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Abstract: We investigated the electronic and magnetic properties of bulk and monolayer CrSi2
using first-principle methods based on spin-polarized density functional theory. The phonon
dispersion, electronic structures, and magnetism of bulk and monolayer CrSi2 were scientifically
studied. Calculated phonon dispersion curves indicated that both bulk and monolayer CrSi2 were
structurally stable. Our calculations revealed that bulk CrSi2 was an indirect gap nonmagnetic
semiconductor, with 0.376 eV band gap. However, monolayer CrSi2 had metallic and ferromagnetic
(FM) characters. Both surface and confinement effects played an important role in the metallic
behavior of monolayer CrSi2. In addition, we also calculated the magnetic moment of unit cell of
2D multilayer CrSi2 nanosheets with different layers. The results showed that magnetism of CrSi2
nanosheets was attributed to band energy between layers, quantum size, and surface effects.

Keywords: electronic property; magnetism; bulk CrSi2; monolayer CrSi2; first-principle

1. Introduction

Since graphene [1], which is widely used in the fields of materials, electronics, physics, chemistry,
energy resources, biomedicines, etc., was discovered by Andre Geim and Konstantin Novoselov,
two-dimensional (2D) layered materials have triggered extensive interest owing to their unique
physical properties [2]. In the past decades, two-dimensional (2D) materials such as silicene, h-BN,
layered transition metal dichalcogenides (TMD), and monolayer transition metal silicides (TMSi2)
have been widely studied [3–11]. Contrasting with bulk materials, low-dimensional materials
with unusual physical properties are important for potential applications in spintronics [12–15],
magnetic storage [16,17], and molecular scale electronic devices [18,19], etc. Two-dimensional (2D)
materials present extensive novel properties due to quantum size effects [20–23]. The properties
of materials strongly depend on the crystal structure. Thus, we can change structure phases to
tune the properties of materials. Previous investigations have proved that controlling the crystal
structure and thickness of materials can tune magnetic moment [20], transform metal to semimetal or
semiconductor transition [21], and phase segregation [22], as well as alter electronic properties [23].
Among transition metal silicide, CrSi2 received numerous attention due to important applications
in Si-based device technology [24–26]. Previous literature concludes that bulk CrSi2 is an indirect
semiconductor. Nevertheless, to the best of our knowledge, few studies [27,28] on their magnetic
properties have been reported. In recent years, studies have demonstrated that depending on the
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compositions, 2D monolayer transition metal silicides (TMSi2) are found to be either magnetic or
nonmagnetic [9–11]. Among TMSi2 monolayers, CrSi2 sheet is found to be ferromagnetic [9–11,29], thus
it may become an important magnetic nanomaterial in spintronics. Theoretically, both Dzade et al. [29]
and Bui et al. [30] have employed the quantum ESPRESSO package to investigate silicene and
transition metal-based materials. Interestingly, they get different even conflicting results, i.e.,
Dzade deduced that two-dimensional CrSi2 is ferromagnetic, whilst Bui deduced that planar CrSi2
favors anti-ferromagnetism.

The development of spintronics and magnetic storage urgently needs synthesized novel 2D
magnetic materials. Recently, functionalization of nonmagnetic monolayer materials has been a major
way to induce magnetism [31–33]. Inspired by the synthesis of silicon, both theoretical [29,30] and
experimental [34] researchers have studied the properties of transition metal silicides layers. There
is a big obstacle in synthesizing truly two-dimensional nanomaterials and it is because its structural
stability depends on temperature sensitively. Naturally, more 2D magnetic materials are required
to meet the demand for the rapid development of spintronics and magnetic storage. In this paper,
first-principle calculations are employed to probe how dimension and size affect the electronic structure
and magnetism of both bulk and monolayer CrSi2. The phonon dispersion curve, band structures with
spin state, total and partial density of states (DOS), spin density of bulk and monolayer CrSi2 system,
and magnetic moment of per unit cell of multilayer CrSi2 nanosheets varying with different layers, are
systematically investigated. These results suggest monolayer CrSi2 may have potential applications in
exploiting molecular scale electronic devices.

2. Material and Methods

Our calculations were performed using spin-polarized density functional theory (DFT) in the
generalized gradient approximation (GGA) [35,36], with the Pedew-Burke-Ernzerhof (PBE) function
for exchange-correlation potential, which were implemented in the Cambridge Sequential Total Energy
Package (CASTEP) [37]. Projector augmented-wave (PAW) potentials [38] were employed to illustrate
electron–ion interactions. The convergence criterion of total energy was set to be 10−6 eV, and energy
cutoff of 310 eV was adopted for the expansion of plane waves after our test. The Monkhorst-Pack [39]
k-point grids of 6 × 6 × 6, 6 × 6 × 1 were applied for the Brillouin-zone (BZ) integration in bulk,
and monolayer CrSi2 computation, respectively. For monolayer CrSi2, vacuum-slabs of 15Å were
used to avoid interactions between adjacent atom layers. CrSi2 has a hexagonal structure (C40) with
nonsymmorphic space group D4

6-P6222 [24,25], containing no primitive translations which interchange
individual CrSi2 layers. The lattice constants were a = 4.431 and c = 6.364 Å [24,25]. The lattice
constants and atomic positions were fully relaxed until the force on each atom was less than 0.03 eV/Å.
Monolayer CrSi2 has a graphene-like honeycomb structure, which can be formed by a micromechanical
cleavage technique due to weak van der Waals (vdW) forces between those layers and strong covalent
bonding intralayer [40]. Top and side views of monolayer CrSi2 after geometry optimization are
depicted in Figure 1. According to chemical formula, per unit cell is constructed by one Cr atom and
two Si atoms because in every intralayer, one Cr atom is in the center of each hexagonal hole of silicene
lattice, leading to a 1:2 ratio between Cr and Si.
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Figure 1. Top and side views of bulk and monolayer CrSi2 after geometry optimization. Figure 1 (a) 
and Figure 1 (b) describe top view and side view of the bulk CrSi2 crystalline structure, Figure 1 (c) 
and (d) depict top view and side view of the monolayer CrSi2 crystalline structure, respectively. 
Yellow balls and blue balls represent Si and Cr atoms. 

3. Results and Discussion 

3.1. Phonon Dispersion Curve 

It is necessary to check the structural stability of materials before calculation. Although the 
structures of bulk and monolayer CrSi2 have been optimized, the phase stability of these structures 
remains uncertain. Phonon dispersion spectrum analysis is a valid tool to confirm the structural 
stability. If all the phonon frequencies on the k-points in the Brillouin zone are positive, the structure 
is stable at absolute zero of temperature. Otherwise, the structure is unstable at absolute zero of 
temperature [41]. To check the structural stability of bulk and monolayer CrSi2, we accurately 
calculated phonon dispersion curves along the high symmetry directions in the Brillouin zone. As 
shown in Figure 2a for bulk CrSi2, and b for monolayer CrSi2, no imaginary vibration frequency 
appears for bulk and monolayer CrSi2, indicating that both structures of bulk and monolayer CrSi2 
are stable at ground state in accordance with-Ref. [41]. 
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Figure 1. Top and side views of bulk and monolayer CrSi2 after geometry optimization. Figure 1a,b
describe top view and side view of the bulk CrSi2 crystalline structure, Figure 1c,d depict top view
and side view of the monolayer CrSi2 crystalline structure, respectively. Yellow balls and blue balls
represent Si and Cr atoms.

3. Results and Discussion

3.1. Phonon Dispersion Curve

It is necessary to check the structural stability of materials before calculation. Although the
structures of bulk and monolayer CrSi2 have been optimized, the phase stability of these structures
remains uncertain. Phonon dispersion spectrum analysis is a valid tool to confirm the structural
stability. If all the phonon frequencies on the k-points in the Brillouin zone are positive, the structure
is stable at absolute zero of temperature. Otherwise, the structure is unstable at absolute zero of
temperature [41]. To check the structural stability of bulk and monolayer CrSi2, we accurately
calculated phonon dispersion curves along the high symmetry directions in the Brillouin zone. As
shown in Figure 2a for bulk CrSi2, and b for monolayer CrSi2, no imaginary vibration frequency
appears for bulk and monolayer CrSi2, indicating that both structures of bulk and monolayer CrSi2 are
stable at ground state in accordance with-Ref. [41].
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Figure 2. Phonon dispersion curves along the high-symmetry directions in the Brillouin zone of (a) 
bulk CrSi2, (b) monolayer CrSi2. 
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We calculated the magnetic moment of unit cell, local magnetic moment of Cr and Si atom, 
total energy, band length between Cr and Si atoms, band gap and lattice parameters, listed in Table 
1. The results were satisfying, compared with those values calculated in References [9,24,25,29,30]. 
One can see that bulk CrSi2 is an indirect gap semiconductor, whereas, monolayer CrSi2 has metallic 
character. It can also be seen that there is a big difference between bulk and monolayer compounds 
in the magnetic moment, i.e., monolayer CrSi2 unit cell has an obvious magnetic moment~3.68 μ , 
and the local magnetic moment of every Cr and Si atom were 4.11 and −0.21 μ , respectively. In 
contrast, for the bulk CrSi2 system, every Cr and Si atom hardly had any magnetic moment. These 
results indicated that whilst bulk CrSi2 was diamagnetic, monolayer CrSi2 system was 
ferromagnetic (FM), consistent with the conclusions of References [9–11,29]. However, it conflicts 
with the results of Reference [30]. Unfortunately, until now, there is no available experimental 
evidence to validate the contradicting theoretical results. Potentially, this research may inspire more 
experimenters to study these two-dimensional systems. 

Table 1. Magnetic moment and structure of bulk and monolayer CrSi2. 

 
Magnetic 

Moment of Unit 
Cell (𝛍𝐁) 

Local Magnetic 
Moment of Cr 

atom (𝛍𝐁) 

Local Magnetic 
Moment of Si 

atom (𝛍𝐁) 

Total Energy 
of System (ev) 

Band Length of 
cr-si of 

Intralayer (å) 

Band 
Gap 
(eV) 

Lattice 
Parameter 

(Å) 

bulk CrSi2 

4 × 10−4 0 0 −8050.32 2.47, 2.52,2.55 0.376 a = 4.4276 c = 
6.3681 

0 c 0 c 0 c -- 2.47 a,2.55 a,3.06 a 
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0.21 d 
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4.43 d 

c = 6.349 a, 
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3.68 4.11 −0.21 −24118.24 2.55 0 a = 4.4276 
c = 15 

3.6 b 4.15 c -- -- 2.56 b 0 c 
a = 3.93968 e 
c = 16.49899 e 

a Reference [25]. b Reference [29]. c Reference [30]. d Reference [24]. e Reference [9]. 

To reveal the origin of metallicity and magnetism, band structure and total and partial density 
of states (DOS) were systematically studied. As shown in Figure 3, the band structures with up and 
down spin of bulk and monolayer CrSi2 are calculated. The results show that bulk CrSi2 is an 
indirect gap semiconductor with a band gap of 0.376 eV, which is in good accordance with Ref. 
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Figure 2. Phonon dispersion curves along the high-symmetry directions in the Brillouin zone of (a) bulk
CrSi2, (b) monolayer CrSi2.

3.2. Electronic Structure

We calculated the magnetic moment of unit cell, local magnetic moment of Cr and Si atom, total
energy, band length between Cr and Si atoms, band gap and lattice parameters, listed in Table 1.
The results were satisfying, compared with those values calculated in References [9,24,25,29,30]. One
can see that bulk CrSi2 is an indirect gap semiconductor, whereas, monolayer CrSi2 has metallic
character. It can also be seen that there is a big difference between bulk and monolayer compounds
in the magnetic moment, i.e., monolayer CrSi2 unit cell has an obvious magnetic moment~3.68 µB,
and the local magnetic moment of every Cr and Si atom were 4.11 and −0.21 µB, respectively. In
contrast, for the bulk CrSi2 system, every Cr and Si atom hardly had any magnetic moment. These
results indicated that whilst bulk CrSi2 was diamagnetic, monolayer CrSi2 system was ferromagnetic
(FM), consistent with the conclusions of References [9–11,29]. However, it conflicts with the results of
Reference [30]. Unfortunately, until now, there is no available experimental evidence to validate the
contradicting theoretical results. Potentially, this research may inspire more experimenters to study
these two-dimensional systems.

Table 1. Magnetic moment and structure of bulk and monolayer CrSi2.

Magnetic
Moment of

Unit Cell (µB)

Local Magnetic
Moment of Cr

Atom (µB)

Local Magnetic
Moment of Si

Atom (µB)

Total Energy
of System

(ev)

Band Length of
cr-si of Intralayer

(å)

Band Gap
(eV)

Lattice
Parameter (Å)

bulk CrSi2

4 × 10−4 0 0 −8050.32 2.47, 2.52,2.55 0.376 a = 4.4276
c = 6.3681

0 c 0 c 0 c – 2.47 a, 2.55 a, 3.06 a 0.35 a, 0.21 d

a = 4.42 a, 4.43
d

c = 6.349 a,
6.36 d

monolayer
CrSi2

3.68 4.11 −0.21 −24118.24 2.55 0 a = 4.4276
c = 15

3.6 b 4.15 c – – 2.56 b 0 c a = 3.93968 e

c = 16.49899 e

a Reference [25]. b Reference [29]. c Reference [30]. d Reference [24]. e Reference [9].

To reveal the origin of metallicity and magnetism, band structure and total and partial density
of states (DOS) were systematically studied. As shown in Figure 3, the band structures with up and
down spin of bulk and monolayer CrSi2 are calculated. The results show that bulk CrSi2 is an indirect
gap semiconductor with a band gap of 0.376 eV, which is in good accordance with Ref. [24,25], and
monolayer CrSi2 is metallic being in good agreement with our previous results [10,11]. In the bulk
CrSi2 system, the spin-up and spin-down states were completely symmetric, which indicated that
bulk CrSi2 was a nonmagnetic semiconductor. However, for the monolayer CrSi2 system, the spin-up
and spin-down states were in complete asymmetry and both spin-up and spin-down states go across
the Fermi level, which manifested that monolayer CrSi2 was both magnetic and metallic. All these
results were in good agreement with the analysis of Table 1. It has been confirmed that the energy band
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structure of TMDs are greatly affected by the crystal structure [20]. Huang et al. [42] have explored the
origin of the high metallicity on MoSi2 nanofilms in detail. We can elucidate the physics mechanism of
why bulk CrSi2 is a semiconductor, whilst monolayer CrSi2 is metallic using Huang’s theory. Both
surface and confinement effects contribute to the high sensitivity of the metallicity on nanofilms type,
explaining the reason why monolayer has a metallic character.
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To further investigate the physical mechanism of magnetism, which may be dependent on the
dimension of materials, we calculated the total density of states (DOS) and partial density of states
(PDOS) of bulk and monolayer CrSi2 systems, as depicted in Figure 4. Total DOS and PDOS of the
bulk CrSi2 system were fully symmetric, indicating that bulk CrSi2 system cannot have a magnetic
characteristic, in accordance with Figure 3a. In contrast, for the monolayer CrSi2 system, both total
DOS and PDOS of monolayer CrSi2 system were asymmetric, manifesting that monolayer CrSi2 system
possesses a magnetic characteristic, in good agreement with Figure 3b. The degree of dissymmetry in
PDOS of the Cr atom in monolayer CrSi2 system was greater than the Si atom’s, which is the reason
why the Cr atom has a larger local magnetic moment as depicted in Table 1. In addition, the total
density of state near Fermi level of the bulk CrSi2 system mainly consists of Cr-3d orbital electron.
The total density of state near Fermi level of the monolayer CrSi2 system is mainly made up of Cr-3d
orbital electron, with Cr-3p and Si-3p orbital electrons making limited contribution to the total density
of state of the system. Moreover, the results also indicated that total magnetic moment (3.68 µB) arose
mainly from the spin-up Cr-3d states. Han [9] has investigated the origin of magnetic behavior in
monolayer FeSi2 and CoSi2 by orbital coupling of atoms. The stronger orbital coupling between atoms
may account for the quench of magnetism of the atom. It can be seen from Figure 4b that no noticeable
coupling between p orbital of Si atom and d orbital of Cr atom is found around the Fermi level, which
indicates that monolayer CrSi2 has magnetic behavior.
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3.3. Magnetic Properties

To understand the origin of magnetism, which may be dependent on the dimension of the
material, we further investigated the spin density of bulk and monolayer CrSi2 systems. As shown
in Figure 5, the spin density isosurface plots of bulk and monolayer CrSi2 on top view (001) are
particularly calculated. For the bulk CrSi2 system, spin density near Cr and Si atoms was close to zero,
which agreed with the calculations of local magnetism moment of Cr and Si atoms (0 µB) in Table 1.
Nevertheless, for the monolayer CrSi2 system, the numerical values of spin density near Cr atoms
were very noticeable, which was much larger than those of spin density near Si atoms. It indicated that
the behavior of magnetism in the monolayer was mainly contributed by the magnetic property of Cr
atoms. Through careful analysis, we found that electron transfer from one Cr atom to one Si was equal
in both the bulk and monolayer CrSi2 systems. The magnetic behavior has discrepancy in different
dimension structures, which can be interpreted considering the charge transfer model [43] and Hund’s
rules. The valence electron configurations of Cr and Si atoms are 3d54s1 and 3s23p2, respectively. In the
bulk structure, every Cr (3d54s1) atom transfers one 4s electron and one 3d electron to adjacent two Si
(3s23p2) atoms. Then, the Si atom whose electron configuration is 3s23p3 captures one electron to form
a stable close-shell electronic structure, and thus has zero spin. The electron configuration of Cr atom
is 3d4, which is an unstable electronic structure according to the octet rule. Owing to the van der Waals
(vdW) force and chemical bonds energy between layers, valence electrons of Cr atom are antiparallel,
as depicted in Figure 6a, leaving neither unpaired electrons nor net spin, which demonstrates that
the Cr atom has no magnetic moment in the bulk CrSi2 system. This is slightly different from spin
density, as depicted in Figure 5a, because it does not consider crystal field splitting. In the monolayer
structure, valence electrons of Cr atom are parallel, as depicted in Figure 6b, which has the lowest
energy due to the absence of the van der Waals (vdW) force and chemical bonds between layers, as
well as the decline of chemical bonds energy in intralayer (i.e., the bond lengths increase, see Table 1),
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leaving unpaired electrons and net spin. This demonstrates that the Cr atom has magnetic moment
in the monolayer CrSi2 system. Compared with the bulk material, electrons in the monolayer case
favored occupying different orbits and having parallel spins, resulting in the monolayer case having
less unfavorable Coulomb repulsion and lower energy. It was consistent with the Hund’s rules, that
electrons always take precedence of different orbits and have the same spin direction occupying the
equivalent orbital.
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Owing to quantum size and surface effects, two-dimensional (2D) materials may present extensive
novel physical and chemical properties, when downsizing from three dimensions to two dimensions
or one dimension [20–23,44–47]. To further investigate the interrelationship between thickness and
magnetism in CrSi2, we also calculated magnetic moment of unit cell of 2D multilayer nanosheets
with different layers. The results depicted in Figure 7 show that the magnetic moment sharply
decreases with the increase in the numbers of layers (especially, the magnetic moment decreases
greatest when the number of layers increases from one layer to two layers). As the layers increase, the
decrease of magnetic moments occurs in CrSi2 nanosheets. Considering weak van der Waals force
and strong chemical bonds between layers, quantum size [20–23,46] and surface effects [44] occur
when downsizing from bilayers to monolayer in CrSi2 nanosheets. We deduced that the band energy
between layers, as well as quantum size and surface effects play an important role in magnetism of
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materials. Magnetic response of 2D materials can be tuned by controlling the thinness of thin films,
which is an advantageous application in magnetic materials.
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4. Conclusions

Electronic and magnetic properties of CrSi2 were calculated using the first-principle methods
based on density functional theory. The phonon dispersion curve, band structures with spin state,
total and partial density of states (DOS), and spin density of bulk and monolayer CrSi2 systems were
systematically investigated. Both bulk and monolayer CrSi2 were structurally stable at ground state.
The results showed that the bulk CrSi2 system is an indirect gap non-magnetic semiconductor with
a band gap of 0.376 eV, whilst the monolayer CrSi2 sheets were metallic and ferromagnetic (FM).
Compared with previous literature, our results were consistent with Dzade’s results (ferromagnetism)
and inconsistent with Bui’s results (anti-ferromagnetism). We explain the reason why monolayer CrSi2
had metallic behavior using Huang’s theory, where surface and confinement effects play an important
role in the metallic behavior of monolayer CrSi2. Further analysis showed that total DOS and PDOS of
the bulk CrSi2 system were fully symmetric, and those of the monolayer CrSi2 system were asymmetric,
which may reveal the physical mechanism of magnetism for bulk and CrSi2 nanosheets. In addition,
we also elucidated the origin of magnetism considering the charge transfer model and Hund’s rules,
where magnetic moment of unit cell of 2D multilayer nanosheets with different layers was calculated.
The results showed that the magnetism of materials is attributed to band energy between layers, as
well as quantum size and surface effects. We also expect that our calculations may provide some
helpful insight into further experimental investigations, and they show promise in device applications
based on 2D CrSi2 nanosheets.
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