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Abstract: Fiber-reinforced concrete (FRC) has a great advantage in earthquake-resistant structures,
as compared with regular concrete. However, there are many difficulties in the construction and
maintenance of concrete structures due to the high density and easy corrosion of the steel fiber in
commonly used steel FRC. With the development of polymer material science, polyvinyl alcohol
(PVA) fiber has been rapidly promoted for use in FRC because of its low density, high strength,
and large elongation at break value. Dynamic uniaxial compression and splitting tensile experiments
of FRC with PVA fiber were carried out with two matrix strengths (i.e., C30 and C40), which were
blended with PVA fibers with a length of 12 mm in different volume contents (0, 0.2, 0.4, and
0.6%), at the age of 28 days, under different strain rates (i.e., 10−5, 10−4, 10−3, and 10−2 s−1). The
results show that PVA has an obvious enhancing and toughening effect on concrete, which can
improve its brittle properties and residual strength. With increasing strain rate, the compressive
strength, split tensile strength, and elastic modulus increase to a certain extent, while the toughness
index and the peak strain decrease to a certain degree. The post-peak deformation characteristic
changes from a brittle failure of sudden caving to a ductile failure with dense cracking. The effect
of PVA is different when enhancing the concrete with two different matrix strengths. The lower the
matrix strength, the more obvious the enhancement effect of the fiber, showing characteristics of a
higher compressive strength and low split tensile strength in FRC with low strength and a smoother
post-peak stress–strain curve.

Keywords: seismic load; strain rate; fiber-reinforced concrete; dynamic mechanical property

1. Introduction

Concrete is a porous, brittle material widely used in civil engineering. It has a high compressive
strength but poor tensile strength, impact resistance, and toughness, which results in a weak resistance
to cyclic, impact, seismic, and explosive loads. Therefore, many scholars have been exploring ways
to improve the tensile performance of concrete. One of the most promising methods of modification
is to add an appropriate amount of chaotic fibers to plain concrete, which can improve the tensile
strength, stiffness, fatigue life, and ductility of the concrete, based on the influence of the fiber on the
initial crack initiation and propagation [1–3]. There are a wide variety of fibers that can be used for
the reinforcement of concrete—i.e., metallic fibers, organic fibers, and inorganic fibers—according to
material composition. These fibers mainly include steel fiber, glass fiber, polypropylene fiber, polyvinyl
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alcohol (PVA) fiber, basalt fiber, and coir fiber [4,5]. Presently, there are many studies on the enhancing
and toughening effect of fiber-reinforced concrete (FRC) under static loads. Song and Hwang [6]
studied the characteristics of the compressive strength, split tensile strength, and fracture modulus of
concrete with different steel fiber contents. It was found that compressive strength was the highest
with a fiber content of 1.5%, and the split strength, toughness index, and fracture modulus increased
with increasing fiber content. Yazici et al. [7] studied the characteristics of compressive strength, split
tensile strength, flexural strength, and ultrasonic velocity of steel FRC with different aspect ratios
and volume contents. Some conclusions have also been drawn, that the addition of steel fiber could
significantly improve the split and bending strength, while the improvement in compressive strength
was not obvious and ultrasonic velocity showed a downward trend. Vajje and Krishnamurthy [8]
focused on the characteristics of natural fiber concrete with different types of fibers, including basalt
fiber, jute, sisal, hemp, banana, and pineapple. The results showed that the properties of FRC were
related to the material properties of the fiber itself. There are also many studies on natural fiber
concrete, which show that the addition of natural fibers results in a certain degree of improvement
in the split tensile strength, bending strength, and absorbing energy of the concrete, with the fiber
content in concrete relating to the fiber type [9–11]. Shafiq et al. [12] carried out a three-point bending
experiment on PVA and basalt FRC beams with different contents (1–3%). The results showed that PVA
fibers could significantly improve the post-peak bending behavior of concrete beams compared with
basalt fiber. The PVA concrete beams showed deflection hardening characteristics with 3% content,
while the basalt fiber concrete beams showed deflection softening characteristics with high content.
However, the diameter of the PVA fiber (0.66 mm) was larger than that of the basalt fiber (0.018 mm).
The different bending properties of FRC beams should have a certain relationship with fiber diameter.

From the above studies, it is evident there have been many achievements in testing fiber concrete
with different kinds of fiber under static loads. However, concrete is a brittle material with a high
sensitivity to strain rate [13,14]. Concrete structures will inevitably encounter a variety of dynamic
loads during their service period, such as the wind load suffered by ground constructions and bridges,
the hydrodynamic pressure encountered by dams and maritime terminals, and the seismic loads
encountered by engineering structures in strong earthquake areas. Many studies have shown that
the properties of concrete under a dynamic load are quite different from those under a static load.
Therefore, it must be irrational to use the concrete strength parameters under static loads to design
concrete structures that may be subjected to dynamic loads during service. It is important to study the
strength and deformation characteristics of concrete or fiber concrete under dynamic loads. According
to the existing research results [4,15], the strain rate of a concrete structure under different loads can
be further divided into the following types: creep load (10−8–10−6 s−1), static load (10−6–10−5 s−1),
vehicle load (10−5–10−4 s−1), seismic load (10−4–10−2 s−1), impact load (10−2–102 s−1), and explosion
and high-speed collision load (102–104 s−1). Abrams et al. [16] first carried out the compression
experiments of concrete under static load (with a strain rate of approximately 8 × 10−6 s−1) and
dynamic load (with a strain rate of ~2 × 10−4 s−1) and found that there was a strain rate sensitivity
for the compressive strength of concrete. In 1917, many scholars carried out a variety of dynamic
experimental studies on the mechanical properties of concrete and FRC. Cook et al. [17] used the drop
hammer experimental system to study the dynamic mechanical properties of coir FRC and found that
the impact index of fiber concrete increased with the increase of fiber length and content. Zhang et
al. [18] conducted three-point bending tests on notched beams of steel FRC under a large range of
loading rates by using both a servo-hydraulic machine (with a loading rate of ~10−3–1 mm/s) and
a drop-weight impact device (with a loading rate of approximately 102–103 mm/s). The experimental
results showed that the rupture energy and the peak load increased with increasing loading rate,
and the growth values at a low loading rate were smaller than those at a high loading rate. This was
due to the viscous effects of free water at lower rates and the inertia effect and greater fiber pullout
energy at high rates. Dong et al. [1] studied the mechanical properties of basalt fiber-reinforced recycled
aggregate under different replacement ratios and contents of basalt fiber (e.g., concrete failure modes,
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compressive strength, tensile strength, elastic modulus, Poisson’s ratio, and ultimate strain under static
conditions) and some mechanical properties under cyclic loading and unloading. The experimental
results showed that the basalt fiber enhanced the mechanical properties of recycled aggregate concrete.

Currently, the most commonly used fibers in concrete are steel fibers, which have significantly
improved the tensile properties of concrete. However, the addition of steel fiber not only improves
the tensile strength, but also increases the weight of the concrete structure [19]. The development of
polymer materials science has led to the fabrication of the newly developed PVA, which is a kind of
synthetic fiber with a low price, high strength, and high elastic modulus. It has good hydrophilicity
and a high bonding strength with cementitious material. This not only effectively inhibits early
cracks in the concrete, but also improves the strength, toughness, and durability of the concrete [20].
At present, the enhancing properties of PVA have been confirmed in the application of Engineered
Cementitious Composite (ECC) concrete, which does not contain coarse aggregate [21–23]. However,
due to the large content of PVA in concrete (2%) without coarse aggregate, the cost of concrete is
so high that the application is still limited to the key parts of structures subjected to large forces in
engineering. This is not conducive to large-scale promotion of PVA fiber concrete. Now, the available
dynamic characteristics of PVA FRC with coarse aggregate also concentrate on high strain rates, such as
impact loads, explosions, and high-speed collision loads. There are still few studies on the dynamic
characteristics at the strain rate of seismic loads for fine PVA FRC that are suitable for testing the
strength of an engineering structure.

Strong earthquake activity has brought huge losses to the western region of infrastructure
construction in China, which is an earthquake-prone country. Due to the poor tensile properties of
conventional concrete, the traditional support structures are prone to drawing, bending, and shearing
under the action of a seismic load, so it is necessary to develop high tensile performance in
an underground structure to reduce damage taken in strong earthquake areas. This is of great
significance for the design of concrete structures. In this paper, the dynamic experiments of PVA
concrete, with two matrix strengths designed for the engineering of structures, are carried out to study
the strengthening and toughening effect of PVA in different contents under quasi-static state and
dynamic loads, which will be useful for the application of FRC in earthquake prone areas.

2. The Sample Preparation for the FRC with PVA

2.1. Experimental Materials and Production

2.1.1. PVA Fiber

The experimental fiber is the TQ-II -II type of hardened anti-cracking synthetic fiber. The fibers
are bunched monofilament, white, safe, and non-toxic. The detailed parameters and actual picture are
shown in Table 1 and Figure 1, respectively. According to the test report by the National Textile and
Garment Quality Supervision Inspection Center (Zhejiang) (No. 201509666 document), the measured
mechanical indicators of PVA used in the experiment meet industry requirements. The specific test
results are shown in Table 2.

Table 1. Physical and mechanical parameters of polyvinyl alcohol (PVA) fiber.

Fiber Shape Density
(g/cm3)

Fiber
Diameter

(µm)

Fiber
Length
(mm)

Tensile
Strength

(MPa)

Elastic
Modulus

(GPa)

Elongation at
Break (%)

Acid and
Alkali

Resistance

Bunchy
monofilament 1.30 15–25 12 ≥1200 ≥30 5–20 Strong
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Table 2. Test report results of PVA fiber.

Serials No. Test Items Standard
Requirement Measured Value Individual

Assessment

1 Tensile strength (MPa) ≥1200 1721.2 Qualified
2 Initial elastic modulus (GPa) ≥30 35.7 Qualified
3 Elongation at break (%) 5–20 7.0 Qualified
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2.1.2. Mixture Design Proportions and Mixing of FRC

The mix design is in accordance with the Chinese standards outlined in “Specification for mix
proportion design of ordinary concrete” (JGJ55-2011) [24] and “Steel fiber-reinforced concrete” (JG/T
472-2015) [25]. After several adaptations and experiments, concrete with two matrix strengths (i.e., C30
and C40) with different fiber contents was designed. The specific design parameters are shown in
Table 3. In the table, the types of concrete are named after two matrix strengths and different fiber
contents. For example, C40PVA0.4 indicates that the matrix strength was 40 MPa and the volume
content of PVA was 0.4%. In order to minimize the effect of the coarse aggregate and fine aggregate on
the experimental results, the difference between the two contents was made to be small, and the sand
ratio was fixed at 35%. The water/cement ratios for the two matrix strengths concrete were designed
to maintain a constant of 0.53 and 0.49, respectively, so as to reduce the effect of water/cement on the
experimental results.

Table 3. Mix proportions of fiber-reinforced concrete (FRC) (1 m3).

Type Cement
(kg) Water (kg)

Fine
Aggregate

(kg)

Coarse
Aggregate

(kg)
W/C Sand

Ratio
PVA Volume

Content

C30PVA0 377.6 200 643.1 1194.3 0.53 35% 0%
C30PVA0.2 377.6 200 643.1 1194.3 0.53 35% 0.2%
C30PVA0.4 377.6 200 643.1 1194.3 0.53 35% 0.4%
C30PVA0.6 377.6 200 643.1 1194.3 0.53 35% 0.6%
C40PVA0 438.8 215 611.17 1135.03 0.49 35% 0%

C40PVA0.2 438.8 215 611.17 1135.03 0.49 35% 0.2%
C40PVA0.4 438.8 215 611.17 1135.03 0.49 35% 0.4%
C40PVA0.6 438.8 215 611.17 1135.03 0.49 35% 0.6%

It has been found that the key factor in the success of the experiment is the dispersion of the fiber
in concrete during the process of multiple adaptation of the fiber concrete. According to the relevant
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research, we can see that the smaller-diameter fiber is less likely to be dispersed in the concrete; hence,
the amount of fine fibers in concrete should not exceed a certain number. Based on a number of mixing
experiments and the mixing experience of fiber concrete outlined in the literature, a fast and efficient
laboratory mixing method is put forward. First, an appropriate amount of coarse aggregate and fine
aggregate is put into the forced mixer machine to dry mix for 30 s, and the PVA fiber and cement is put
into the pot to dry mix for 2 min. Then, the fiber and cement mixture are placed in the forced mixer to
dry mix with the coarse aggregate and fine aggregate mixture until the cement and fiber are mixed
evenly, and the designated water quantity is added for wet mixing for 3 min. After the above process
is complete, the fiber will be distributed evenly in the mixed FRC without the occurrence of the knot
phenomena, meeting construction requirements. The specific construction process is illustrated in
Figure 2.
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Figure 2. Flow chart for FRC mixing and pouring.

The mixed fiber concrete is placed in a standard plastic sample mold, with dimensions of
150 × 150 × 150 mm, in three layers and vibrated for 2 min. Then, it is covered with cling film
to prevent moisture from evaporating. After 24 h, the samples need to be demolded and put into
the standard curing room for water conservation at a temperature of 20 ± 2 ◦C and a humidity
greater than or equal to 95%. After curing for 28 days, the samples are ready for the relevant
mechanical experiments.

2.2. Experimental Program

The dynamic compression and splitting tensile mechanics experiment of fiber concrete under
a medium strain rate were carried out by using the RMT-201 rock and concrete mechanics experiment
system developed by the Wuhan Institute of Rock and Soil Science at the Chinese Academy of Sciences.
In the experiment, a 150 × 150 × 150 mm plastic mold was used to cast the concrete, and samples of the
two kinds with different sizes were prepared by drilling from the mold. The experiment was carried
out with four kinds of fiber volume contents (i.e., 0, 0.2, 0.4, and 0.6%) and four different strain rates
(i.e., 10−5, 10−4, 10−3, and 10−2 s−1). The dynamic compression experiments were conducted with
a cylindrical sample with the size of Φ50 × 100 mm, 3 samples per group, and a total of 48 samples.
The sample for the dynamic splitting experiment was a cylinder sample with a size of Φ50 × 30 mm.
There were 3 samples per group, and a total of 48 samples. The total number of dynamic experiments
was 192, with two different sizes for two matrix strengths of concrete.
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3. Experimental Results and Discussion

3.1. Compression Strength

The experimental results of the compressive strength for FRC at different strain rates are shown
in Figures 3 and 4. In general, the compressive strength of FRC increases with the increase of strain
rate, showing an obvious rate sensitivity, which agrees with the existing research [13,14,16–18]. At the
quasi-static strain rate (i.e., a strain rate of 10−5 s−1), the strength of the two kinds of plain concrete
meet the design requirements. The addition of PVA can lead to an increase in compressive strength
with the two matrix strengths. Under the quasi-static state, the maximum growth values for the FRC
of C30 and C40 are 15.1% and 8.7%, respectively, relative to the two types of plain concrete. With the
increase of strain rate, there is a significant difference in the increase of the compressive strength
with different fiber volume contents. The two types of concrete with a fiber content of 0.2% show the
maximum growth at different strain rates, which is related to the most uniform distribution of PVA
fibers in concrete, similar to previous findings [6].
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From the experimental results, it can be seen that the matrix strength of concrete is another
important factor that affects the compressive strength of FRC, in addition to fiber volume content and
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loading rate. The higher the matrix strength of the concrete, the smaller the effect of PVA on the increase
in compressive strength, which is consistent with experimental results from literature [18,26]. Taking
the FRC with a volume content of 0.2% as an example, the growth values of uniaxial compressive
strength for a matrix strength of C30 are 15.1, 20.9, 20.6, and 23.5%, respectively for each strain rate
tested compared with plain concrete at the same strain rates. For C40, the values are 8.7, 12.3, 14.2,
and 8.1% for each strain rate, respectively, which are significantly lower than those of C30. The reason
for this phenomenon is related to the bond strength and the matrix strength between the fiber and the
concrete [1]. Under the same conditions, the reinforcing effect of the fiber is constant. The higher the
matrix strength, the lower the proportion of the fiber reinforcement in the high strength concrete. This,
in turn, will weaken the fiber-reinforcing effect.

In order to describe the dynamic strength characteristics of FRC under different loading rates,
a series of empirical formulas are proposed, including a logarithmic function [27], exponential
function [28], and Fib model code [29], which have many practical applications. In the uniaxial
compression experiment, as the reinforcing effect of the concrete with 0.2% content is the best,
the empirical formula of dynamic compressive strength with different matrix strengths is established by
fitting the relevant experimental data for the FRC with 0.2% PVA content. The fitting dynamic impact
factor formulas and the fitting curves are shown below, as in Figure 5. The fitting results clearly confirm
the above conclusions that the higher the matrix strength, the weaker the fiber-reinforcing effect.

DIFc =
fc

fcs
= 1.1591 + 0.0258lg

( .
ε
.
εs

)
for C30PVA0.2 (1)

DIFc =
fc

fcs
= 1.0951 + 0.0193lg

( .
ε
.
εs

)
for C40PVA0.2 (2)

where DIFc, fc, fcs,
.
ε, and

.
εs are the dynamic impact factor of compression strength, dynamic

compression strength, quasi-static compressive strength, dynamic strain rate, and quasi-static
compression strength, respectively.
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3.2. Split Tensile Strength

The experimental results of the split tensile strength of fiber concrete at different strain rates are
shown in Figures 6 and 7. Similar to the law of the compressive strength, the addition of PVA can
also increase the tensile strength of concrete. In the quasi-static state (i.e., a strain rate of 10−5 s−1),
the addition of PVA significantly improved the tensile strength of FRC compared with plain concrete,
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as also seen in previous findings [28]. When the matrix strength of concrete is C30, the growth values
are 19.4, 10.9, and 20.3% for fiber volume contents of 0.2, 0.4, and 0.6%, respectively. When it is C40, the
growth values are 17, 10.9, and 7%, respectively. The tensile strength of FRC also has a rate sensitivity
compared with plain concrete. As strain rate increased, the splitting tensile strength with different
contents increased to some extent, while the growth rate increased first and then decreased later,
which did not follow the law of the compressive strength. In the low range of strain rates (e.g., 10−5

and 10−4 s−1), the bridging effect of the fiber plays a major role in concrete. At this time, the increase
of the tensile strength of fiber concrete depends mainly on the bonding force between the fiber and
the cementitious material. As the strain rate increases (e.g., to 10−3 or 10−2 s−1), the increase of the
loading rate exceeds the expansion rate of the cracks inside the concrete. Hence, the concrete aggregate
is directly cut off, and the bridging effect of the fiber is relatively weakened, resulting in the tensile
strength of FRC showing a downward trend, as compared with that of plain concrete. In general,
the bridging effect of the fiber plays a major role at low strain rates. With the increase of strain rate,
the bridging effect of the fiber is weakened, leading to the change of the concrete fracture form from
the destruction of cementitious material under a low strain rate to the direct cut of coarse aggregate
a under high strain rate. This is confirmed in the existing literature [30,31] and shown in Figure 8.
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3.3. Elastic Modulus and Peak Strain

The elastic modulus of FRC at different strain rates is shown in Figures 10 and 11. The results
show that the elastic modulus of FRC increases with the increase in the strain rate, similar to the
compressive strength and split tensile strength [1,7,18,26]. The increasing range of the elastic modulus
is different in FRC with different matrix strengths. In all cases, the elastic modulus with 0.2% fiber
content is the highest for both the matrix strengths, similar to previous findings [6]. The lower the
matrix strength, the more obvious the effect of the fiber is on the elastic modulus of the FRC [18].
The increase of the elastic modulus indicates that the ability of concrete to bear the elastic deformation
of the load is reduced, which is beneficial to the non-destructive instability of the structure without
causing excessive elastic deformation under load.
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The peak strain of fiber concrete at different strain rates is shown in Figures 12 and 13. The peak
strain here refers to the strain corresponding to the peak stress. Contrary to the trends of the strength
and elastic modulus, the peak strain of concrete decreases with an increase of strain rate. The peak strain
of the fiber concrete can be enhanced under each strain rate compared with plain concrete, indicating
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that the addition of the fiber can improve the ability of the concrete to bear the deformation [15].
In fiber concrete, the peak strain with 0.2% fiber content is smaller than that with the other two fiber
content levels, which is directly related to the maximum elastic modulus of concrete with 0.2% content.
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3.4. Deformation Characteristics

The typical stress–strain curves of concrete with two matrix strengths at different loading strain
rates are shown in Figure 14. For the two kinds of plain concrete, the brittle characteristics of concrete
became more obvious with increasing strain rate, which has been confirmed in the literature [27].
When the strain rate reaches 10−2 s−1, the failure modes have characteristics of brittle fracture, with the
stress–strain curve showing a cliff-like landing. The addition of PVA can significantly improve the
post-peak mechanical properties of concrete, showing a significant reduction in the drop rate per unit
of time after undergoing peak stress. The stress and strain curves are smoother, indicating that the
properties of the concrete change from brittle to ductile, which is of great significance in improving
the seismic performance of concrete [12]. From the analysis of the typical stress and strain curves, it
is found that the addition of PVA has little effect on the curve at the upward section, while showing
a certain effect at the downward section. With the increase in the content of PVA, the descending rate
gradually slows down at the downward section of the curve, indicating that PVA has a significant
effect in improving toughness of fiber concrete [20,21]. For all types of concrete, the slopes of the
stress–strain curve at the downward section increase gradually with the increase of strain rate, showing
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that the bridging effect of the fiber on the concrete decreases. At this point, the loading rate plays
a greater role in the failure behavior of the concrete.
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Another aspect of the change in the post-peak mechanical properties is the residual strength and
the failure mode. As shown in Figures 15 and 16, the two matrix strengths of plain concrete appear
to undergo the phenomena of fall-block and caving after destruction. When the concrete block is
made into a bulk, the residual strength is nearly zero. However, when the fiber concrete is crushed,
the evenly distributed fibers begin to bear the load. Due to the bridging effect of the fiber, the concrete
structure can maintain a relatively complete form with a number of small cracks on the surface, and the
residual strength remains at approximately 3–5 MPa without brittle damage, unlike the collapse of
plain concrete.
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Therefore, the deformation characteristics of fiber concrete are different from those of plain
concrete. The addition of fiber can improve the brittle properties of the concrete, including the
fall-block and collapse of the concrete, the obvious decrease of the drop rate per unit time after
undergoing peak stress, and the residual strength [27]. The stress–strain curves of concrete with
different fiber contents are similar, and the deformation behavior of concrete at a high strain rate is
more brittle than that at a low strain rate. The reinforcing effect of fiber on the mechanical properties
of concrete is different for the two matrix strengths. The concrete material with low matrix strength is
more ductile than the one with a higher matrix strength. The same trend is evident with the reinforcing
effect of fiber improving the uniaxial compressive strength [18,26].

3.5. Toughness Index

In the evaluation of the post-peak mechanical properties of concrete, the use of the ductility
index-peak strain to reflect the toughness of the material has a certain one-sidedness. Due to the large
dispersion of concrete materials, there may be some errors in the peak strain of the experiment results;
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hence, the use of a non-dimensional relative index to describe the toughness of the material is more
reasonable. According to the method of defining the toughness of steel FRC in the literature [32,33],
the formula for the toughness index can be defined for PVA-reinforced concrete as follows:

η =
W f

We
(5)

where Wf is the area of OCD, which is defined the area surrounded by the limit strain of 20 × E−3 in
this paper; We is the elasticity energy consumed by concrete materials, which is defined by the area of
OAB at the strain relative to 0.85*fc; and fc is the peak stress. A detailed diagram is shown in Figure 17.
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The above formula does not only account for both the elastic energy absorbed during the elastic
phase and the plastic energy absorbed during the plastic phase of the fiber concrete, but also eliminates
the energy calculation error caused by the dispersion of the concrete, which is reasonable for describing
the toughness of the concrete [32]. The calculated results of the toughness indices according to the
formula are shown in Table 4 and Figures 18 and 19 below.

Table 4. Calculated results of toughness index for FRC at different strain rates.

Type Strain Rate (s−1) Wf (J/m3) We (J/m3) Toughness Index

C30PVA0 10−5 201.21 29.02 6.93
C30PVA0 10−4 157.87 25.06 6.30
C30PVA0 10−3 160.90 29.24 5.50
C30PVA0 10−2 112.61 28.41 3.96

C30PVA0.2 10−5 237.59 28.59 8.31
C30PVA0.2 10−4 203.66 28.95 7.03
C30PVA0.2 10−3 252.82 40.15 6.30
C30PVA0.2 10−2 244.93 50.11 4.89
C30PVA0.4 10−5 286.49 29.64 9.66
C30PVA0.4 10−4 288.44 34.27 8.42
C30PVA0.4 10−3 259.54 34.39 7.60
C30PVA0.4 10−2 233.84 36.57 6.39
C30PVA0.6 10−5 266.11 25.28 10.53
C30PVA0.6 10−4 317.60 35.56 8.93
C30PVA0.6 10−3 263.17 31.09 8.47
C30PVA0.6 10−2 259.54 34.79 7.46
C40PVA0 10−5 198.86 30.50 6.52
C40PVA0 10−4 200.75 35.28 5.69
C40PVA0 10−3 190.13 38.66 4.92
C40PVA0 10−2 163.00 44.82 3.64

C40PVA0.2 10−5 269.46 35.58 7.57
C40PVA0.2 10−4 297.19 41.69 7.13
C40PVA0.2 10−3 327.58 47.43 6.91
C40PVA0.2 10−2 298.17 52.14 5.72
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Table 4. Cont.

Type Strain Rate (s−1) Wf (J/m3) We (J/m3) Toughness Index

C40PVA0.4 10−5 332.30 34.11 9.74
C40PVA0.4 10−4 320.76 37.03 8.66
C40PVA0.4 10−3 312.84 47.58 6.58
C40PVA0.4 10−2 270.63 51.37 5.27
C40PVA0.6 10−5 362.71 35.42 10.24
C40PVA0.6 10−4 351.34 37.54 9.36
C40PVA0.6 10−3 347.59 41.10 8.46
C40PVA0.6 10−2 338.79 47.57 7.12

Note: Wf and We in the table are averages of three experimental results.
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The results show that the toughness index of FRC with two matrix strengths decreases with the
increase of the strain rate, and concrete material is more brittle at a high strain rate [27]. It can be seen
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from Table 4 that the elastic strain energy absorbed by the FRC increases with the increase of the strain
rate. The increase of the strain rate leads to the increase of the strength and elastic modulus of the
concrete. There is a corresponding increase in the area surrounded by the elastic phase of the concrete
stress–strain curve, indicating that the elastic strain energy of the concrete increased.

The addition of PVA can significantly enhance the toughness of concrete. In the quasi-static state
(i.e., a strain rate of 10−5 s−1), the toughness indices of FRC (C30) with 0.2, 0.4, and 0.6% content
are increased by 19.9, 39.4, and 51.8%, respectively, compared to those of the plain concrete. The
values are 16.2, 49.4, and 57.1%, respectively, for C40. The enhancement effect of the fiber on the
concrete toughness is more obvious with the increase of fiber content. However, at a high strain rate
(i.e., 10−2 s−1), the toughness index of FRC (C30) is increased by 23.3, 61.3, and 88.2%, respectively,
and the values increased 57.3, 44.9, and 95.6%, respectively, for C40. The improvement of the strain
rate will lead to a decrease in the toughness index to a certain extent. However, the toughness index
will be less reduced compared to the decrease in plain concrete, which shows that the toughness of
the concrete with PVA decreases more smoothly with increases of the strain rate compared to plain
concrete. These results illustrate that the toughness of FRC is better than that of plain concrete under
the strain rate range of seismic load [20]. This is of great significance to the application of FRC in
seismic design. Considering the effect of the fiber on the compressive strength, splitting strength,
elastic modulus, and peak strain of concrete, as well as the cost factors and dispersion technology of
the fiber, the concrete with a 0.2% PVA content is recommended for actual applications, as it can meet
the engineering requirements.

4. Conclusions

In order to investigate the dynamic mechanical properties of FRC with PVA on strain rates
corresponding to seismic loads (i.e., 10−5, 10−4, 10−3, and 10−2 s−1), the dynamic compression and
splitting tensile mechanics experiment for two kinds of matrix strengths (i.e., C30 and C40) with four
kinds of fiber volume contents (i.e., 0, 0.2, 0.4, and 0.6%) were carried out by using the RMT-201 rock
and concrete mechanics experiment system. The physical and mechanical properties were obtained,
and the following conclusions can be drawn.

(1) PVA has some enhancement and improvement effects on the concrete, mainly regarding the
improvement of the compressive strength, splitting tensile strength, the toughness index,
and the post-peak mechanical properties of the stress and strain curves at the descending stage.
The addition of PVA can also significantly improve the failure behavior of the concrete, which
changes from the fall-block and caving of plain concrete to a relatively complete form of FRC
with a residual strength of 3–5 MPa. The enhancing effect of PVA on the concrete differs for two
matrix strengths. The lower the matrix strength, the more obvious the reinforcing effect of the
fiber is on the concrete.

(2) PVA FRC is a rate-sensitive material similar to plain concrete. The uniaxial compressive strength,
splitting tensile strength, and elastic modulus of concrete increase with increasing strain rate,
while the peak strain of concrete decreases, indicating that the FRC under a high strain rate is
more brittle than that under a low strain rate.

(3) The PVA FRC with a 0.2% volume content has greater advantages than the other two kinds of fiber
concrete in improving concrete’s mechanical properties. Considering cost factors and construction
convenience, concrete with a 0.2% PVA content is recommended in engineering applications.

Concrete workability should be guaranteed. Moreover, the durability issue should be deeply
analyzed. In this work, to highlight the influence of strain rates on dynamic mechanical properties,
these two parts were ignored. However, at a wider level, further research is also required.
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