
	Y
	Y
	Y



	[3]
	N
	Y
	Y
	Y
	N
	N
	Y
	Y
	Y
	Y



	[4]
	Y
	Y
	N
	N
	Y
	Y
	Y
	N
	Y
	Y



	Our’s
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y







C1: Provide user anonymity; C2: Withstand replay attacks; C3: Withstand offline password guessing attacks; C4: Withstand user impersonation attacks; C5: Withstand server spoofing attacks; C6: Withstand privilege insider attacks; C7: Withstand stolen verifier attacks; C8: Withstand stolen memory device attacks; C9: Provide known key security; C10: Provide perfect forward secrecy.
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