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Featured Application: All-dielectric U-shaped silicon metamaterials show a potential
application in slow-light devices, optical sensors and storage of quantum information.

Abstract: An analogy of electromagnetically induced transparency (EIT) based on all-dielectric
metamaterial is theoretically demonstrated in this paper. The U-shaped Silicon-based metamaterial
unit cell comprises a dipole antenna supported by one horizontal nanoscale bar and a quadrupolar
antenna supported by two vertical nanoscale bars. The near-field coupling between the two
antennas and the reduction of absorption loss lead to a narrow EIT-like transmission window with
a high quality-factor of 130, which exhibits a refractive index sensitivity with a figure-of-merit of
29. The group delay of 0.75 ps and the group index of 2035 are obtained in the transmission
window. Due to these unique optical properties, the proposed metamaterial structure can find many
applications including slow-light devices, optical sensors, enhancement of non-linear processes, and
storage of quantum information.

Keywords: electromagnetically induced transparency; all-dielectric metamaterial; near-field coupling;
destructive interference; slow-light

1. Introduction

Electromagnetically induced transparency (EIT) as a quantum interference phenomenon has been
a research topic in quantum optics in recent years. EIT is a coherent process. It was initially
demonstrated in a three-level atomic system, where the resonant coupling between the dipole-allowed
transition of the ground state (|0>) to an upper energy level (|1>) and the transition of the energy
level (|1>) to a metastable level (|2>) by two coherent laser pump leads to a destructive interference
between two transition pathways, namely, |0>→ |1> and |0>→ |1>→ |2>→ |1> [1]. This results
in a narrow transmission window (NTW). The NTW allows that the light can propagate freely
through a medium that is initially optically opaque but becomes transparent due to the light–matter
interactions. This phenomenon contributes to the understanding of the optical properties and
processes of media [2,3]. It has been proved that the properties of EIT, especially high transmission
and strong dispersion, are crucial for a number of potential applications such as optical sensing [4,5],
slow-light devices [6–10], and storage of quantum information [11,12].

The implementation of EIT in atomic systems requires stringent experimental conditions including
cryogenic temperature and high-intensity laser [13], so the analogue of EIT based on metamaterials
has attracted much attention in the last several years, which is not limited by the above experimental
conditions. Metamaterials are artificially engineered media with unit cells smaller than the operating
wavelength [14,15] and can be used to achieve EIT-like phenomenon at room temperature. The previous
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work about classical analogue of EIT mainly focused on metal plasmonic metamaterials, which rely on
a Fano-type interference between a broadband bright mode resonator and a narrowband dark mode
resonator [16–18]. The bright mode can couple to the incident light whereas the dark mode can only
couple to the bright mode. The near-field coupling between them can produce a destructive interference
and result in a narrow transmission window, which is analogous to the EIT effect. However, it has been
indicated that a large non-radiative loss caused by ohmic damping is an important disadvantage for
metal plasmonic Fano-resonant systems [19,20], which restricts the achievement of high transmittance
and quality-factor (Q-factor) of the EIT-like effect. An effective solution to the issue of material loss is
to appeal the high refractive index silicon-based dielectric structures, which can reach a higher Q-factor
and minimal absorption loss [21,22]. Recently, several geometries of Si dielectric metamaterials, such as
rectangular bar-ring resonator [23], rectangular bar-cylinder resonator [24,25], asymmetric Si nanobar
pairs [26], straight and bent Si nanorod dimer [27], cross rectangular bars [28], and E-shaped Si
array [29], have been proposed to achieve low-loss EIT with high Q-factor, and have shown potential
applications from biosensors to low-loss optical modulation devices.

In this paper, we design a new U-shaped Si-based structure consisting of two vertical nanoscale
bars and one horizontal nanoscale bar, and theoretically investigate the characteristic EIT-like response
based on finite-difference time-domain (FDTD) method [30]. The achievement of a high Q-factor of
130 and a transmittance of 92% depends largely on coherent interaction among the bar resonators.
In addition, the sensitivity of the Si metamaterial on the change of refractive index as well as
slow-light effect is also surveyed. The proposed Si-based metamaterials with a simple shape exhibit
higher Q-factor and refractive index sensitivity than many Fano-resonant and EIT-like plasmonic
metal nanostructures, and render the possibility of using such metamaterials for the application in
bio/chemical sensing, enhancing optical radiation, optical switching, and low-loss slow-light devices.

2. Simulation Methods

The numerical simulations were executed in a commercial calculation software (FDTD Solutions,
Version 8.19.1584, Lumerical Solution, Inc., Vancouver, BC, Canada). The simulation domain containing
one unit cell of the U-shaped Si metamaterial array was illuminated by a plane wave source with
spectral range from 800 to 1200 nm. Periodic boundary condition was used in both x and y directions
and perfectly matched layers were employed in the z direction. The Si metamaterial array was
placed on a quartz substrate. The experimentally measured Si dielectric constant (Palik) was used in
the simulation [31] and the refractive index of the surrounding medium was assumed to be n = 1.0.
A three-dimensional uniform meshing with a 5-nm mesh size was used. The transmittance and
reflectance spectra of the Si metamaterial as well as spatial maps of the electric field at the interesting
wavelengths were obtained from power monitors and frequency domain field profile monitors.

3. Results and Discussion

The geometry of the designed Si metamaterial structure deposited on a quartz substrate is
illustrated in Figure 1a, which is arranged periodically in free space. Each unit cell depicted in
Figure 1b comprises two vertical nanoscale bars and one horizontal nanoscale bar. The period of one
unit structure is P = 615 nm in both x and y directions. The horizontal bar acts as a dipole antenna and
can be excited supporting a bright mode resonance when coupling to the incident electromagnetic
wave (Figure 1c). Two vertical bars serve as a quadrupolar antenna which cannot be directly excited by
the external light and support a dark mode (Figure 1c). The dark mode resonator can only be excited
by the near-field coupling with the bright mode resonator. When the plane wave is incident along the
negative direction of the z axis with polarization along the x axis, the destructive interference between
the bright mode and the dark mode leads to a narrow transmission window shown in Figure 1c,
displaying a characteristic EIT-like behavior. The transmission peak is located at 908.5 nm with a high



Appl. Sci. 2018, 8, 1799 3 of 8

transmittance of 92%. The two transmission dips are located at 898.5 nm and 928 nm, respectively.
The Q-factor can be calculated by the following formula:

Q =
λ0

FWHM
, (1)

where λ0 is the wavelength of transmission peak at the EIT-like window, and the FWHM is the full
width at half maximum of transmission peak. The FWHM is 7 nm, and the calculated Q-factor is 130.
It should be noted that when fixing the lengths and widths of the three nanoscale bars (see captions in
Figure 1a) the thickness of the bars has an optimal value of 110 nm. When further reducing or
increasing the thickness the FWHM of EIT transmission peak will become wider, and as a result the
Q-factor will be reduced and the sensing performing of the Si metamaterial will be deteriorated.
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Figure 1. (a) Schematic of the dielectric metamaterial structure deposited on a quartz substrate.
(b) Schematic of a metamaterial unit cell with the period size P of 615 nm comprising two vertical
silicon nanoscale bars and one horizontal silicon nanoscale bar. The geometrical parameters are: a = 580
nm, b = 590 nm, c = 510 nm, d = 80 nm, e = 80 nm, h1 = 110 nm, h2 = 100 nm. (c) Simulated transmission
spectra of the metamaterial structure as well as the bright and dark modes supported by the horizontal
and vertical bars respectively.

To better understand the underlying physical mechanism of EIT-like effect in the proposed
metamaterial structure, the field distribution maps in the x-y plane are plotted in Figure 2. The electric
field distributions at transmission dips of 898.5 nm and 928 nm are shown in Figure 2a,b, respectively.
It is seen that the horizontal nanoscale bar is mainly excited by the incident light. The emergence of
the dipole mode with two nodes of electric fields at two tips of the bar and displacement currents
along the horizontal nanoscale bar can hardly induce the resonance of two vertical nanoscale bars,
leading to the transmission dips. Figure 2c shows the electric field distribution at transmission peak of
908.5 nm. The near-field resonant coupling between the two resonators causes the bright mode to
couple energetically to the dark mode, which produces the destructive interference and achieve the
EIT transmission peak, and suppresses the radiation of the dipole mode oscillation in the horizontal
bar [32]. The quadrupole mode with three electric field nodes (two at the tips of the bars and one at
the inner side of the bars) along the vertical Si bars is clearly observed. It is obvious that the induced
surface field intensity at the peak is stronger than those at two dips. Furthermore, the high refractive
index contrast between air and the all-dielectric metamaterial makes the local electric field on the
edges of the structure stronger. All in all, the damping of radiation loss and high refractive index
contrast are helpful for the metamaterials to achieve high transmission.
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Figure 2. Electric field distributions of the dielectric metamaterial at different wavelengths. (a), (b)
and (c) correspond to the wavelengths of 898.5 nm, 928 nm and 908.5 nm, respectively. The other
geometrical parameters are the same as in Figure 1b.

Next we investigated the effect of the period size of the unit structure on the EIT-like transmission
window and Q-factor, the simulated transmission spectra with different period sizes are shown in
Figure 3a. It is clear that although the transmittance does not change much, the resonance peak
shifts towards the long wavelength and the FWHM of the EIT peak becomes wider as the period size
increases, which indicates that the coupling coefficient decreases, resulting in a decrease in the Q-factor,
as is shown in Figure 3b. The Si metamaterials with period of smaller than 615 nm were also checked.
However, the near field interaction of nearby unit cells occurs due to the close distance between them
when the period is smaller than 615 nm, which results in an off-resonance coupling between the dipole
mode of the horizontal bar and the quadrupole mode of two vertical bars with an asymmetric shape of
EIT transmission peak. Therefore, it can be found that the optimal period size is 615 nm.
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Figure 3. (a) Simulated transmission spectra with different period sizes. (b) The Q-factors of the
EIT-like resonance with different period sizes.

The generation of EIT depends on the coherent interaction of the bright mode resonator and the
dark mode resonator, and the incident polarization angle θ plays a key role in the effective excitation of
the bright mode resonance [28]. In order to explore the effect of incident polarization angle on the
EIT-like response of the dielectric metamaterial, the transmission spectra for the metamaterial with
different incident polarization angles are demonstrated in Figure 4. The transmittance decreases as the
angle θ changes from 0◦ to 90◦, accompanied by a negligible shift of the transmission peak towards
the short wavelength. When the angle increases to 90◦, the transmission peak disappears completely,
and only a transmission dip is observed. This is because when the incident electric field is parallel to
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the vertical bars, the bright mode dipole resonance of the horizontal bar cannot be excited while the
dipole resonance of the dark mode resonator can be excited. However, the bright mode resonator
cannot be excited by the dark mode dipole resonance, leading to the EIT peak vanishing [33].
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The group velocity of light in a medium depends on the dispersion property of the medium
which is the change of refractive index with the frequency of light. Due to the absorption and refraction
properties of the medium are correlative, EIT must change the refractive index of the system when
changing the absorption property [34]. The propagation velocity of wave decreases with the increase of
group refractive index. A strong dispersion occurs due to the continuous steep change of phase
in the transmission window, and this change reflects the speed of wave propagation. Therefore,
the analogue of EIT is usually concomitant with slow-light effect [35,36]. The group delay is used to
describe the slow-light effect and is defined as [37]:

τg = −dϕ(ω)

dω
, (2)

where ϕ is the transmission phase shift. And the corresponding group index is defined as

ng =
c

vg
=

c
D
× τg = − c

D
× dϕ(ω)

dω
, (3)

where c is the velocity of light in free space, vg and τg are group velocity and delay time in the
metamaterial respectively, and D is the thickness of the metamaterial. Figure 5a clearly shows that
there are two frequency segments in the transmission phase spectrum, which are caused by anomalous
phase dispersion and normal phase dispersion respectively [38]. The corresponding group index
can reach 2035 due to strong dispersion of the transmission phase, which is shown in Figure 5b.
The maximum optical delay indicated in Figure 5c is 0.75 ps in the transmission window. These values
indicates that the proposed Si metamaterial can be used in efficient slow-light devices.
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Optical sensing is also a potential application of the EIT metamaterial. When the refractive
index of the surrounding medium changes (such as different liquids), the transmission peak tends
to shift. Figure 6a shows the simulated transmission spectra of the designed dielectric metamaterial
which immersed in different media with refractive index ranging from 1 to 1.1. It is clear that the peak
position shifts towards the long wavelength despite the index changes very small. The figure-of-merit
is an important parameter used to evaluate the sensing property and is determined as [39]

FOM =
S

FWHM
=

δλ/δn
∆λ

, (4)

where S = δλ/δn is the sensitivity towards the environment refractive index, and ∆λ is the resonance
linewidth of the EIT-like transmission window. A linear fit between the wavelength shift of the
transmission peak and the external refractive index is shown in Figure 6b, and the slope of the linear
fit gives a sensitivity S of 203 nm/RIU. The corresponding FOM is 29 and is higher than Fano-resonant
plasmonic sensors in the previous work [40–42].
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Figure 6. (a) Simulated transmission spectra of the metamaterial structure with refractive index ranging
from 1 to 1.1. (b) The EIT-like peak wavelength of the metamaterial structure as a function of refractive
index. The squares are the measured data, and the red line is the linear fit.

4. Conclusions

We have numerically investigated the EIT-like phenomena in the proposed all-dielectric Si
metamaterial. A characteristic EIT-like resonance peak with the high Q-factor and the high
transmission is observed due to the coupling and interference between the bright mode supported
by the horizontal nanoscale bar and the dark mode supported by the two vertical nanoscale bars. A
nanoscale metamaterial refractive index sensor with high sensitivity and FOM has been achieved.
The proposed Si metamaterials have a simple shape and can be easily fabricated by electron beam
lithography [23–25,27]. The excellent optical performance enable the dielectric Si metamaterial
with a wide range of potential applications including slow-light devices, sensing and storage of
quantum information.
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