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Abstract: Rapid strengthening is focused on recently to reduce the time for reinforcement process
and decrease the losses. However, there are some limits for the existing reinforcement technologies to
be used for rapid strengthening. The paper reports an experimental investigation on eccentric
compressive behavior of reinforced concrete columns that are strengthened using steel mesh
reinforced resin concrete (SMRC) for rapid strengthening. Four reinforced concrete columns with
180 mm × 250 mm test cross section and 1000 mm test height were fabricated and tested under large
eccentric compressive load. Among the four columns, three columns were strengthened using SMRC
with different numbers of steel mesh layers; the other column was not strengthened and was used as
the control specimen. The effect of layer number of steel mesh on the failure mode, cracking load
and load capacity of the columns were studied. Finite element analysis was carried out to evaluate
the effects of the layer number of steel mesh, thickness of SMRC layer, and the load-holding level
on the load capacity of the columns. Results show that the crack distribution of the strengthened
columns was influenced by the layer number of steel mesh. The layer number was the dominant
variable for the load capacity, rather than the thickness of the SMRC layer. With the increase of
load-holding level, the load capacity of the strengthened column decreased following a bilinear trend.
Some conclusions can be drawn that the reasonable reinforcement ratio of steel mesh is about 2%.
Resin concrete is mainly used as bonding layer. The decreasing rate of the bearing capacity is higher
at the high load-holding levels.

Keywords: eccentric compression; reinforced concrete column; steel mesh reinforced resin concrete
(SMRC); strengthening

1. Introduction

Civil infrastructure is aging all over the world [1], and the ages of many structures are approaching
to the designed service life [2]. However, the aging bridges are subjected to increasing traffic loading [3]
and climate change impacts [4]. Among various structural components, the degradation of columns is
attracting increasing research interests for structural engineers, because column resists vertical loading
and directly affects the structural safety [5–7].

Model test and In-situ test have been considered as the effective approach to investigate
the mechanical performance of bridge structures [8–14]. Reinforced concrete columns have been
strengthened using different materials, such as reinforced concrete, steel, and fiber reinforced polymers
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(FRP). Hadi et al. [15] investigated the flexural behavior of RC columns that are strengthened by
reactive powder concrete (RPC) and showed RPC could increase the ultimate flexural load effectively.
However, a long time was needed after the reinforcement process to let RPC reach certain strength.
Lee et al. [16], and Parghi and Alam [17] analyzed the seismic behavior of bridge piers strengthened
by steel and FRP, respectively, and validated the effectiveness. However a flat and smooth surface is
needed to apply steel plate or FRP jacketing. In addition, the bond strength between the steel plate
and FRP, and concrete structure must be considered because there is a large possibility to debonding
failure [18–20]. Ferrocement, which is a composite material that consists of steel mesh with dense
spacing and concrete or mortar, was developed for reinforced concrete columns [21]. Mashrei et al. [22]
and Gandomi et al. [23] investigated the flexural strength of ferrocement members while using a neural
network model and gene expression programming, respectively, and a higher flexural strength of
ferrocement as compared with FRP plates was demonstrated. Mansur et al. [24] studied the influence of
the diameter of steel mesh on corrosion resistance of ferrocement. The small diameter of steel mesh was
proved to be beneficial to the corrosion resistance. Xiong et al. [25] conducted an experimental study
and found that the ductility of concrete column strengthened using ferrocement was higher than that
of concrete column strengthened using FRP. Mourad and Shannag [26] researched the reinforcement
effect of ferrocement on reinforced concrete columns under sustaining load, and the bearing capacity
of the column was improved effectively when compared with the control column. Kaish et al. [27,28]
proposed an improved ferrocement strengthening technique for square columns when circumferential
strengthening method was applied. The technique that is proposed can address the stress concentration
problem for the corner effectively.

The works that are mentioned above show the ferrocement strengthening technique has shown
great promise. However, new requirements are put forward for the strengthening material. For the
bridge structures in a traffic-intensive location, the time for bridge reinforcement should be shortened
as much as possible in order to recover the traffic rapidly and decrease losses. Though there are many
advantages for ferrocement material, the concrete or mortar in ferrocement requires a long curing
time, which may increase the downtime of main route. This potentially increases the traffic pressure in
urban settings. Therefore, this is a need to develop new materials for rapid strengthening.

Steel mesh reinforced resin concrete (SMRC) has been presented as a strengthening material for
solving the problem that is mentioned above [29]. Yan [29] advised to replace the concrete or mortar
in conventional ferrocement with the high-performance resin concrete. The resin concrete can reach
certain strength in a short of period and the time for reinforcement process can be reduced using
SMRC material. When the resin concrete was cured at 20 ◦C and a relative humidity of more than
90%, the compressive strength reached more than 80% that of the 28-day compressive strength within
24 h [29]. The resin concrete was composed of liquid epoxy resin, curing agent and the Portland cement,
and the component ratio could be determined according to the requirement, such as the strength or
fluidity. Besides, the woven steel mesh was used to reinforce resin concrete and it showed high tensile
strength. The flexural behavior of RC beam strengthened by SMRC had been investigated, and the
results showed that SMRC was practical with improved strengthening effect and the width of the crack
could be decreased [29]. Except the beam structures, the compressive behavior of column structures
strengthened by SMRC is also needed to be investigated, because column structure directly affects the
structural safety.

This study aims to investigate the strengthening performance of SMRC for reinforced concrete
columns under eccentric compression. Four reinforced concrete columns that had a cross section of
180 mm × 250 mm and a height of 1500 mm were fabricated and tested to failure. The failure mode,
cracking load, and load capacity of the columns were analyzed. A finite element analysis (FEA) was
established to evaluate the effects of the thickness of reinforcement layer and the load-holding level on
the load capacity of the columns.
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2. Experimental Program

2.1. Materials

2.1.1. Resin Concrete

The resin concrete was composed of three components, designated as A, B, and C. Among them,
A is a liquid epoxy resin; B is a liquid curing agent; and, C is a mix of ordinary Portland cement and
sand (average particle size: 5 mm). The mass ratio of A:B:C was 1:0.29:6.21.

The compressive strength of the resin concrete was tested in accordance with GB/T 50081-2002 [30].
To evaluate the growth of compressive strength over time, cube specimens measuring 150 mm in side
length were tested at 1.5, 2, 3, 5, 7, 11, 14, 21, and 28 days at 6 ◦C and a relative humidity of about 40%.
At each age, three cube specimens were tested and their results were averaged, as shown in Figure 1.
At 5 days, the compressive strength is 85.06 MPa, which is more than 95% that of the compressive
strength (88.34 MPa) at 28 days. Figure 1 also shows a stable development trend after curing for
five days. The performances of resin concrete at five days were adopted in the test.
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Figure 1. Compressive strength of resin concrete.

Three prism specimens measuring in 150 mm × 150 mm × 300 mm were tested to determine
the compressive stress-strain relationship at five days, as shown in Figure 2, in accordance with
GB/T 50081-2002 [30]. The prism specimens were tested under displacement control at a displacement
rate of 0.1 mm/min. The Young’s modulus was determined 20.8 GPa ± 0.5 GPa (mean value ±
standard deviation).

Three dogbone specimens were tested to determine the tensile stress-strain relationship at
five days, as described in Figure 3, in accordance with SL 352-2006 [31]. The dogbone specimens were
tested under displacement control at a displacement rate of 0.1 mm/min. The tensile strength was
determined 7.9 MPa ± 0.4 MPa (mean value ± standard deviation).

Push-out test was conducted to determine the bond strength between the resin concrete and
normal concrete (the same material used for the experimental columns) at five days, as shown in
Figure 4. Three specimens were tested. Each specimen consisted of two normal concrete prisms
(150 mm × 150 mm× 300 mm) and one resin concrete prism (150 mm× 150 mm× 300 mm). The bond
area was 150 mm × 150 mm. The specimens were tested under force control at a rate of 10 kN/min.
The bond strength was determined 3.2 MPa ± 0.1 MPa (mean value ± standard deviation).
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Figure 2. Compressive test of resin concrete: (a) Setup and prism specimen (mm), (b) stress-strain relationship.
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Figure 3. Tensile test of resin concrete: (a) Setup and dogbone specimen (mm), (b) stress-strain relationship.
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Figure 4. Bond strength test for the bond strength between the resin concrete and normal concrete:
(a) Physical map, (b) sketch map (mm).

2.1.2. Steel Mesh

The steel mesh was woven through steel wire, and had steel wires along two perpendicular
directions, as shown in Figure 5a, in accordance with the previous work [29]. The spacing in both
directions was 20 mm. The diameter of the steel wires was 2 mm. Uniaxial tensile testing was
conducted to evaluate the tensile properties of the steel wires. The yield strength and ultimate tensile
strength were 748 MPa and 1114 MPa, respectively. Batson et al. [32] investigated the Young’s modulus
of a lot of woven steel wires, and 165 GPa is advised for the Young’s modulus of the steel mesh that
was used in the test.
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2.1.3. Concrete and Steel Bars

Normal concrete was used to fabricate the columns in this study. The compressive strength was
tested 62.8 MPa ± 2.9 MPa (mean value ± standard deviation). The Young’s modulus was tested
42.9 GPa ± 0.7 GPa (mean value ± standard deviation).

Two types of deformed steel bars were used, which were HRB335 and HPB235 [33]. HRB335
steel bar had a yield strength of 320 MPa and a Young’s modulus of 200 GPa, and it was used as the
longitudinal reinforcement. HPB235 steel bar had a yield strength of 240 MPa and a Young’s modulus
of 199 GPa, and it was used as the stirrup.

2.2. Column Specimens

Table 1 shows the four reinforced concrete columns, designated S-0, S-1, S-2, and S-3. The number
of steel mesh layer of S-0 to S-3 was 0, 1, 2, and 3, respectively. The non-strengthened specimen S-0
was taken as the control specimen. According to the works done by Yan [29], a reinforcement ratio of
1.99% and a cover thickness more than 0.5 cm for steel mesh were suggested. In this test, the thickness
of reinforcement layer was kept to 20 mm for these strengthened specimens to study the effect of the
layer number of steel mesh, and the cover thickness more than 0.5 cm can be guaranteed, even with
three layers of steel mesh in the reinforcement layer.

Table 1. Column specimens.

Designation Number of Steel Mesh Layer Reinforcement Ratio * Reinforcement Position

S-0 0 0 Non-strengthened
S-1 1 0.8% Tensile side
S-2 2 1.6% Tensile side
S-3 3 2.4% Tensile side

* The reinforcement ratio represents the ratio of cross section area of steel mesh to the gross cross section area of
steel mesh reinforced resin concrete (SMRC).

Figure 6 illustrates the dimension and layout of reinforcement of the columns. For each column,
the total height was 1500 mm and the clear test height was 1000 mm. The cross section was
180 mm × 250 mm within the 1000 mm test height, and 180 mm × 400 mm within the 150-mm length
of the corbel at each end of the column. The corbel was used to apply eccentric load. Each column was
reinforced using four 16 mm steel bar along the longitudinal direction of the column. The reinforcement
ratio was 1.8%, which is larger than the minimum reinforcement ratio 0.6% [33]. The spacing of the
stirrups was 200 mm within the test height; the spacing was reduced to 50 mm beyond the test height
at each end of the column to prevent local failure in the corbel.

For each column, 12 strain gauges were installed on the surface of steel bars and 14 strain gauges
were attached on the surface of concrete, as shown in Figure 6. Both at the tensile side and the
compressive side, three strain gauges were attached on the surface of concrete, respectively. At the
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two lateral sides, four strain gauges were attached on the surface of concrete, respectively. Besides,
one strain gauge was attached on the surface of the four steel bars, respectively, at three different
positions along the column.

Liu et al. [34] suggested that the column could be strengthened in horizontal position firstly, and
then applied the load in vertical direction. The impact of this process could be neglected.

The SMRC was applied to strengthen the reinforced concrete columns in four steps: Step 1: Clean
and wet the surface of the columns (Figure 7a). Step 2: Install the formwork and prepare the SMRC
(Figure 7b). Step 3: Install the steel mesh in the formwork (Figure 7c). Step 4: Cast the resin concrete in
the formwork, and then remove the formwork after five days (Figure 7d).
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2.3. Test Setup and Instrumentation

Each column was tested under eccentric compressive load while using a 3200 kN hydraulic load
with an eccentricity of 150 mm. Figure 8a shows the customized loading device. The test column was
elevated by the woods at the two ends, making the column contactless with the ground. In order to
reduce the friction between the woods and the column, two polytetrafluoroethylene (PTFE) plates
were laid down on at the two ends. Figure 8b shows the two ends of the device. The column was
loaded under displacement control at a displacement rate of 1 mm/min. For each column, the testing
was terminated when the applied load dropped to 85% of the measured peak load [35].

Three dial meters with a measurement range of ±50 mm and a precision of 0.01 mm were used to
measure the lateral deformation of column throughout the testing, as shown in Figure 8a. The data of
the dial meters could be read automatically through a data acquisition system. A crackscope (precision:
0.2 mm) was used to examine the cracks on the columns after the column failed and was unloaded.

The electrical resistance value and sensitivity coefficient of the strain gauges were 120 ± 0.3 and
2.08 ± 0.01, respectively.
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3. Experimental Results and Discussions

3.1. Failure Mode and Analysis

Figure 9a–d show the failure modes of the four columns. No debonding was observed at the
interface between the concrete and SMRC. For each column, the crack pattern of the SMRC surface
is plotted. Multiple distributed cracks were observed in the four columns. When the column failed,
crushed concrete was observed in the compression zone.

In S-0, the first crack appeared when the load was increased to 73 kN. The distance between the
crack and the actuator was 110 cm, as shown in Figure 9a. With the increase of the load, the crack
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was widened and propagated; more cracks appeared in the column at the tensile side. After the
column failed, 13 major cracks were observed. The average spacing of the major cracks was 115 mm.
The maximum crack width was 4.2 mm.

In S-1, the first crack in the SMRC appeared, when the load was increased to 143 kN. The distance
between the crack and the actuator was 110 cm, as shown in Figure 9b. The second crack in the
SMRC appeared near the mid-span, when the load was increased to 162 kN, and the strain gauges
that were attached on the SMRC failed because of the cracks. No crack was observed in the normal
concrete until the load was increased to 220 kN. The crack was at the cross section that was about
45 cm away from the actuator. At the same time, five cracks were observed in the SMRC. The five
cracks were, respectively, 110 cm, 72 cm, 45 cm, 33 cm, and 85 cm away from the actuator. After the
column failed, 12 major cracks were observed in the SMRC; the average spacing between the major
cracks was 125 mm; the maximum crack width was 7.1 mm. A limited number of microcracks were
observed in the vicinity of the major cracks. The steel mesh in the SMRC was ruptured.

In S-2, the first crack in the SMRC appeared, when the load was increased to 155 kN. The distance
between the crack and the actuator was 105 cm, as shown in Figure 9c. The first crack in the normal
concrete was observed when the load was increased to 250 kN. The crack was at the cross section
that was about 27 cm away from the actuator. At the same time, six cracks were observed in the
SMRC. The six cracks were respectively 105 cm, 120 cm, 98 cm, 86 cm, 65 cm, and 27 cm away from the
actuator. As the load was further increased, a number of densely distributed microcracks appeared.
After the column failed, the maximum crack width was 2.4 mm. A limited number of wires of the steel
meshes were ruptured.

In S-3, the first crack in the SMRC appeared, when the load was increased to 158 kN. The distance
between the crack and the actuator was 115 cm, as shown in Figure 9d. The first crack in the normal
concrete was observed when the load was increased to 285 kN. The crack was at the cross section
that was about 48 cm away from the actuator. At the same time, five cracks were observed in the
SMRC. The five cracks were, respectively, 115 cm, 66 cm, 95 cm, 51 cm, and 105 cm away from the
actuator. Similar to S-2, as the load was further increased, a number of densely distributed microcracks
appeared. After the column failed, the maximum crack width was 1.8 mm. No wire of the steel meshes
was ruptured.

Further analysis is conducted to understand the crack patterns. Figure 10a illustrates a segment
of a column for analyzing stresses in the steel bar, steel mesh and concrete. The stress in the steel bar is
denoted by σs, which reaches the maximum value at the crack section. Between two adjacent cracks,
σs decreases because a part of tensile force is resisted by the concrete due to force transfer between
steel bar and concrete. The stress reduction is denoted by ∆σs. Similarly, the stress in steel wire is
denoted by σw; and, the stress reduction is denoted by ∆σw. The shear stress between steel bar and
concrete is denoted by τs; the shear stress between steel bar and concrete is denoted by τw. Both τs

and τw are zero at the crack section and the center between two adjacent cracks.
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Figure 10. Analysis of crack distribution: (a) Segmental model, (b) bonding stress distribution between
steel bar and concrete, (c) bonding stress distribution between steel wire and resin concrete.

Equations (1) and (2) can be obtained according to the force equilibrium of the segmental
model [36].

∆σwAw − Lminτ = Arfr/2 (1)

∆σsAs + Lminτ = Atft/2 (2)

where As and Aw are the total areas of cross section of steel bar and steel wire, respectively; At and
Ar are the areas of concrete and resin concrete in effective tensile zone, respectively; ft and fr are the
tensile strengths of concrete and resin concrete, respectively; Lmin is the minimum spacing of cracks;
and, τ is the average bond stress between SMRC and concrete.

As shown in Figure 10b,c, the Equations (3) and (4) can be obtained according to the force
equilibrium of the isolated bodies of steel bar and steel wire, respectively.

∆σsAs = ΩsτsLmin (3)

∆σwAw = ΩwτwLmin (4)

where Ωs and Ωw are the total perimeters of steel bar and steel wire, respectively; τs and τw are
the mean values of bonding stress between steel bar and concrete, and between steel wire and resin
concrete, respectively.

Based on Equations (1) to (4), the average spacing of the cracks (Lc) can be expressed in
Equation (5).

Lc = 1.5Lmin = 0.75(Atft + Arfr)/(τsΩs + τwΩw) (5)

Equation (5) shows that the average spacing of cracks decreases with the total perimeter of steel
wires. The average crack width can be solved using the different strains in the steel wire and the resin
concrete between two adjacent cracks. Yuan et al. [36] investigated the relationship between the crack
width and the spacing between adjacent cracks that are based on the flexural structures reinforcement
test. The crack width decreases with the decreasing of spacing between adjacent cracks.

3.2. Lateral Deformation and Strain Distribution in Cross Sections

Figure 11 shows the lateral deformation curves and the fitting curves of the four columns. A sine
function (Equation (6)) is used to fit the measured lateral deformations. The maximum discrepancy
between the measured deformation and fitting result is 14%, indicating that the fitting curves provide
an adequate prediction of the lateral deformation of the columns.

u = um sin(πZ/Zm) (6)

where u is the lateral deformation; um is the maximum value of u; Z is the length from the measured
point to the loading point; Zm is the total length of the column (=1500 mm).
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Figure 11. Lateral deformation of: (a) S-0; (b) S-1; (c) S-2; (d) S-3.

The longitudinal strain at the mid-span position of column can be used to validate whether
the plane section assumption is satisfied or not. Figure 12 shows the longitudinal strain measured
through the strain gauges on the RC column and the strain gauges on the SMRC under different load
grades. As can be seen from Figure 12, plane section assumption is satisfied during the deformation of
specimen under different load grades.
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Figure 12. Strain at different depths of the mid-span cross section: (a) S-0, (b) S-1, (c) S-2, (d) S-3. Strain
gauge No. 6 failed at the highest loading levels in each figure.

3.3. Load-Deflection Curves

Figure 13 shows the relationship between the load and the mid-span deflection. When compared
with S-0 that was not strengthened, the other three columns (S-1 to S-3) that were strengthened while
using SMRC had higher load capacities and peak deflections. In each curve, the peak load represents
the load capacity, and the mid-span deflection of the load capacity represents the peak deflection.
As the number of steel mesh increases from one to three, the load capacity is increased from 492 kN to
539 kN, while the peak deflection is reduced from 11.8 mm to 10.1 mm. The main reason why the peak
deflection decreases with the increasing of layer number of steel mesh is that the whole stiffness of the
specimen increases with more steel meshes.
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Figure 13. Test result of load-deflection curves.

There are three phases for the load-deflection curve [37]. The first phase is the linear elastic phase.
In this phase, the load that is applied on the column is small and there are no cracks on the SMRC or
RC column. The second phase is the crack propagation phase. With the increase of the load, the resin
concrete begins to crack. The cracks occur in different position of resin concrete, and the spacing
between these cracks is large. Besides, some cracks on the RC column can be observed. The third
phase is steel bar yielding phase. When the load applied on the column approaches the load capacity,
the steel bars yield. Many cracks occur on the resin concrete in a short period with small spacing.
Obvious flexural deformation for column can be observed. Also, the stress of steel mesh increases
rapidly because of the yielding of steel bar.

Table 2 summarizes the compressive test results of the four columns. When compared with S-0,
the use of one steel mesh in the SMRC increases the cracking load by 96%, the load capacity by 23%,
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and the peak deflection by 22%. The result indicates that the use of SMRC can delay the presence
of crack, enhance the load capacity, and improve the deformability. Increasing the steel mesh layer
number from one to three increases the cracking load by 10% and the load capacity by 10%, and it
decreases the peak deflection by 14%, and the maximum crack width by 75%. The result indicates
that the increase of steel mesh layer can delay the presence of crack, enhance the load capacity and
reduce the maximum crack width, but it may compromise the deformability. The main reason why the
reinforcement material can improve the deformability of the RC column is the high-performance of
resin concrete. As can be seen in Figure 3b, the ultimate tensile strain of resin concrete is much larger
than the normal concrete.

Table 2. Summary of compressive test results of the four columns.

Designation Cracking Load
(kN)

Load Capacity
(kN)

Peak Deflection
(mm)

Maximum Crack Width
(mm)

(0) S-0 73 399 9.7 4.2
(1) S-1 143 492 11.8 7.1
(2) S-2 155 516 10.8 2.4
(3) S-3 158 539 10.1 1.8
(1)/(0) 1.96 1.23 1.22 /
(2)/(1) 1.08 1.05 0.92 0.34
(3)/(1) 1.10 1.10 0.86 0.25

4. Finite Element Analysis

4.1. Model Description

Concrete damage plasticity model in ABAQUS was used to model concrete as it can accurately
describe the elastic-plastic behavior as well as damage of concrete.

The constitutive relationships of resin concrete material at five days were used (see Figures 2b and 3b).
Constitutive relationships of normal concrete recommended in GB 50010-2010 [33] were adopted,
as shown in Figure 14a. Three parts of the compressive constitutive relationship are identified. The first
part is the elastic range, and the proportional limit stress can be determined to 0.4fc, where fc is the
cubic compressive strength. The second part is the nonlinear ascending range, and it is determined by
Equation (7).

σc =
ρcn

n− 1 + xcn Ecεc (7)

where σc and εc are the compressive stress and strain, respectively; ρc = fc/(E cεcr); Ec is the Young’s
modulus; εcr (=0.0021) is the strain when the σc reaches fc; and, n = Ecεcr/(Ecεcr − fc); xc = εc/εcr

and xc ≤ 1 for the ascending range.
The third part is the descending part, as expressed Equation (8).

σc =
ρc

αc(xc − 1)2 + xc
Ecεc (8)

where αc is a parameter related to the shape of descending part of compressive constitutive relationship.
xc > 1 for the descending part.

The tensile constitutive relationship of concrete can be defined in two parts. The first part is the
elastic part, and the stress is from zero to the ultimate value. The second part is the descending part,
and it can be determined by Equation (9).

σt =
ρt

αt(xt − 1)1.7 + xt
Ecεt (9)
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where σt and εt are the tensile stress and tensile strain, respectively; ρt = ft/(Ecεtr); ft is the tensile
strength; εtr (=0.0001) is the strain when the σt reaches ft; αt is a parameter related to the shape of
descending part of tensile constitutive relationship; and, xt = εt/εtr; xt > 1 for the descending part.

The simple elastic-plastic model (Figure 14b) and the strengthening elastic-plastic model
(Figure 14c) were used for the constitutive relationship of steel bar and steel mesh, respectively.
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Figure 14. Constitutive relationship in finite element analysis (FEA): (a) Concrete, (b) steel bar,
(c) steel mesh.

The normal concrete and resin concrete were modeled using C3D8R elements. C3D8R is an
eight-node linear element and there is only one integral point in the center of the element and the
displacement solution is more accurate using this element, as compared with C3D8 element; the
reinforcing bars and steel mesh were modeled using T3D2 element. T3D3 is a two-node linear
three-dimensional (3-D) truss element, and is validated to simulate the steel bar effectively [38]. Mesh
convergence study was carried out and the global mesh size was determined to be 20 mm combining
the calculation time and accuracy. With this mesh size, the finite element model had 10,244 C3D8R
elements and 5427 truss elements (S-3). Figure 15 shows the meshed finite element model.
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Figure 15. Finite element model and boundary condition. SMRC indicates steel mesh reinforced
resin concrete.

The contact between SMRC and normal concrete was defined while using the key word
‘Tie’, which does not allow for any relative movement between the SMRC and normal concrete.
The reinforcing bars and steel mesh were respectively embedded in the normal concrete and resin
concrete, meaning there was no slip between steel and concrete. The tie contact was also defined
between the cushion block and bearing steel, and between the bearing steel and the column.
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Displacement control was adopted to apply the loading to the columns. All of the translational
displacements were restrained for the loading point and constraint line, except Uy of the loading point.
All of the rotational displacements except Rz were restrained both for the loading point and constraint
line to simulate the hinge supports that can only rotate in the direction of Z.

4.2. Model Validation

Figure 16 shows the comparison of the experimental and simulation results of the load deflection
curves. The simulation results of the load-deflection relationship follow the same trends as the
experimental results. Both for the strengthened and non-strengthened specimens, the finite element
model can simulate the force condition of specimen well. However, it can be seen that the stiffness
of FEA-S-3 is larger than that of S-3. This phenomenon can be explained by that, when arranging
three layers of steel mesh in 20 mm thick reinforcement layer, the effectiveness of bonding property
between the steel mesh and resin concrete cannot be ensured in practical experiment. While in FEA,
the bonding property between steel mesh and resin concrete is still assumed to be effective, and the
relative slip is ignored, resulting in the larger stiffness when compared with the experiment.

Table 3 summarizes the experimental and simulation results of the load capacity. The finite
element model overestimates the load capacity of each column. The maximum discrepancy is 5.2%.
It is reasonable to reflect the load capacity of specimens using this finite element model. The error
between the experimental result and the FEA result is within 10%, indicating that the finite element
model provides a reasonable prediction of the load-deflection relationship of the columns.
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Figure 16. Comparison of lateral deformation curves.

Table 3. Comparison of load capacity.

Designation Experiment (kN) Simulation (kN) Discrepancy (%)

S-0 399 401 0.5
S-1 492 494 0.3
S-2 516 537 4.0
S-3 539 568 5.2

4.3. Parametric Studies

4.3.1. Layer Number of Steel Mesh

Since the SMRC layer can accommodate limit number of steel mesh, the investigated layer number
is limited to five in this study. Figure 17 shows the effect of steel mesh layer number on the load
capacity of the column. The load capacity increases with the layer number of steel mesh; however,
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the increasing rate decreases with the layer number. The improvement percentage of the load capacity
changes along a logarithmic function line with the increase of the layer number of steel mesh.

Table 4 shows the effect of the steel mesh layer number on the improvement proportion of
load capacity (compared with non-strengthened specimen) of the column. The improvement of load
capacity is within 8% for the specimen that is strengthened by SMRC without steel mesh. The same
conclusion was drawn by Liu et al. [39]. Eccentric compressive behavior of RC column strengthened
by textile-reinforced mortar was investigated. When the column was only strengthened by mortar,
the load-deflection curve was almost the same with non-strengthened column.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 22 

by textile-reinforced mortar was investigated. When the column was only strengthened by mortar, 
the load-deflection curve was almost the same with non-strengthened column. 

 
Figure 17. Effect of layer number of steel mesh. 

Table 4. Improvement proportion caused by increasing layer number of steel mesh. 

Steel Mesh Layer Number Load Capacity (kN) Improvement Proportion 
0 433 7.9% 
1 494 23.2% 
2 537 33.9% 
3 568 41.6% 
4 591 47.4% 
5 602 50.1% 

4.3.2. Thickness of Reinforcement Layer 

The investigated thickness of the reinforcement layer is increased from 20 mm to 40 mm, and 
the layer number of steel mesh was three. Figure 18 shows the effect of different thicknesses of SMRC 
layer on the load capacity of the column. The load capacity approximately linearly increases with the 
SMRC thickness. 

Table 5 shows the effect of thickness of reinforcement layer on the improvement proportion of 
load capacity (compared with the specimen with a reinforcement layer thickness of 20 mm) of the 
column. As the SMRC thickness is increased from 20 mm to 40 mm and the load capacity is increased 
by 5%. 

 
Figure 18. Effect of thickness of reinforcement layer. 

  

1

y = 224.38log10(x + 1) + 431.50

Fitting curve

550

450

R2 = 0.9985

5

600

420

500

Lo
ad

 c
ap

ac
ity

 (k
N

)

Layer number of steel mesh

400

FEA result

3

600

Thickness of reinforcement layer (mm)

560

20

Lo
ad

 c
ap

ac
ity

 (k
N

)

FEA result

30

590

570

y = 1.44x + 539.37，R2 = 0.9948

Fitting curve

400 3525

580

Figure 17. Effect of layer number of steel mesh.

Table 4. Improvement proportion caused by increasing layer number of steel mesh.

Steel Mesh Layer Number Load Capacity (kN) Improvement Proportion

0 433 7.9%
1 494 23.2%
2 537 33.9%
3 568 41.6%
4 591 47.4%
5 602 50.1%

4.3.2. Thickness of Reinforcement Layer

The investigated thickness of the reinforcement layer is increased from 20 mm to 40 mm, and the
layer number of steel mesh was three. Figure 18 shows the effect of different thicknesses of SMRC
layer on the load capacity of the column. The load capacity approximately linearly increases with the
SMRC thickness.
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Table 5 shows the effect of thickness of reinforcement layer on the improvement proportion of
load capacity (compared with the specimen with a reinforcement layer thickness of 20 mm) of the
column. As the SMRC thickness is increased from 20 mm to 40 mm and the load capacity is increased
by 5%.

Table 5. Improvement proportion caused by increasing thickness of reinforcement layer.

Thickness of Reinforcement Layer Load Capacity (kN) Improvement Proportion

20 568 /
25 576 1%
30 582 2%
35 591 4%
40 596 5%

4.3.3. Load Holding Level

In the practical application, the strengthening operation is often performed when the structure is
subjected to sustained load [39]. The load holding level represents the ratio of the sustained load to
the load capacity of S-0. Figure 19 shows the effect of load holding level on the load capacity. As the
load-holding level increases, the load capacity decreases following a bilinear trend. The decreasing
rate is higher at the high load-holding levels. The inflection point (B) of the curve corresponds to
the load level that causes yielding in the reinforcing bars in the column. Jiang et al. [40] investigated
the eccentric compressive behavior of RC column strengthened by high performance ferrocement
material under sustaining load, and the result also indicated that the strengthening material had little
contributor to improving the bearing capacity when the load holding level is close to 1.
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Table 6 shows the effect of load holding level on the reduction proportion of load capacity of the
column. As the load-holding level is increased from 0 to 80%, the load capacity is reduced by 5.1%.
As the load-holding level is increased from 80% to 95%, the load capacity is reduced by 6.2%.

Table 6. Reduction proportion caused by increasing load holding level.

Load Holding Level Load Capacity (kN) Reduction Proportion

0 568 /
80% 540 5.1%
95% 508 6.2%

4.3.4. Mechanism Analysis

The effect of different parameters on the bearing capacity can be analyzed through Figure 20.
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For the effect of steel mesh, the participation of steel mesh improves the bearing capacity of the
column. The area of the steel mesh participating to resist the external load increases with the increasing
of layer of steel mesh, causing the bearing capacity increases.

For the effect of thickness of reinforcement layer, when assuming the compressive strain of the
concrete at the compressive side reaches the ultimate compressive strain εcu, according to the plane
section assumption, the tensile strain of resin concrete at the tensile side is much larger than the
ultimate tensile strain, indicating that the resin concrete has broken before, as can be seen in Figure 20b.
As a result, only increasing the thickness of reinforcement layer has a little effect on the improvement
of bearing capacity of the column.

For the effect of load holding level, as can be seen in Figure 20c, assume that the blue line represents
the strain distribution caused by the sustaining load before reinforcement. When the column is
strengthened by SMRC at this time, the strain will redistribute, and assume that the red line represents
strain redistribution. The strain of the steel mesh is εw ′ at this moment. After the reinforcement,
the strain of steel mesh increases to εw with the increasing of the external load. Obviously, the strain of
steel mesh resisting to the external load is εw − εw ′ . With the increasing of the sustaining load, εw ′

increases and the strain of steel mesh resisting to external load decreases, making the reinforcement
effect worse.
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5. Recommendations for Practice and Future Study

Some recommendations for practice can be given through the research of the performance of
SMRC and the column reinforcement experiment.

SMRC is a suitable method for rapid reinforcement because of the high-performance of resin
concrete. For example, SMRC is advised to strengthen the pier of bridge to shorten the time of
reinforcement process, and reduce the loss caused by the interrupting traffic. Besides, the process
of buffing for the concrete structure is not needed because of the good bonding properties between
the resin concrete and normal concrete. Cleaning up the dust at the surface of concrete structure is
recommended before reinforcement.

The tests are focused on the research of strengthening the structure at the tensile side while
using SMRC because of the high-tensile strength of steel mesh. Circumferential reinforcement for
columns using SMRC deserves further research. The confining effect for column with steel mesh can be
considered. In this case, however, the stress concentration of the corner should be analyzed carefully if
strengthening for the rectangular column.

The failure mode and the crack distribution are mainly influenced by the reinforcement ratio of
steel mesh. A reinforcement ratio of 2% is recommended for practice.

The main reason for the use of resin concrete is its high-performance of reaching to certain strength
in a short period. However, considering the high cost of resin concrete, it is meaningful to look for the
other high-performance materials to replace resin concrete, and comparing their differences by taking
the reinforcement effect and economy into consideration is recommended in the future study.
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6. Conclusions

Eccentric compressive behavior of RC column strengthened by SMRC was investigated through
four specimens. The impacts of the key parameter of layer number of steel mesh on failure mode,
cracking load, load capacity, and lateral deformation were analyzed. In addition, the finite element
method was used to study the impacts of other parametersm such as the thickness of reinforcement
layer and load holding level on the load capacity. The main conclusions can be drawn as below:

The cracking load and load capacity of reinforced concrete columns were improved effectively by
using SMRC that has a rapid strength growth rate and is promising for rapid strengthening.

The use of one steel mesh in the SMRC increases the cracking load by 96%, the load capacity
by 23%, and the peak deflection by 22% compared with non-strengthened specimen. Increasing the
steel mesh layer number from one to three increases the cracking load by 10% and the load capacity
by 10%, and it decreases the peak deflection by 14%. The result indicates that the increase of steel
mesh layer can delay the presence of crack and enhance the load capacity, but it may compromise
the deformability.

Crack distribution at the tensile side of strengthened specimen is dependent on the layer number
of steel mesh. As the layer number is increased from one to three, the maximum crack width is
reduced by 75%. When the layer number is more than one (a reinforcement ratio of about 2%), densely
distributed microcracks can be produced, instead of limited number of coarse cracks.

Resin concrete mainly acts as an adhesive layer. The load capacity approximately linearly increases
with the SMRC thickness. As the SMRC thickness is increased from 20 mm to 40 mm, the load capacity
is increased by 5%. The improvement of load capacity is mainly influenced by the steel mesh. With the
increase of layer number of steel mesh, the improvement proportion of load capacity increases along a
logarithmic function. When the layers of steel mesh are arranged too many, the improvement of load
capacity tends to be stable.

The load capacity decreases following a bilinear trend with the load-holding level. The decreasing
rate is higher at the high load-holding levels. As the load-holding level is increased from 0 to 80%,
the load capacity is reduced by 5.1%. As the load-holding level is increased from 80% to 95%, the load
capacity is reduced by 6.2%.
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Nomenclature

σc compressive stress of concrete, MPa
Ar area of resin concrete in effective tensile zone, mm2

As area of cross section of steel bar, mm2

At area of concrete in effective tensile zone, mm2

Aw area of cross section of steel mesh, mm2

Ec Young’s modulus of concrete, MPa
fc cubic compressive strength of concrete, MPa
fr tensile strength of resin concrete, MPa
ft tensile strength of concrete, MPa
Lc average spacing of the cracks, mm
Lmin minimum spacing of cracks, mm
n coefficient in constitutive relation of concrete
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u lateral deformation of specimen, mm
um maximum value of u, mm
Z length from a point to the loading point, mm
Zm total length of specimen, mm
σt tensile stress of concrete, MPa
εc compressive strain of concrete
εcu ultimate compressive strain of concrete
εs ultimate tensile strain of steel bar
εs ′ ultimate compressive strain of steel bar
εt tensile strain of concrete
εw ultimate tensile strain of steel mesh
αc parameter related to the shape of descending part of compressive constitutive relationship
αt parameter related to the shape of descending part of tensile constitutive relationship
∆σs stress reduction of steel bar between two adjacent cracks, MPa
∆σw stress reduction of steel mesh between two adjacent cracks, MPa
τ average bond stress between SMRC and concrete, MPa
τs average bond stress between steel bar and concrete, MPa
τw average bond stress between steel wire and resin concrete, MPa
Ωs total perimeter of steel bar, mm
Ωw total perimeter of steel wire, mm
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