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Abstract: Fingerprinting acoustic localization usually requires tremendous time and effort for
database construction in sampling phase and reference points (RPs) matching in positioning phase.
To improve the efficiency of this acoustic localization process, an iterative interpolation method is
proposed to reduce the initial RPs needed for the required positioning accuracy by generating virtual
RPs in positioning phase. Meanwhile, a two-stage matching method based on cluster analysis is
proposed for computation reduction of RPs matching. Results reported show that, on the premise
of ensuring positioning accuracy, two-stage matching method based on feature clustering partition
can reduce the average RPs matching amount to 30.14% of the global linear matching method taken.
Meanwhile, the iterative interpolation method can guarantee the positioning accuracy with only
27.77% initial RPs of the traditional method needed.

Keywords: fingerprinting acoustic localization; iterative interpolation; K-Means clustering; Two-stage
matching; Adjacent RPs

1. Introduction

With the development of signal processing technology and artificial intelligence technology,
voice interaction has been gaining extensive attention in the smart device field [1–3]. Nowadays,
the autonomous robot, as the representative of intelligent equipments, is expected to interact
with people in a human-like way [4], and voice interaction can effectively improve its intelligence
level. During human–robot interaction (HRI) process, acoustic localization technology can provide
necessary reference for robot’s pose adjustment to enhance the HRI reliability [5,6]. In recent years,
great advancement of theory and application has been made in acoustic localization field. Most
existing acoustic localization methods are parametric positioning methods, which are based on the
space geometrical propagation models of acoustical signal [6–11]. Usually, these models are simplified
with the assumptions of the sound source and the transmission channel listed as follow:

(1) The sound source is a particle without size and shape.
(2) The signal propagates in homogeneous space.
(3) The sound signal is omnidirectional.

The geometry model acoustic localization methods can achieve acceptable results outdoors,
where the actual signal propagation model is similar to the ideal assumptions mentioned
above. However, for indoor circumstances, the signal propagation model may be altered by
the multipath effect, shadowing effect, fading effect, and delay distortion from walls, floors,
furniture, or ceilings [12,13]. Meanwhile, it is difficult to provide compensation for model distortion
analytically [14,15].

Appl. Sci. 2018, 8, 1862; doi:10.3390/app8101862 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7591-6847
https://orcid.org/0000-0003-3750-1856
http://www.mdpi.com/2076-3417/8/10/1862?type=check_update&version=1
http://dx.doi.org/10.3390/app8101862
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1862 2 of 13

Different from the acoustic localization methods based on geometry model, the fingerprinting
acoustic localization method simply adopted in our previous work [16], as a nonparametric location
approach, can effectively accomplish sound positioning task according to the idea of environment
perception. Compared with the precondition of the parametric localization method mentioned
above, avoiding dramatic environment changes in target area, as the necessary requirement of the
fingerprinting localization method, is easier in the practical application [17,18].

Many studies indicate that the positioning accuracy of non-parametric positioning method
largely depends on the sampling density [19,20]. Therefore, for high resolution positioning indoor,
considerable amount of sampling work for the database construction is needed in the offline phase.
Additionally, during the online phase, the involved algorithms need considerable number of data, and
large amounts of memory and computation resources to carry out the target position estimation in
real time.

Interpolation is a mathematical tool to estimate the value of a function at a certain point
using available values at other arguments. Interpolation methods for scattered data are widely
implemented in mathematical, industrial and manufacturing applications. Radial basis function
(RBF) [21], Linear [22], Inverse Distance Weighting (IDW) [23], and kriging [24] are well-known
interpolation methods for positioning database expansion. Even though the numerous methods are
effective to reduce sampling task quantity under the premise of ensuring the positioning accuracy [25],
there are still many problems in the existing interpolation methods to be solved. In our previous
work [26], the interpolation methods were executed in global interpolation way, which resulted in
the rapid expansion of virtual RPs quantity and increase the calculation amount for RP matching [27].
Meanwhile, the conventional interpolation methods usually rely on the experience of the implementer
and cannot accurately reckon the quantity of virtual RPs needed. In this paper, we propose an iterative
interpolation method to refine the interpolation scope and, at the same time, the interpolation process
can be monitored to avoid unnecessary virtual RPs. The estimation result of each iteration process
can be compared with the one of the previous iteration process, and the interpolation will end
when the different of the estimation results between the two adjacent process is less then the given
threshold value.

The Selective matching combination of the target point (TP) and the RPs can reduce the matching
task, thus improve the positioning efficiency of fingerprinting acoustic localization. Therefore,
the positioning database is considered to be divided into a certain number of sub-databases in the
offline phase, and then the matching scope can be shrunk to a smaller one through the search of adjacent
sub-database [28]. For the database division method, the coordinate space partition is investigated
firstly, which is easy to implement and can reduce the influence of outliers. However, this method
has the defects of uncertain partitioning results and large positioning error. That is mainly because
the division result is greatly influenced by the subjective judgment in the coordinate space partition.
The adjacent RPs of the TP may be divided into different sub-databases, which will cause the RPs
matching error. In machine learning technology, cluster analysis, as a precursor process of other
learning tasks, is often used for classification of unlabeled samples. The RPs with similar features can
be assigned to the same sub-database automatically by cluster analysis technique to accomplish the
purpose of the database partition [29].

The rest of the paper is organized as follows: In Section 2, the general process of the fingerprinting
acoustic localization is briefly introduced. In Section 3, the positioning database partition by cluster
analysis and the adjacent RPs searching based on the two-stage matching method are stated, and
then the iterative interpolation method is proposed to generate the virtual RPs for ensuring the target
position estimation accuracy with few initial RPs. Section 4 presents the implementation details and
evaluates the performance of the novel methods from the results obtained. Finally, some conclusions
are drawn in Section 5.
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2. The Fingerprinting Localization Model

Fingerprinting localization method is a database matching approach. As Figure 1 shows,
the fingerprinting localization method uses the position information and the related features measured
in the target region to establish the positioning database. In the actual positioning, the signal captured
by the positioning system will match with the samples in the positioning database, and the samples
most similar to the target signal are selected to accomplish the position estimation.
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Figure 1. Illustration of the fingerprinting localization process.

As what has been introduced in our previous work [16], fingerprinting acoustic localization
method requires an offline phase to construct the positioning database and an online phase for acoustic
target location [30].

In the offline phase, the positioning database can be constructed by the coordinate of position
marks and the corresponding features. The coordinates of the position marks are usually determined
according to the site environment of the positioning area and the location accuracy requirements of the
task. As the location-related feature in this work, time difference of arrival (TDOA) is widely used
in real-time acoustic positioning applications for its low computational complexity and small data
size [31–35]. Finally, samples, also known as position fingerprints, are formed by the coordinate of
position marks and their corresponding features. The fingerprints in each position mark are collected
and the location fingerprint database is established.

In the online phase, the feature vector of the observed target signal is matched with each sample
of the positioning database. A specific number of samples are selected as the adjacent RPs according
to the similarity with the target. Finally, the position of the target can be calculated by the specific
position estimation algorithm based on the adjacent RPs according to the matching result. Exactly the
same estimation algorithm used in the RADAR system, weighted-nearest neighbor (WKNN) [36] is
usually used for the fingerprinting localization process.

3. The Proposed Fingerprinting Acoustic Localization Approach

In the traditional fingerprinting localization approach, the target signal needs to match with all
samples in the database to select its adjacent RPs for location estimation. Therefore, the large scale
positioning database that the fingerprinting localization accuracy depends on means the complexity of
matching operation improvement and the efficiency of positioning reduction. Aiming at solving the
contradictory in traditional fingerprinting localization approach, this paper makes some improvements.
As Figure 2 shows, after the database construction in the offline sampling phase, the entire positioning
database is divide into sub-databases. Then, in the online positioning phase, the matching scope can
be narrowed by the adjacent sub-database matching stage, and the adjacent RPs searching can be
accomplished with a small amount of matching computation.
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Meanwhile, the offline phase of the fingerprinting localization approach requires a great sampling
effort as the mobile sensor has to be placed at every position marks in the location area. To reduce the
initial sampling effort, the database can be constituted using the sparse samples in the target area and
extended afterwards by interpolation functions. As Figure 2 shows, an iterative interpolation method
is presented to further refine the interpolation scope to avoid unnecessary virtual RPs. At the same
time, the estimation result of each iteration process is compared with the one of the previous iterations,
and the interpolation ends when the difference of the estimation results between the two adjacent
process is less than the given threshold value.
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Figure 2. Fingerprinting acoustic localization process based on cluster analysis and iterative interpolation.

The novel acoustic localization approach consists of three main stages:

(1) Divide the positioning database into a certain number of sub-databases by K-Means clustering
algorithm after database construction in the offline sampling phase.

(2) Select the adjacent RPs of target point by the two-stage RPs matching method.
(3) Conduct the position estimation of the target point by the iterative interpolation method.

3.1. Database Partition by Clustering Method

Clustering is an elements grouping process according to some specific features, which is called
the cluster key, such as the TDOA value we choose in this paper. The prototype-based clustering
method has the advantages of simple, fast and efficient process for big datasets classification. As one
of the prototype-based clustering algorithms, K-Means clustering algorithm is a classical and efficient
algorithm for cluster analysis [37].
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The database partition process by K-Means clustering algorithm includes three steps. Suppose
there is a database D with N samples that needs to be partitioned to K (K < N) groups. The clustering
algorithm for the sound-position fingerprint database can be described as Algorithm 1.

Algorithm 1: The K-Means clustering algorithm for positioning database partition.

Input: database D= [S1, S2, · · · , SN ]
T ; cluster class number K.

Output: D = {C1, C2, · · · , CK}
1 Randomly selected K samples from D as the initial cluster centers :{µ1, µ2, · · · , µK};
2 while f lag > 0 do
3 cluster centers update flag: f lag = 0;
4 Ci=∅(i = 1, 2, . . . , K);
5 for j = 1,2,. . . ,N do
6 calculate the distance between Sj and each cluster center µi: dji =

∥∥Sj − µi
∥∥

2;
7 definite the cluster mark of Sj by the nearest cluster center: λj = arg mini∈{1,2,··· ,K}dji;
8 classify the sample Sj into the corresponding cluster: Cλj = Cλj ∪ Sj ;

9 for i = 1,2,. . . ,K do
10 calculate the new cluster center µ′i =

1
|Ci | ∑ S∈Ci S;

11 if µ′ i 6= µi then
12 update the current value of µi to µ′i;
13 f lag = f lag + 1;
14 else
15 the current value µi remain the same;

Firstly, K samples are randomly selected from the positioning database D as the initial cluster
center [µ1, µ2 · · · µK]. Then, the remaining samples are assigned to the most similar clusters according
to the similarity with each cluster center in feature space. Then, the cluster center is updated by
µi =

1
|Ci | ∑ S∈Ci S, where S means the samples clustered to Ci. The clustering process is repeated until

the cluster centers stop updating, and finally D = {C1, C2 · · ·CK}.

3.2. Two-Stage RPs Matching

The vocal target can be located in the positioning area after the RPs sampling and the database
construction. In the positioning phase, a two-stage matching algorithm is proposed to compare the
feature vector of vocal target F=[ f 1, f 2, · · · , f M] with each simple in database D to find the adjacent
RPs with the minimum matching error.

The Euclidean distance between target point F and cluster center µi of cluster Ci can be defined by:

Disi=‖F − µi‖2, i = 1, 2, . . . , K. (1)

The adjacent cluster can be chosen through:

Ca = Carg mini∈{1,2,...,K}Disi (2)

Then, as shown in Figure 3b, the adjacent RPs can be searched according to the Euclidean distance
distance disj between the target point and each sample of the adjacent cluster in feature space.

The distance can be defined as:

disj=
∥∥∥F − F j

a

∥∥∥
2
, j = 1, 2, . . . , nc. (3)
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where F j
a is the feature vector of the jth RP in adjacent clustering Ca , and nc denotes the total number

of samples in Ca. Adjacent RPs set Da can be gathered by:

Da = Da ∪ Sarg minj∈{1,2,...,nc}disj
(4)

Because the complexity of matching process is far greater than the other parts of the location
process, and the computation complexity of the other parts in the positioning process is almost the
same, the computational complexity of matching operations is investigated in this paper. N denotes
the total number of RPs in the database and K is the number of clusters. The complexity of linear
matching process is O (N) , and the average complexity of matching process based on cluster analysis
is O (N/K). Comparing with the conventional matching method, the proposed approach can reduce
the complexity of matching process to its 1/K.

Firstly, as Figure 3a shows, adjacent cluster is determined based on the Euclidean distance between
the target point and each cluster center in feature space.

c2

c3

c4

c5

c1

1

2

3

4
5

TP

RPs

(a)
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c3
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c1

TP

RPs

(b)

Figure 3. Two-stage RPs matching process: (a) the adjacent cluster matching process; and (b) the
adjacent RPs matching process. The purple, orange, yellow, blue and green dots are the RPs clustered
to different clusters marked as c1 to c5; the dark blue dots are the cluster centers marked as µ1 to µ5;
the red dot denotes the TP; DIS means the Euclidean distance between TP and each cluster center; and
dis means the Euclidean distance between TP and each RP in adjacent cluster.

3.3. Location Estimation Based on Iterative Interpolation

To reduce the sampling effort, global interpolation methods are usually used to improve the
positioning accuracy under the sparse sample points collection. However, the global interpolation
method usually results in the rapid expansion of virtual RPs quantity, and cannot accurately reckon
the quantity of virtual RPs required for the satisfactory positioning accuracy. In this paper, we propose
an iterative interpolation method to avoid the unnecessary virtual RPs and further improve the
location efficiency.

In the online positioning process, the virtual RPs can be generated by the iterative interpolation
method, as Figure 4 shows, where the iteration interpolation process is based on four adjacent RPs.
In the interpolation process, the first generation virtual RPs are defined as the adjacent RPs selected
before as D1

v = Da. During the iteration interpolation process, the elements of Dt
v are refreshed by:{

St+1
n = ωt

nSt
n + ωt

n+1St
n+1, n < N

St+1
n = ωt

nSt
n + ωt

1St
1, n = N

(5)

where St
n is the nth element of tth generation Dt

v, and ωt
n is the according weight that can be calculated

through IDW method by the feature space Euclidean distance between recent generation virtual RPs
and the target point that needs to be located.
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Test point

Adjacent RPs （first generation virtual RPs ）

Second generation virtual RPs 

Third generation virtual RPs

Other RPs

Figure 4. Virtual RPs generation process.

As Algorithm 2 shows, online positioning process based on the iteration process continues until
the iteration time beyond the maximum iteration value T or the difference between two-estimation
process results is satisfied with |l − l′| ≤ ε, where ε is the iterative process end threshold value.

Algorithm 2: The location estimation process based on iterative interpolation.
Input: adjacent RPs Da

Output: test point location estimation results l
1 iteration time t = 1;
2 first generation virtual RPs D1

v = Da;
3 while t < T ‖ |l − l′| ≤ ε do
4 t = t + 1;
5 l′ = l;
6 new generation virtual RPs Dt+1

v can be generated by Equation (5);
7 location estimation l can be calculated by the WKNN algorithm ;

4. Experimental Validation

To demonstrate the performance of the proposed acoustic localization approach based on the
cluster analysis and iterative interpolation, real-world experiments have been carried out in a practical
room. The room is w 9.64 × 7.04 × 2.95 m3, where the noise is about 40 dB and the walls are not
insulated. The scene and equipment of the experiments are shown in Figure 5. The target area is
a rectangular plane with the length of about 6 m and width of about 5 m. The four-channel microphone
array is composed of the MPA201 microphones produced by the BSWA Technology Co., Ltd., Beijing,
China. The microphones are installed at the four vertices of the positioning area with the height about
1.35 m above the floor. The type of the acquisition card is known as NI9215A from NI company, Austin,
USA. The sampling frequency is set as 100 kHz, and the sampling period is 1 s. The sound source is
a Bluetooth speaker with the same height as microphone array. A system-provided text tone called
“Popcom” in iPhone 6 is selected for localization sound signal.
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Figure 5. The fingerprint-based acoustic localization system and experiment scene.

In the sampling process, the coordinates of the samples are uniformly distributed in the location
area by grid division, and the distance between each samples is 0.593 m. The total number of the
samples prepared for database construction is 72, and 13 test points are used for target point estimation.

4.1. Analysis of the Two-Level RPs Matching Method

According to Section 3.3, more subsets in the positioning database partitioned means more
online positioning efficient improvement by two-level RPs matching method. However, the
same as the coordinate space partition method, when the subsets reaches a certain number,
distinguishing between sub-databases partitioned by feature clustering partition method is no longer
obvious. Then, the adjacent RPs may be divided into different sub-databases, which will cause RP
matching error.

To investigate the effect of the division number on location accuracy, we explored the localization
results with division number from 1 to 6, where 1 means the the matching process without partition,
that is, global linear matching localization.

As shown in Figure 6, when division number increased from 2 to 4, positioning accuracy slightly
improved compared with global linear matching. That is mainly because, according to the clustering
results, the outlier points with large measurement errors in the sub-database can be eliminated by
outlier test method. However, when the number of sub-databases increased to 5, the localization result
began to deteriorate significantly. Moreover, when the division number increased to 6, the average error
exceeded 0.18 m, while the maximum error reached 0.2780 m and 61.5% of the test point positioning
accuracy could not meet the 0.20 m positioning requirements.
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Figure 6. The effect of sub-database number on positioning.
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To compare the positioning effect between the coordinate space partition method and feature
clustering partition method, the average matching amount, matching time and the average positioning
error were considered when the division number is 4. As shown in Table 1, the average matching
amount and average matching time of the two different partition methods in the RPs matching process
are basically the same, and their online positioning efficiencies greatly improved compared with the
global linear matching method. Among them, the feature clustering partition method can reduce the
average matching amount and the average matching time to 30.13% and 29.89% of the global linear
matching method, respectively, while the coordinate space partition method was 30.97% and 30.13%.
In comparison to the positioning accuracy, the positioning error of 0.0813 m based on feature clustering
partition method is significantly superior to the 0.1214 m based on the coordinate partitioning partition
method, and the positioning accuracy is improved by 13.97% compared with the traditional linear
matching method.

Table 1. Comparison of the influence on positioning effect between database partition methods. A-amount,
average matching amount; A-time, average matching time; A-error, average positioning error.

Cases A-Amount A-Time (s) A-Error (m)

No partition 72 0.0271 0.0945
Coordinate partition 22.3 0.0084 0.1214

Cluster analysis partition 21.7 0.0081 0.0813

4.2. Analysis of the Iterative Interpolation Method

In this work, four adjacent RPs selected by the global linear matching method are used for target
location estimation. In the process of virtual RPs generation, the maximum number of iterations
is set as Tmax = 10. In addition, when the difference between the results of two adjacent iterations
interpolation positioning process is less than ε = 0.0001 m, the iteration process will end.

The global positioning results by examining the average error and maximum error of the
positioning results of 13 test points has been evaluated. As shown in Figure 7, the iterative interpolation
method can reduce the average error from 0.0945 m to 0.0406 m, and the maximum error from 0.2290 m
to 0.0818 m. In the process of iterative interpolation, the effect of location accuracy improvement is
obvious in the first six iterations. However, along with the iterative process and the improvement of
positioning accuracy, the effect is gradually weakened. The same phenomenon also occurred at the
maximum error.
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Figure 7. The changes of mean error and maximum error of location estimation according with the
iterate interpolation process.
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As Table 2 shows, 6 cases were considered to compare the positioning effect of different
interpolation methods. The maximum errors and average errors were selected as the evaluation
indicators. For iterative interpolation methods, the V-RPs is defined as the average value of the virtual
RPs generated during the localization process of the test points.

Table 2. The location results comparison of different fingerprinting acoustic localization methods. I-RPs,
initial RPs; V-RPs, virtual RPs; M-error, maximum positioning error; A-error, average positioning error.

Cases Total RPs I-RPs V-RPs M-Error (m) A-Error (m)

No interpolation 20 20 0 0.4505 0.2385
72 72 0 0.2290 0.0945

Global interpolation 255 20 235 0.1656 0.0772
255 72 183 0.1330 0.0534

Iterative interpolation 48.9 20 28.9 0.1773 0.0791
91.2 72 19.2 0.1542 0.0652

According to Table 2, in the fingerprinting acoustic localization process without interpolation,
72 RPs can provide apparently higher accuracy than the one with 20 RPs. The results confirmed the
viewpoint that improving RPs density can directly improve the positioning accuracy.

In the cases of global interpolation method, the interpolation method can make further
improvement for the positioning accuracy. On the other side, the initial RPs ratio can also affect
the location results. That is, when the total RPs of the acoustic localization process based on global
interpolation method are the same, more initial RPs means better positioning accuracy, but the influence
of initial RPs ratio is weaker than the number of the total RPs.

In the case of iterative interpolation method, it is easy to see that iterative interpolation method
needs only 12.3% virtual RPs of the global interpolation method for similar precise location results
when the number of initial RPs is 20. When the number of initial RPs is 72, iterative interpolation
method needs only 10.5% virtual RPs of the global interpolation method for a slightly less precise
positioning results.

4.3. Analysis of the Novel Method

The fingerprinting acoustic localization approach based on iterative interpolation and cluster
analysis is presented in this work. The positioning database consisting of 72 initial RPs is divided into
four sub-databases by K-Means clustering algorithm, and four adjacent RPs selected by the two-stage
matching method are used for 13 test point’s location estimation based on iterative interpolation.

As Figure 8 shows, all of the estimated positions of the 13 target points obtained good concordance
with the true positions. Meanwhile, the interpolation process at most target points ended in five
iterations. Take Test Point 3, for instance: the location error decreased during iterative interpolation
process and ended at the seventh iteration.

To analyze the influence at different test points, the position accuracy comparison of the novel
method and the original method were taken on each test point. As Figure 9 shows, the novel method
brought significant improvement of positioning accuracy for 11 of the 13 test points. In the novel
method, the errors of Test Points 3, 7, 9, 11 and 12 decreased more than 50% from the original location
method. However, Test Points 2, 4, 5, 6, 10 and 13 were not sensitive to interpolation process because
they already had relatively high positioning accuracy. It must to be pointed out that the location
results of Test Points 1 and 8 got worse and result in no apparent improvement in maximum error.
That is because these points were located at the boundary of two sub-databases, and their adjacent
RPs were assigned to different clusters by feature clustering partition method. The causes of location
error are complex and varied; to further decrease the location error, improvements of other links in
fingerprinting acoustic localization process are also needed.
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Figure 8. The positioning results of the fingerprinting acoustic localization based on iterative
interpolation method. The green, pink, blue and yellow dots are the RPs clustered to different clusters,
red dots denote the test points, and the black dots are the estimation results of each interpolation.
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Figure 9. The positioning results comparison of the acoustic localization without interpolation process
and acoustic localization base on iterative interpolation process.

5. Conclusions

In this paper, the iterative interpolation method and cluster analysis method has been presented for
improving the positioning efficiency of indoor fingerprinting acoustic localization. In the fingerprinting
acoustic localization process, the calibration efforts in offline phase can be reduced due to the sparse
sampling treatment, and the satisfactory positioning accuracy can be guaranteed by virtual RPs
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generated by the iterative interpolation method. Meanwhile, the K-Means cluster analysis method
was adopted for database partition, and a two-level RPs matching method was used to speeding up
the online positioning phase. The results show that the fingerprinting acoustic localization method
can achieve satisfactory accuracy with few initial RPs sampling in offline phase and a more rapid RPs
matching process in online phase by iterative interpolation and cluster analysis. As future works,
an extension of the clustering method to reduce the location results deterioration of the frontier points
and various types of complex tasks for further verification of the novel method are being considered .
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