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Featured Application: The simplified approach, along with the derived one-dimensional
higher-order model, possesses efficiency and accuracy which makes it an alternative to the more
sophisticated shell finite elements in the numerical analyses of thin-walled structures.

Abstract: In this paper, a simplified approach to identify sectional deformation modes of prismatic
cross-sections is presented and utilized in the establishment of a higher-order beam model for
the dynamic analyses of thin-walled structures. The model considers the displacement field
through a linear superposition of a set of basis functions whose amplitudes vary along the
beam axis. These basis functions, which describe basis deformation modes, are approximated
from nodal displacements on the discretized cross-section midline, with interpolation polynomials.
Their amplitudes acting in the object vibration shapes are extracted through a modal analysis.
A procedure similar to combining like terms is then implemented to superpose basis deformation
modes, with equal or opposite amplitude, to produce primary deformation modes. The final set of
the sectional deformation modes are assembled with primary deformation modes, excluding the
ones constituting conventional modes. The derived sectional deformation modes, hierarchically
organized and physically meaningful, are used to update the basis functions in the higher-order
beam model. Numerical examples have also been presented and the comparison with ANSYS shell
model showed its accuracy, efficiency, and applicability in reproducing three-dimensional behaviors
of thin-walled structures.

Keywords: thin-walled structures; sectional deformation modes; identification

1. Introduction

Thin-walled structures are commonly used in civil, aeronautical, and mechanical
engineering structures. For simplicity and computational efficiency, one-dimensional theories are
preferred to two- and three-dimensional models. However, the development of an efficient
one-dimensional theory faces a fundamental challenge of finding a general and simple procedure
to determine the cross-section deformation modes capable of describing cross-section in-plane
(distortion) and out-of-plane (warping) deformations [1]. Moreover, the set of deformation modes
should have a hierarchic capability, to obtain a reduced model and a clear physical interpretation of
structural behaviors.

To support this, several trends of enhancing beam theories have been developed in the last decades.
Yu and Hodges [2,3] developed an asymptotic method and contributed much to variational asymptotic
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beam sectional analyses. Expansion of the beam displacement field through Taylor or Maclaurin
series is a general approach to model both thin-walled and solid structures, and has branched
out to composite structures, due to the work of Carrera and Pagani [4,5]. Saint-Venant-driven
models have been widely studied from the beginning, and new developments can be referred to
Morandini et al. [6], and Naccache and Fatmi [7]. Umansky and Vlasov were the pioneers in the
research of thin-walled structures. Vlasov [8] established a general thin-walled beam theory with
warping of open cross-sections considered. Warping of closed cross-sections was first described by
Umansky [9] in his study of non-uniformed torsion of thin-walled beams. Since then, refinement of
their thin-walled theories has been extensively studied and generated many achievements, such as
the recent work of Kim et al. [10] and Kovvali et al. [11]. Some special structural behaviors,
exhibiting their importance in engineering, were also studied where shear deformation was considered.
These include the studies of multi-cell distortion (Gonçalves et al. [12]), warping due to shear-lag effects
(Chen et al. [13]) and other secondary effects (Lacidogna [14], Seguy et al. [15], Lacalle et al. [16]).
Additionally, there are also some studies focused on the physical interpretation of cross-section
deformation modes [17,18].

Recently, the generalized beam theory (GBT) has been the subject of intense scholarly debate,
which can accurately handle cross-section deformation stemming from the so-called GBT
cross-section analysis. Since the groundbreaking work of Schardt [19], GBT has been developed
to account for both warping and distortion with shear deformation [20] and transverse
extension included; it has also been applied to multi-cell cross-sections [21], composite materials [22]
and curved members [23]. As a comparable theory, the beam model, based on generalized
eigenvectors [24,25] has been obtained by considering a mixed Hellinger-Reissner variational
formulation. Its sectional deformation modes have been defined through a cross-section discretization,
using two-dimensional elements. Vieira et al. [26,27] have also recently proposed a remarkable
higher-order one-dimensional model, which allows one to accurately reproduce three-dimensional
behaviors of thin-walled structures. The key point is the application of a criterion to uncouple
governing equations which have been established based on the solution of a generalized
eigenvalue problem. In all fairness, the three theories mentioned above are powerful enough to deal
with almost any arbitrary thin-walled cross-sections and any mechanical analyses (including static,
dynamic, bulking, and so on), with an acceptable and optional precision. However, one common
problem is the solution of the generalized eigenvalue problem, which is quite involved and demanding
in uncoupling cross-sectional deformation modes. Actually, a simplified approach that does not
include all the features but has a high precision, is more suitable, in some cases.

In this paper, a one-dimensional model of thin-walled structures is presented with a simplified
approach to identify sectional deformation modes of prismatic cross-sections. The paper is organized
as follows. First, the one-dimensional governing differential equation of a prismatic thin-walled
member is obtained, in Section 2. The cross-section analysis is then implemented, in Section 3,
producing a set of basis deformation modes. A procedure similar to combining like terms is carried out
next to identify the final set of sectional deformation modes, based on the data of the modal analysis,
in Section 4. The derived sectional deformation modes are used to update the basis functions in
the higher-order beam model. Subsequently, numerical examples are presented to validate the
new approach, in Section 5. Finally, the main conclusions are outlined.

2. One-Dimensional Formulation

2.1. Displacement and Deformation Fields

Consider a prismatic thin-walled structure depicted in Figure 1. The displacement of a point on the
midline of the cross-section is defined in terms of the axial u, tangential v, and normal w components,
which are defined to be positive, along the axes of the local coordinate system (n, s, z), adopted on
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each wall, respectively. The global coordinate system (x, y, z) with its origin located on the centroid of
the cross-section of the beam end is also shown.Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 18 

x

y

s

s

s

n

nn
z

z

z

z

s

n

z
s

n

z

s

nz  

Figure 1. Global (x, y, z) and local (s, n, z) coordinate systems of a thin-walled structure with a 
branched cross-section profile. 
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where C is the compatibility operator and E is the constitutive matrix of the plate in plane stress 
condition; E and ν are the Young’s modulus and Poisson’s ratio of the material, respectively. 

Figure 1. Global (x, y, z) and local (s, n, z) coordinate systems of a thin-walled structure with a branched
cross-section profile.

The displacement field U = [Uz(n, s, z), Us(n, s, z), Un(n, s, z)]T considering both membrane and
flexural behaviors of thin-walled structures is defined as

Uz(n, s, z) = u(s, z)− n
∂w(s, z)

∂z
, Us(n, s, z) = v(s, z)− n

∂w(s, z)
∂s

, Un(n, s, z) = w(s, z) (1)

where the displacement variables u(s, z), v(s, z), and w(s, z) are separately approximated with a set of
linearly independent basis functions, defined over the cross-section. This approximation separates
the variable dependencies in z and s direction. The displacement field on the cross-section midline,
u = [u(s, z), v(s, z), w(s, z)]T, is thus approximated as follows:

u(s, z) = Ψ1x, v(s, z) = ψ2x, w(s, z) = ψ3x (2)

where Ψ1 = [ϕ1(s), ϕ2(s), . . . , ϕN(s)], Ψ2 = [ψ1(s), ψ2(s), . . . , ψN(s)], and Ψ3 = [ω1(s), ω2(s), . . . , ωN(s)]
correspond to the sets of N basis functions, while for x = [χ1(z), χ2(z), . . . , χN(z)]T, the generalized
displacement χi(z) represents the axial variation of N1 out-of-plane and N2 in-plane deformation
amplitudes; N = N1 + N2.

The three-dimensional displacement U can be expressed with a transformation matrix H = [H1
T,

H2
T, H3

T]T as
Uz(n, s, z) = H1u, Us(n, s, z) = H2u, Un(n, s, z) = H3u (3)

where H1 = [0, 1, −n∂/∂z], H2 = [1, 0, −n∂/∂s] and H3 = [0, 0, 1].
Neglecting defect and material uncertainty, the deformation field ε = [εzz(n, s, z), εss(n, s, z),

γsz(n, s, z)]T and the corresponding stress field σ = [σzz(n, s, z), σss(n, s, z), τsz(n, s, z)]T are obtained
under the small displacement hypothesis:

ε = CU =

 ∂
∂z 0 0
0 ∂

∂s 0
∂
∂s

∂
∂z 0
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E
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where C is the compatibility operator and E is the constitutive matrix of the plate in plane stress
condition; E and ν are the Young’s modulus and Poisson’s ratio of the material, respectively.
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2.2. Governing Equations

The beam energy components are essential for the application of Hamilton’s principle,
including the strain energy, the potential energy, and the kinetic energy. By definition, they are
separately given by the following equations.

U =
1
2

y

V

εTσdV =
1
2

∫
L

∫
A

xTψTHTcTEcHψxdAdz (5)

UP = −
∫
L

∫
A

UTpdAdz−
∫
A

[
UTp

]z=z2

z=z1

dA = −
∫
L

xTψTHTpdz−
[
xTψTHTσ

]z=z2

z=z1
(6)

T =
1
2

y

V

ρ
∂UT

∂t
∂U
∂t

dV =
1
2

∫
L

∫
A

∂xT

∂t
ψTHTρHψ

∂x
∂t

dAdz (7)

where V, A and L are the volume, the cross-section area and the length of the structure, respectively; ρ is
material density; p denotes the loading vector consisting of distributed loads in the axial, tangential,
and normal directions; coordinates z1 and z2 (z1 < z2) represent the axial coordinates of the two ends of
the thin-walled structure and σ indicates the strain vector imposed at the ends.

The formulation of the dynamic governing equation involves the application of
Hamilton principle:

δ

t2∫
t1

Ladt = 0 (8)

where La is the Lagrangian defined as La = T − U − UP in this paper, and t1 and t2 are the start and
end times, respectively.

Substituting Equations (5)–(7) into Equation (8) and applying the integration by parts, by imposing
the condition

δ x|t=t1
= δ x|t=t2

= 0 (9)

yields

δH = −
t2∫

t1

[∫
L

∫
A

δxTψTHTηHψ ∂2x
∂t2 dAdz

]
dt−

t2∫
t1

[∫
L

∫
A

δxTψTHTcTEcHψxdAdz

]
dt

+
t2∫

t1

[∫
L

∫
A

δxTψTHTpdAdz +
∫
A

[
δxTψTHTσ

]z=z2

z=z1
dA

]
dt

= 0

(10)

The dynamic governing equation of the thin-walled structure can then be derived as∫
L

∫
A

δxTψTHTηHψ ∂2x
∂t2 dAdz +

∫
L

∫
A

δxTψTHTcTEcHψxdAdz

−
∫
L

∫
A

δxTψTHTpdAdz−
∫
A

[
δxTψTHTσ

]z=z2

z=z1
dA = 0

(11)

2.3. Finite Element Implementation

The finite element method is employed in this paper for the ease of computation. In consideration
of the second-order partial derivative in Equation (11), the quadratic interpolation function is used to
approximate the axial displacement field within an element.

x = NX =
[

N1 N2 N3

]
X (12)
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where N and X represent the shape function matrix and the nodal generalized displacement vector,
respectively. The submatrices in Equation (12) are written as follows:

N1 =

(
2z2

l2 −
3z
l
+ 1
)

IN , N2 =

(
4z
l
− 4z2

l2

)
IN , N3 =

(
2z2

l2 −
z
l

)
IN (13)

where the coordinate z varies from 0 to l within an element, and IN denotes the N × N identity matrix.
The vector X in Equation (12) is divided into three submatrices.

X =
[

XT
1 XT

2 XT
3

]T
, Xi =

[
X1(i) X2(i) · · · XN(i)

]T
, i = 1, 2, 3 (14)

where the subscripts 1, 2, and 3 indicate two end and one middle nodes of an element. Specially,∫
A

[
xTψTHTσ

]z=z2

z=z1
dA =

∫
A

[
xT]

z=z2
ψTHT[σ]z=z2

dA−
∫
A

[
xT]

z=z1
ψTHT[σ]z=z1

dA

=
∫
A

XT
3ψ

THT[σ]z=z2
dA−

∫
A

XT
1ψ

THT[σ]z=z1
dA =

∫
A

XT
[
NT
ψTHTσ

]z=z2

z=z1
dA

(15)

where
[
NT
]

z=z2
= [ON , ON , IN ],

[
NT
]

z=z1
= [IN , ON , ON ] and ON denotes the N × N null matrix.

Substituting Equations (12) and (15) into Equation (11), and referring to the relationship below:

δxT 6= 0 ⇒ δXT 6= 0 (16)

leads to the following element formulation

∫
L

∫
A

NTψTHTηHψ ∂2X
∂t2 dAdz +

∫
L

∫
A

NTψTHTcTEcHψXdAdz−
∫
L

∫
A

NTψTHTpdAdz−
∫
A

[
NT
ψTHTσ

]z=z2

z=z1
dA = 0 (17)

Conventionally, the formulation is written as

m
∂2X
∂t2 + kX = f (18)

where the consistent element mass matrix m, the element stiffness matrix k, and the element force
matrix f are calculated as,

m =
∫
L

∫
A

NTψTHTηHψdAdz, k =
∫
L

∫
A

NTψTHTcTEcHψdAdz, f =
∫
L

∫
A

NTψTHTpdAdz +
∫
A

[
NT
ψTHTσ

]z=z2

z=z1
dA (19)

respectively, in the finite element model.

3. Cross-Section Analysis

The proposed one-dimensional model considers the approximation of the displacement field over
the cross-section, through the linear superposition of a set of basis functions. Each basis function is
used to describe one type of contour deformation mode of the cross-section, such as torsion, bending,
and flexure of conventional Timoshenko beam theory, under the assumptions of rigid perimeter and
flat section. However, differing from solid structures, thin-walled members are prone to deform over
the cross-section, and the resulted deformation plays an important influence which increases rapidly
as the slenderness ratio decreases. Moreover, these deformation modes are complex with a view of
various cross-section configurations. Therefore, an ideal thin-walled model is crucially dependent
on the reasonable description of deformation modes. In this section, cross-section analysis has been
carried out to explore an approach to identify sectional deformation modes of thin-walled structures,
in reference to Bebiano et al. [28] and Vieira et al. [29].
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3.1. Cross-Section Discretization

Deformation modes of a cross-section might be quite complex, but the potential displacement of
each point, attached on the cross-section, is rather predictable. In this sense, it is natural to approximate
cross-section deformation with nodal displacements, based on the cross-section discretization.

A prismatic thin-walled cross-section can be divided into a set of walls, connected by mn

natural nodes, which connects adjacent walls or locates at the free ends (see nodes 1, 2, 3, and 4
in Figure 2a, and node 11 in Figure 2b, respectively). Since these walls may greatly vary in length,
appropriate node refinement will contribute to the capability of capturing cross-section deformation
from the view-point of interpolation. Therefore, a selective number mi of the intermediate nodes
(see nodes 5, 6, 7, and 8 in Figure 2a), located between the two natural nodes, have been introduced
to further divide these walls into linear segments. The set of natural and intermediate nodes have
defined the cross-section discretization.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 18 

approximate cross-section deformation with nodal displacements, based on the cross-section 
discretization. 

A prismatic thin-walled cross-section can be divided into a set of walls, connected by mn 
natural nodes, which connects adjacent walls or locates at the free ends (see nodes 1, 2, 3, and 4 in 
Figure 2a, and node 11 in Figure 2b, respectively). Since these walls may greatly vary in length, 
appropriate node refinement will contribute to the capability of capturing cross-section 
deformation from the view-point of interpolation. Therefore, a selective number mi of the 
intermediate nodes (see nodes 5, 6, 7, and 8 in Figure 2a), located between the two natural nodes, 
have been introduced to further divide these walls into linear segments. The set of natural and 
intermediate nodes have defined the cross-section discretization. 

2

14

3

5

6

7

8

x
y

z

2

1
4

3

6

7

8

10

x
y

z

59

11

12  
Figure 2. Discretization of a prismatic thin-walled cross-section: (a) A rectangular hollow 
cross-section; (b) a branched hollow cross-section. 

Figure 2b shows the cross-section discretization adopted for the thin-walled structure depicted 
in Figure 1. Unlike the way illustrated in Figure 2a, two intermediate nodes were located between 
natural nodes 1 and 2 in Figure 2b. Moreover, there was no intermediate node on the branch. The 
differences stem from the experience that longer walls deform more complexly. This was also an 
enhancement for capturing cross-section deformation with a reduced dimension. Since the 
discretization was performed without any restrictions on geometry, one could reasonably assume 
that any prismatic cross-section could be handled as they should be. 

3.2. Basis Deformation Modes 

In order to implement the interpolation process, nodal displacements should be properly 
defined first. Here four degrees of freedom of each node are discussed, including three translations 
and one rotation about the longitudinal axis. Consequently, the cross-section discretization led to a 
total of 4 × (mn + mi) potential deformation patterns. In theory, these deformation patterns could be 
superposed with these nodal displacements. The problem is that the linear independency and 
structural meaning could not be guaranteed before a guideline was appropriately proposed. To 
settle the matter, a measure in GBT [28] was adopted here, which considered individually imposing 
a unit displacement on one of the four degrees of freedom of each node but with zero displacement 
on other nodes. The derived 4 × (mn + mi) deformation patterns might have been of no definite 
physical significance, but the whole set of these patterns, which were linearly independent, could 
express any one of the 4 × (mn + mi) potential cross-section deformation patterns with a linear 
superposition. In this sense, one deformation pattern resulted from the imposing of a unit 
displacement could be designated as one basis of the deformation mode. 

The basis function adopted in Equation (2) could be viewed as the mathematical description of 
a basis deformation mode. The function was to be approximated with interpolation polynomials 
subsequently. In consideration of their partial differential orders in Equation (11), different 
approximation functions were adopted. These included, a set of linear Lagrange functions for the 
axial (out-of-plane) and tangential (in-plane) displacements, and a set of cubic Hermite functions 
for the normal (in-plane) component. These basis functions vary along the midline coordinate s. As 
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(b) a branched hollow cross-section.

Figure 2b shows the cross-section discretization adopted for the thin-walled structure depicted in
Figure 1. Unlike the way illustrated in Figure 2a, two intermediate nodes were located between natural
nodes 1 and 2 in Figure 2b. Moreover, there was no intermediate node on the branch. The differences
stem from the experience that longer walls deform more complexly. This was also an enhancement for
capturing cross-section deformation with a reduced dimension. Since the discretization was performed
without any restrictions on geometry, one could reasonably assume that any prismatic cross-section
could be handled as they should be.

3.2. Basis Deformation Modes

In order to implement the interpolation process, nodal displacements should be properly
defined first. Here four degrees of freedom of each node are discussed, including three translations
and one rotation about the longitudinal axis. Consequently, the cross-section discretization led to a
total of 4 × (mn + mi) potential deformation patterns. In theory, these deformation patterns could
be superposed with these nodal displacements. The problem is that the linear independency and
structural meaning could not be guaranteed before a guideline was appropriately proposed. To settle
the matter, a measure in GBT [28] was adopted here, which considered individually imposing a unit
displacement on one of the four degrees of freedom of each node but with zero displacement on
other nodes. The derived 4 × (mn + mi) deformation patterns might have been of no definite physical
significance, but the whole set of these patterns, which were linearly independent, could express any
one of the 4 × (mn + mi) potential cross-section deformation patterns with a linear superposition.
In this sense, one deformation pattern resulted from the imposing of a unit displacement could be
designated as one basis of the deformation mode.

The basis function adopted in Equation (2) could be viewed as the mathematical description
of a basis deformation mode. The function was to be approximated with interpolation
polynomials subsequently. In consideration of their partial differential orders in Equation (11),
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different approximation functions were adopted. These included, a set of linear Lagrange functions for
the axial (out-of-plane) and tangential (in-plane) displacements, and a set of cubic Hermite functions
for the normal (in-plane) component. These basis functions vary along the midline coordinate s.
As mentioned above, ϕk(s) and ψk(s) were in the form of linear Lagrange functions, while ωk(s) was
described with cubic Hermite functions.

It should be pointed out that the different measures were separately taken for natural and
intermediate nodes in the approximation, since they played different roles. For a natural node i, a unit
displacement was imposed on it, but null displacements were imposed on all the other natural nodes.
The basis functions might have varied within each wall containing node i but were null in all
the other walls. For an intermediate node j, the basis function matched the imposition of a unit
displacement on node j but matched the null displacements, on all other nodes. This means that the
functions varied within the two segments adjacent to node j but were null elsewhere. According to the
above guideline, N = 4× (mn + mi) = 32 basis deformation modes were obtained for the cross-section in
Figure 2a. As shown in Figure 3, among the thirty-two modes arrayed in a 4 × 8 matrix, each of the 4
rows were derived with an imposed unit displacement on eight nodes, while each of the eight columns
represented the deformation modes that resulted from four unit displacements, separately imposed on
one node. In the approximation of their deformation shapes, cubic Hermite functions were applied
for the normal displacements, and linear functions for the tangential component (the 2rd~4th rows),
while the normal displacements were interpolated with the linear Lagrange functions (the first row).
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4. Sectional Deformation Modes

The basis deformation modes above were established on the basis of purely kinematic concepts.
Though they could serve as basis functions in Equation (2), the problem lied in that their large amount
of deformation modes made for a non-reduced model and that the physical interpretation was not
intuitive enough to couple with the beam structural behaviors. A set of final deformation modes,
which exhibited well-defined structural significance and ranked hierarchically, according to their
participations, was very important for a one-dimensional higher-order model. In this section,
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a procedure to assemble basis deformation modes was developed, similar to the concept of combining
like terms in algebra.

This procedure was based on the assumption of considering the cross-section deformation in
dynamic systems as the supposition of rigid displacement and elastic deformation of the cross-section,
whose amplitudes vary along the longitudinal axis, with a fixed proportion relationship. In this sense,
the participation of each basis deformation mode in a final sectional deformation mode can be
determined with the data extracted from the modal shapes of certain cross-sections which were
derived from the presented model. For convenience, the object cross-section always chose the free
end of a cantilevered thin-walled structure, in free vibration. Its slenderness ratio needed to be kept
between three and six, since thin-walled structures (Figure 4), in this range, are prone to perform more
obvious cross-sectional deformation (see Zhu et al. [30]).
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Take the structure in Figure 4 as an example to demonstrate the process. Substituting the set of
basis functions shown in Figure 3 into the presented model and employing the boundary conditions
in Figure 4, the dynamic model of the thin-walled structure was established for modal analysis.
The model was solved in MATLAB with the first few modal shapes extracted and participations of each
basis deformation mode obtained for subsequent use. It should be noted that the number of modal
shapes to be studied was related to the required number of final deformation modes, which largely
influenced the accuracy of the proposed model. In most cases, four to eight modal shapes were
essential and might have been enough for thin-walled structures with simple cross-sections. Figure 5
shows the deformed cross-section of the free end for the first 4 modals, where the blue curves indicate
an undeformed cross-section and the red ones describe a deformed cross-section. The x and y axes
spanned the cross-section plane, while z axis dedicated the cross-section deformation along the
longitudinal direction.

For the ease of implementation, basis deformation modes were separated into in-plane and
out-of-plane ones, which were to be extracted from the four modal shapes illustrated in Figure 5.
In fact, the procedure could be completed to solve the free vibration system, by applying the proposed
finite element, since its feature of variable separation, and the amplitudes of each basis deformation
mode participating in the modal shapes were obtained simultaneously. Figure 6 demonstrated the
amplitudes of basis deformation modes for the first modal of the cantilevered structure.

In Figure 6, the eight amplitudes on the left, corresponded to the out-of-plane mode family,
while the twenty-four on the right represented the participations of the in-plane mode family
(in accordance with the sequence shown in Figure 3). Here the sign of amplitude value stood for
whether the contributing deformation was identical with the predicted positive direction shown in
Figure 3. Among each family, a process similar to combining like terms was carried out to linearly
superpose basis deformation modes, with equal or opposite amplitudes. For example, among the
out-of-plane family with non-null amplitudes in Figure 6, modes 1~4 were like terms (with equal
or opposite amplitude values), and so were modes 5 and 7, which were to be assembled together
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with their amplitudes, as corresponding weights. The assembled modes are designated as primary
deformation modes. As shown in Figure 7, two primary deformation modes were obtained through
the process. Obviously, the former represented a rigid rotation of the whole cross-section about y-axis.
It is a conventional deformation mode in the beam theory of Timoshenko, and here it was numbered
as sectional deformation mode I. The other mode was left alone and was numbered as sectional
deformation mode V, which represents the first warping deformation (out-of-plane distortion caused
by uneven longitudinal extensions, see Carpinteri et al. [31]) of the cross-section. The case confirmed
that a modal shape of a thin-walled structure might be a mixture of rigid displacement and elastic
deformation of the cross-section.
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It should be pointed out that not all primary sectional deformation modes could be identified
as final deformation mode. For example, among in-plane mode family demonstrated in Figure 8,
modes 1~4 were assembled as a conventional deformation mode representing a rigid translation of the
cross-section, being numbered as sectional deformation mode VIII, but not for the rest of the primary
deformation modes i, ii and iii (named as secondary deformation modes describing elastic deformation
profile of the cross-section). These secondary modes were of no clear physical significance and might
not be efficient for a reduced model. For this reason, the three secondary modes were assembled again
to form a final distortion mode. This new mode, like the first distortion mode, was associated with
rigid translation of the cross-section, along the x-axis and could also be observed in actual experiments.
In this sense, it was endued with structural meaning, and numbered as sectional deformation mode XI.
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In this way, a total of 14 final sectional deformation modes were identified through the
“combining like terms” operation carried out on the first four modal shapes (as shown in Figure 9).
Among these modes, modes I, II, III, VIII, IX, and X corresponded to the conventional rigid
displacements of the whole cross-section. The other eight modes were newly defined to describe elastic
deformation of the cross-section with a minimum total. In general, these new deformation modes
were structurally meaningful and linearly independent. Additionally, their arrangements were in
accordance with the sequence they appeared in, which showed the capability of a hierarchy.
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The proposed simplified approach, although involved with cross-section analysis, was different
from both the theory of Camotim et al. [28] for obtaining GBT deformation modes or that of
Vieira et al. [29] for formulating the higher order model. Both of these theories have to solve the
generalized eigenvalue problem to uncouple the governing differential equations or the basis functions,
which is quite demanding. In fact, the authors focused on avoiding this in the process of identifying
sectional deformation modes. Instead, a process similar to combining like terms was developed in
this paper to assemble basis deformations according to their participations in the constitution of
sectional deformation modes. This approach lowered the requirements of mathematical theory and
computation load. Additionally, the corresponding process could naturally separate conventional
deformation modes from warping and distortion of the cross-section, being propitious to the
compatibility with classical beam theories.

5. Illustrative Examples

In order to demonstrate the versatility and clarity of the proposed approach, numerical examples
were presented on a cantilevered (Figure 4) thin-walled structure and a fixed–fixed one (with the free
end in Figure 4 fixed). It should be noted that in these examples the proposed model was coded and
solved in MATLAB [32].

5.1. Convergence Check

Convergence of the proposed finite element was checked with the thin-walled structure shown
in Figure 6. As shown in Figure 10, relative errors of the first ten natural frequencies varied with the
number of elements employed. Here the converged data were obtained with ninety finite elements.
The results showed that a dynamic model with forty elements had converged with relative errors
smaller than 0.1%, as compared to those employing ninety elements. Hence, forty elements were
essential in the numerical examples.
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where the amplitudes were derived with the values of the free end cross-section, while the relative 
differences were calculated based on the assumption that the results of ANSYS shell theory were 
accurate enough. 
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5.2. Regarding the Cantilevered Structure

To check the validity of the proposed model, numerical examples were carried out on the
cantilevered structure in Figure 6. Table 1 showed the information about the first ten modes,
including the values of the natural frequencies fi, obtained with the present model and ANSYS
shell theory, the relative differences δi and deformation mode participations µi. The results of the
present model were obtained with forty elements, equally distributed along the beam length. For the
ANSYS analysis, the structure was discretized into 1120 Shell 181 4-node elements, distributed as
forty elements, along the length, and twenty-eight over the cross-section. The mode participation of
each deformation mode was to be calculated by the following.

µi =


χi ϕimax

N1
∑

j=1
χj ϕjmax

× 100%, i = 1, 2, · · · , N1

χiωi
r
∑

j=N1+1
χjωjmax

× 100%, i = N1 + 1, N1 + 2, · · · , r
(20)

where the amplitudes were derived with the values of the free end cross-section, while the relative
differences were calculated based on the assumption that the results of ANSYS shell theory were
accurate enough.

Table 1. Comparison of the first ten natural frequencies of the cantilevered thin-walled structure.

Mode
Present
Model

ANSYS
Shell

Relative
Error Warping and Distortion Mode Participations (%)

fi (Hz) f Ai (Hz) δi (%) χ4 χ5 χ6 χ7 χ11 χ12 χ13 χ14

1st 85.201 81.477 4.57 0 0.67 0 0 14.8 0 0 0
2rd 105.45 101.77 3.63 0 0 0.32 0 0 24.0 0 0
3rd 123.40 126.34 −2.33 100 0 0 0 0 0 93.9 0
4th 193.97 190.51 1.82 0 0 0 59.7 0 0 0 100
5th 201.95 202.28 −0.16 0 0 0 85.1 0 0 0 100
6th 217.06 225.57 3.77 0 0 0 73.7 0 0 0 100
7th 237.98 240.80 −1.17 0 3.52 0 0 83.5 0 0 0
8th 263.42 260.68 1.05 0 0 0 65.2 0 0 0 100
9th 283.98 279.35 1.66 0 8.71 0 0 0 95.0 0 0

10th 302.90 307.93 −1.63 0 0 0 67.9 0 0 0 100

The results in Table 1 show that the natural frequencies obtained with the present model were
very close to those from the ANSYS shell theory. They also proved that warping and distortion modes
played important roles in dynamics and large errors might emerge if higher-order modes are ignored.
For example, the 3rd~10th modal would not appear when applying conventional beam theories of
Timoshenko and Euler-Bernoulli.
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The idea could be verified by the results demonstrated in Figures 11 and 12, where non-null
amplitudes of final deformation modes have been illustrated to vary along with the longitudinal axis
of the structure. Simply put, conventional modes were dominant only in the first two among the first
ten modal. It should also be noted that the wave forms were always different between the conventional
and the higher-order deformation modes. The phenomenon indicates that in the process of combining
like terms, it was unacceptable to superpose primary deformation modes, if they belonged to the
rigid displacement and the elastic deformation of the cross-section, respectively. It also showed that
warping and distortion were quite independent of conventional modes.
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To further study the dynamic behaviors, Figure 13 provides the comparison concerning the 1st~9th
modal shapes. The comparison reconfirmed that the present model agreed well with the ANSYS shell
theory and also proved that the present model could accurately reproduce three-dimensional behaviors
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of thin-walled structures. One should bear in mind that here a one-dimensional model was being
compared with a three-dimensional finite element model. In many cases, the efficiency and accuracy
makes it a qualified alternative to more complicated shell elements. More importantly, the present
model could provide results of displacements (even stresses and strains) allowing to identify the
decomposition of displacements in terms of the associated deformation modes.
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It was also interesting that the sectional deformation modes IV and XIV did not appear together
with the conventional modes, which was quite different from other higher-order modes. In this aspect,
the two modes were more similar to conventional modes which play important roles in classical
beam theory. In consideration of this phenomenon, these modes might be ranked after classical modes
but before other higher-order modes, in a follow-up study.

5.3. Regarding the Fixed–Fixed Structure

In the proposed model the set of sectional deformation modes were derived through cross-section
analysis of a cantilevered structure. One might consider that if they were a positive natural
characteristic of the cross-section, they should be equally applicable in modeling a thin-walled structure
with different displacement constraints. To check this, another example was carried out with the
structure in Figure 4, with the two ends completely restrained.

Table 2 presents the natural frequencies of the first six modes derived from the present model
and the ANSYS shell theory, and their relative differences δi. Similarly, the results of present
model were obtained with forty elements, while the ANSYS analysis was carried out with 1120
Shell 181 4-node elements, distributed as forty elements, along the length, and twenty-eight over
the cross-section.

Table 2. Comparison of the first six natural frequencies of the fixed–fixed thin-walled structure.

Mode
Present Model ANSYS Shell Relative Error

fi (Hz) f Ai (Hz) δi (%)

1st 197.00 196.67 0.17
2rd 208.69 216.30 −3.52
3rd 226.88 232.36 −2.36
4th 242.34 249.06 −2.70
5th 276.91 271.31 2.06
6th 294.35 295.06 −0.24

As expected, the results in Table 2 show that the natural frequencies derived from the present
model were very close to those from the ANSYS shell theory, with relative differences smaller than 4%
for the studied modes. The relative errors exceeded expectation, as they were even smaller than those
of a cantilevered thin-walled structure. The reason behind this was worthy of further study.

Besides, Figure 14 provides the comparison concerning the 1st~6th modal shapes,
which reconfirmed the good agreement with the ANSYS shell theory. These facts proved that the
proposed model, with a set of sectional deformation modes derived from a cantilevered structure,
could accurately reproduce three-dimensional behaviors of thin-walled structures with their two
ends fixed. Therefore, it is reasonable to deduce that the set of sectional deformation modes are
equally applicable to thin-walled structures with different constraints, provided the cross-section
is the same. It supports the idea that the set of sectional deformation modes, identified with the
present simplified approach, are an inherent property of the thin-walled cross-section. In this sense,
the derived model possesses stronger applicability and generality.
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6. Conclusions

The study focused on a simplified approach to identify deformation modes of thin-walled
structures with prismatic cross-sections. In the course, cross-section discretization was considered to
approximate each basis deformation mode with the interpolation of nodal displacements. The structure
displacement field was superposed with the derived basis deformation modes and employed in
the deduction of the governing differential equation. By means of a modal analysis with the
proposed model solved in MATLAB, amplitudes of each basis deformation mode participating in
object modal shapes, were obtained and used to assemble final deformation modes with a process
similar to combining like terms. The set of final deformation modes were utilized in updating the
one-dimensional model as the new basis functions.

The study concludes that the proposed approach is of easy accessibility in theoretical dimension
and is of efficiency, in calculation. The set of final deformation modes were of clear physical
interpretation and hierarchic capability in forming a reduced model. Especially, numerical examples
showed that the developed model has a general application to different constraints and is capable to
reproduce three-dimensional behaviors of thin-walled structures. In some cases, the efficiency and
accuracy makes it an alternative to shell/plate elements, in commercial finite element software.
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