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Featured Application: Facial images provide variety of information about a person such as
personal identity, age, gender, color, ethnicity, head pose, eye gaze, and emotion. Age estimation
can be used to build real-world applications in biometrics, law enforcement, surveillance,
and human-computer interaction (HCI).

Abstract: Automatic age estimation from unconstrained facial images is a challenging task and it
recently has gained much attention due to its wide range of applications. In this paper, we propose
a new model based on convolutional neural networks (CNNs) and l2,1-norm to select age-related
features for the age estimation task. A new cost function is proposed. To learn and train the new
model, we provide the analysis and the proof for the convergence of the new cost function to solve
minimization problem of deep neural networks (DNNs) and the l2,1-norm. High-level features are
extracted from the facial images by using transfer learning, since there are currently not enough large
age databases that can be used to train a deep learning network. Then, the extracted features are fed
to the proposed model to select the most efficient age-related features. In addition, a new system that
is based on DNN to jointly fine-tune two different DNNs with two different feature sets is developed.
Experimental results show the effectiveness of the proposed methods and achieved the state-of-art
performance on a public database.

Keywords: age estimation; face images; DNNs; facial and superpixel features; l2,1-norm

1. Introduction

Age estimation from face images is considered as predicting or classifying the real or the apparent
age of a person. Facial image estimation is an important step in a wide range of academic and
commercial applications [1]. Recently, finding semantic information from images has gained the
attention of the research studies due to the vast number of images, which are added on the internet
daily or being stored on personal phones and computers. Facial images provide variety of information
about a person, such as personal identity, age, gender, color, ethnicity, head pose, eye gaze, and emotion.

Designing a robust age estimation system has many challenges. People do age at different rates
and they have different aging patterns that can be affected by genetic factors, social conditions, race,
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ethnicity, and life style [2]. Some people can look years younger than their chronological age while
some can look years older. In most cases, the factors that affect aging are personal and difficult to
control [3,4]. There are dissimilarities between aging rates of men and women. Women may put
makeup to hide aging marks and may wear accessories, resulting in a younger look [5]. Building an
efficient large database containing millions of face images for age estimation is relatively very difficult,
since it requires an access to participants’ private information and the collected images need to be
manually labeled.

Age estimation can be used to build real-world applications in biometrics, law enforcement,
surveillance, and human-computer interaction (HCI). There are two types of biometric systems that
are unimodal and multimodal [6]. In a multimodal biometric system, a combination of several
traits is collected and one of the traits in this system is the age [7]. Recently, with the astronomical
growth of internet content and the spread of the smart machines, age estimation can be used in law
enforcement, surveillance, and control applications. For instance, a person’s access to cigarettes or
alcohol from vending machines can be restricted based on his/her estimated age. Companies, such as
Google [8] and Amazon [9], offer products and services based on customers’ personalized experience
and surfing history. Information of customers’ age can be used as one of the distinctive factors of the
customer’s profiles.

Up until a few years ago, low-level features were extracted in most cases and they were used
to represent visual image information to design a model for age estimation. Currently, complex and
high-level features can be extracted by using deep neural networks (DNNs) and convolutional neural
networks (CNNs) to represent the visual information about one’s age. In this paper, two high-level
feature sets are extracted by using CNNs. Existing benchmarks for age classification task are relatively
small when compared to the other benchmarks that are used for other classification tasks, such as
image classification, semantic segmentation, and face recognition. Therefore, in this work, pre-trained
CNNs from other image tasks are employed to extract the feature sets for age estimation. We propose
a regularization framework that is based on a new cost function for selecting the robust features from
the original feature sets by combining the DNN and the l2,1-norm. The analysis and the proof of the
convergence of the new cost function to solve the minimization problem of the DNN and the l2,1-norm
are presented. Efficiency of the selected robust features are studied. The jointly fine-tuned CNNs based
on the Softmax and the Sigmoid (JFN-SS) in [10] are used and a new jointly fine-tuned framework
based on amplifying the output of two DNNs (JFN-A) is introduced.

Several methods have been proposed in the literature to represent the age information from the
facial images. One of the early models is the anthropometric model that uses the size and proportions
of the human face. Kwon and Lobo [11] studied the cranio-facial changes in feature-position ratios and
skin wrinkles as features for three age groups; baby, young adult, and senior adult. The ratios between
the features and different face regions were computed. Farkas [12] presented a mathematical model to
estimate the growth of the head from infancy to adulthood. Ramanthan and Chellappa [13] computed
eight ratios of distance measures for modeling age progression. They proposed a craniofacial growth
model by illustrating how the age-based anthropometric constraints on facial proportions translate
into linear and non-linear constraints on facial growth parameters.

The active appearance model (AAM) was proposed by Cootes et al. [14]. This model is a statistical
shape model to represent the face in the image by capturing the shape and the grey-level information.
Lanitis et al. [15,16] studied the aging effects on face images and described the effects of aging on facial
appearance. They built a statistical-based face model. By their proposed shape intensity face model and
automatic age simulation, statistically significant improvement was reported in the performance of the
age classification system. Luu et al. [17] proposed an AAM with 68 facial land marks for age estimation.
A variation of the AAM model, called the Contourlet Appearance Model (CAM), was proposed in [18]
to calculate the landmarks.

Geng et al. [19,20] defined an ageing pattern subspace (AGES) model for representing the
ageing process as the sequence of an individual’s face images sorted in time order by constructing a
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representative subspace. The images, which were not available for some age groups, are synthesized
by using an expectation-maximization (EM) -like iterative learning algorithm. The AGES model builds
an aging pattern for different age stages. On the other hand, the manifold model, as proposed by
Fu et al. [21,22], was used to handle the ageing process in [23,24]. This model is more flexible than
the AGES model, since images of different persons can be used for unavailable images of some ages.
The manifold models use several linear regression functions to learn the low-dimensional aging trend
from a group of face images for each age.

The appearance model (AM) is an alternative way to represent the age-related features. It focuses
on texture, pattern analysis, and wrinkles. Hayashi et al. [25,26] extracted local and global facial
features. Texture and shape features were calculated by using a semantic-level description of the
face. Gunay and Nabiyev [27] used effective texture descriptor for appearance feature extraction
and utilized local binary patterns (LBP). Gao and Ai [28] used the Gabor features with fuzzy-LDA.
Their work showed that Gabor features are more effective than the LBP. Yan et al. [29,30] employed
spatial flexible patches (SFP) as a feature descriptor in order to handle images with small undesirable
defects such as occlusions and head pose. Mu et al. [31] proposed bio-inspired features (BIF) that
have the ability to handle small rotations and scale changes effectively. Shan [32] exploited the LBP
and Gabor features. Adaboost was used to learn the discriminative LBP-Histogram bins for age
estimation. Lu et al. [33] proposed a cost sensitive local binary feature learning by using facial images.
They extracted low-dimensional binary codes face patches from the raw pixels while using several
hashing functions.

Recently CNNs and DNNs have been started to be used for feature extraction and classification
for the facial age estimation due to their success in several computer vision fields. Levi and Hassner [5]
used CNNs in age estimation for the first time. A simple CNN architecture was used as a feature
extractor and a classifier to avoid overfitting problem. Ranjan et al. [34] proposed a cascaded
classification and regression system based on a coarse age classifier. They introduced an age regressor
for each age group based on the features extracted from the coarse age classifier. Then they used an
error correcting method for correcting the regression errors for subjects. Chen et al. [35] proposed
an age classification system. In their system, the feature set was extracted by using a pre-trained
CNN for face identification task. The extracted features were fed to a small neural network to regress
the age of the subject. Yang et al. [36] proposed a generic deep network model that extracted facial
features by using a convolutional scattering network. The dimension of these features was reduced
by PCA. They estimated the age using three fully connected layers that act as category-wise rankers.
Yi et al. [37] extracted local aligned patches while using several facial landmarks. For each face image,
23 patch pairs were extracted in total. Each patch was trained in separate CNN and their final fully
connected layer outputs were fused to estimate the age of a person. Liu et al. [38] proposed the AgeNet
model to estimate the age apparent for the ChaLearn 2015 Apparent Age database. Two different CNN
models were trained and fused to estimate the apparent age. Qawaqneh et al. [10] proposed a new
model to jointly fine-tune two DNNs that were based on a new cost function. The two DNNs were
trained on different feature sets, which were extracted from the same input data.

In this work, we propose a new cost function and a new model to find the most significant
age-related features from the high-level features that are extracted by a CNN for the age estimation
task from face images. In addition, the JFN-A is proposed to combine more multiple feature sets in
order to enhance the estimation process.

2. Materials and Methods

Deep learning is being used in a wide range of applications and the l2,1-norm intersects with
different deep learning applications. Sections 2.1 and 2.2 provide a brief overview of deep learning
and the l2,1-norm. Section 2.3 introduces the proposed work. Section 2.4 explains the feature sets used
in this work. Section 2.5 summarizes the jointly fine tuning of different DNNs. Section 2.6 elaborates
on the specifications of the used benchmark.
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2.1. Deep Learning

DNN is considered as the second generation of the artificial neural network (ANN). ANN is
composed of one input layer, one hidden layer, and one output layer. It showed limited success
in feature extraction and classification tasks. This simple architecture is constrained by the low
computational power and the limited learning algorithms [39]. On the last decade, the advances
in hardware and learning algorithms made it possible to design deep learning architectures. DNN,
which was introduced by [40], consists of one input layer, multiple hidden layers, and one output
layer. DNN is capable of extracting efficient features from vast datasets for different classification
tasks [41]. DNNs have shown significant improvement in many computer vision fields, such as face
recognition [42,43], image classification [44–46], object detection [47], and semantic segmentation [48].
Nowadays, CNN is considered as one of the most successful deep architectures for feature extraction
from images. CNNs are composed of a number of convolutional layers and a number of fully connected
layers. The convolutional layers use filters to extract distinctive features, while the fully connected
layers are used for classification.

2.2. l2,1-Norm

Recently, the space and the size of the available data for different machine learning fields are
vast. One of the key stages of learning models from such vast data sets is to select features that permit
the machine to learn the embedded models. The main goal is to select the most significant features
from the available features for a better machine learning performance. It reduces the dimension of
the feature space, allows for the machine to learn faster, and it obtains a generalizable model. Several
number of selection methods have been developed, but recently the l2,1-norm has been reported as
one of the most efficient techniques to develop models that can select features across all data points
with joint sparsity [49–52]. The l2,1-norm has been used in different machine learning fields and was
also used for tensor factorization. The matrix l2,1-norm was proposed by [53] as an invariant of the
l2-norm. The l2,1-norm can be defined, as in (1).

||M||2,1 =
n

∑
i=1

√√√√ m

∑
j=1

x2
ij =

n

∑
i=1

∣∣∣∣∣∣xi
∣∣∣∣∣∣

2
(1)

M is a matrix and xij is the element in the ith row and jth column. In this paper, we combined the
l2,1-norm with a DNN in one model for selecting the age-related features.

2.3. Proposed Model: DNNs and l2,1-Norm Regularization Framework for Robust Features Selection

A regularization framework is proposed for selecting features, by combining the DNN and
l2,1-norm with a new cost function. For a given data, [X = x1, x2, ..., xm] ∈ Rfxm, let [Y = y1, y2, ..., ym]
∈ Rmxc, where m is the number of training samples, f is the number of feature dimension, and c is the
number of classes. The goal is to learn a projection matrix W ∈ Rfxc. W is used to select the most robust
features from the common space, which is defined by the class labels. The new cost function uses
the mean squared error (MSE), sigmoid as an output layer function, and l2,1-norm as a regularizer.
The minimization cost function is given, as in Equation (2).

E(y, x) =
{

1
2m

(
sigm

(
XTW

)
−Y

)2
+ λ||W||2,1

}
(2)

where λ is a controlling parameter, ||.||2,1 is the l2,1-norm, and sigm(z) =
(

1
(1+e−z)

)
.
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2.3.1. The Architecture

Figure 1 shows the new model for robust feature selection based the proposed cost function.
The model consists of two hidden layers with f nodes in each layer. The f equals to the number of
features in the input layer.
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Figure 1. Model architecture for finding the projection matrix W. The weights between the layers (W1,
W2, and W3) are modified based on the error propagated from the new cost function.

The number of nodes in the output layer is set to be the number of labels, C. The architecture is
chosen to be compatible with the dimension of the projection matrix (W), whose dimension ought to
be compatible with the number of features in the training samples and the number of labels. Therefore,
the number of nodes in the last hidden layer and the number of labels is set to be the number of features
in the training samples (f) and the number of the classes in the training samples (C), respectively, since
W3 is taken as the projection matrix (W). Note that the process of extracting the features by using the
output weights W3 depends on the weights W1 and W2. W1 and W2 weights must be calculated first
in order to calculate the weights in the output layer W3. In DNNs that, as we move from the lower
layers to the higher layers, the resulted features by using their corresponding weights become more
abstract and high-level features. In addition, we use the output layer weights (W3) as the projection
matrix to match the size of the features in the training set.

The optimization of the number of hidden layers and the nodes in each hidden layer is practically
determined by experiments. The number of row in W equals to the number of columns in the training
data and the number of columns in W equals to the number of class labels. As shown in Figure 2,
the new robust features for each training sample can be calculated by multiplying each training sample
with the projection matrix W.

Enhancing the capability of the DNN as a feature extractor by merging the l2,1-norm regularization
into a new cost function will result in more robust features. The new cost function calculates the
resulted error for each batch of the training data and it calibrates the weights between the layers
more accurately.
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2.3.2. Learning

In the learning process, it is aimed to minimize the proposed cost function with respect to the
projection matrix W, as in Equation (3).

minE(y,x)
W =

{(
sigm

(
XTW

)
−Y

)2
+ λ||W||2,1

}
(3)

The cost function in Equation (2) is not easy to minimize with the presence of the l2,1-norm.
In [52,54,55], the half-quadratic minimization method was used to solve the minimization of the
l2,1-norm. One should know that the minimizer function of the l2,1-norm is unpredictable near the
origin. Therefore, according to l2,1-norm analysis in [55], a ∅(x) =

√
ε + x2 can be defined to solve

this problem, where ε is chosen to be a decreased value to ensure that the function in Equation (3) with
the l2,1-norm is converged. Additionally, ∅ should satisfy all of the conditions in Equation (4).

x → ∅(x) is convex on R,
x → ∅

(√
x
)

is concave on R+,
∅(x) = ∅(−x), ∀x ∈ R,
∅(x) is C1 on R,
∅′′ (0+) > 0, lim

x→∞∅(x)/x2 = 0.

(4)

Lemma 1. Let be a function satisfying all conditions in Equation (4). There exists a conjugate function,ϕ(.),
as in Equation (5) such that

∅(
∣∣∣∣∣∣wi

∣∣∣∣∣∣
2
=

in f
p∈R

{
p
∣∣∣∣∣∣wi

∣∣∣∣∣∣2
2
+ ϕ(p)

}
(5)

p is determined by the minimizer function δ(.) with respect to ∅(.). Based on ∅(x), λ||W||2,1 is

replaced with λ∑
f
i

√
ε +

∣∣∣∣wi
∣∣∣∣2

2, then the Equation (3) is reformulated, as in Equation (6).

minE(y, x)
W

=

{
1

2m

(
sigm

(
XTW

)
−Y

)2
+ λ

f

∑
i

√
ε +

∣∣∣∣wi
∣∣∣∣2

2

}
(6)
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According to Lemma 1, the function of λ∑
f
i

√
ε +

∣∣∣∣wi
∣∣∣∣2

2 can be reformulated, as in Equation (7).

λTr
(

WTQW
)

(7)

q = δ
(∣∣∣∣wi

∣∣∣∣
2

)
∈ Rf is an auxiliary vector and Q = (q). The operator (.) puts a vector q on the main

diagonal of Q. q is computed by using the optimizer function, as in Equation (8).

qi =
1√∣∣∣∣wi
∣∣∣∣2

2 + ε
(8)

According to Equation (7), the minimization function can be written, as in Equation (9).

minE(y, x)
W

=
d

dW

{
1

2m

(
sigm

(
XTW

)
−Y

)2
+ λTr

(
WTQW

)}
(9)

The analytic minimization solution of Equation (9) with respect to W is finally written by Equation (10).

minE(y, x)
W

=
(

sigm
(

XTW
)
−Y

)(
sigm

(
XTW

)(
1− 1

sigm(XTW)

))
+ λQW (10)

2.4. Feature Sets

In this work, two feature sets are used to evaluate the efficiency of the proposed model.
Both feature sets are extracted from the training set in the Adience benchmark. The first feature
set is extracted from a pre-trained model for face recognition, namely the VGG-Face [43]. This model
was trained to extract distinctive facial features that can be valuable in age estimation from facial
images. The details of extracting the age-related facial features from the training samples by using the
VGG-Face model are available in [10]. The second feature set represents the depth of the superpixels in
a facial image and the relations between the superpixels and their neighbors. In our previous work [10],
we showed the significance of the superpixels depth features in age estimation. The superpixels depth
and their relations were extracted by using a pre-trained model in depth estimation [56]. More details
on the extraction of the superpixels features are available in [10].

2.5. Jointly Fine-Tuning of Two DNNs

Two methods are used for jointly fine-tuning of two DNNs with two feature sets to show the
efficiency of the proposed model.

2.5.1. By Amplified Features (JFN-A)

In this section, we propose a jointly fine-tuned model that is based on the amplification of the
features that are resulted from the element-wise summation of the last hidden layers of the two DNNs
with two different feature sets. The input features of the first DNN are the facial features which
were extracted from pre-trained model on face recognition, while the input features of the second
DNN are the superpixels and their relations, which were extracted from a pre-trained model for
depth estimation.

As shown in Figure 3, the proposed JFN-A consists of three parts. The first and second parts
are two supervised DNNs, and the third part is a supervised neural network that jointly fine-tunes
the first and second parts. The first and second parts have two hidden layers and one output layer.
The third part has one input layer, one hidden layer, and one output layer. There are eight labels in the
output layer. The input of the third part is the element-wise summation of the last hidden layers of the
first and second parts.
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Figure 3. JFN-A: Jointly fine-tuning of two deep neural networks (DNNs) by element-wise summation
of the outputs of the last hidden layers of the first and second parts.

The learning process of the JFN-A is explained as follows:

Step 1: Three loss functions are used to train the three networks. All three loss functions are the
softmax cross entropy function, as in (11).

Li = −
c

∑
j=1

yj log
(

yi,j

)
(11)

Li is the loss function of the network i, yj is the jth value of the label, and yi,j is the jth output
value of the network i.

Step 2: The first and second parts of the model are trained by using first batch of their corresponding
features. Then, the outputs of the last hidden layer of both networks are element-wise summed
to form the input of the third part, as in Equation (12).

x3,j = Relu
(
l1,j
)
+ Relu

(
l2,j
)

(12)

x3,j is the input of the third part, l1,j and l2,j are the outputs of the last hidden layer of the first
and second parts, and Relu is the rectified activation function.

Step 3: Feedforwarding, error calculation, and backpropagation are performed on the third part.
Step 4: The steps from 1 to 3 are repeated for the rest of the training batches.
Step 5: After the training is complete, the softmax output of the third part, s, is obtained as the final

decision, as in Equation (13).
s = argmaxj y3,j (13)

2.5.2. By the Softmax and the Sigmoid (JFN-SS)

This method is based on our previous work in [10]. It consists of two DNNs that use different
feature sets. These feature sets are extracted from the same input images. The first network is trained
on the first feature set. The cross-entropy is used as the loss function. The Softmax function is used
at the output layer. The second network is trained on the second feature set. The sigmoid function
is used to calculate the output layer probabilities, the mean squared error loss function is used to
calculate the DNN2 output error. Both of the networks are fine-tuned by the derived cost function that
uses the generated errors in both DNNs and later calibrates the weights in the first DNN, accordingly.
This method is explained in detail in [10].
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2.6. Database

The Adience benchmark is used in this work. It contains 26K face images of 2284 subjects who are
divided into eight age groups that are called labels. More details about the Adience benchmark are
available in [57]. Standard five-fold, subject-exclusive cross-validation protocol is applied for dividing
the database into train and test sets. The Adience is a challenging database, since it consists of unfiltered
face images, which were uploaded to the Flicker website while using smart phones. The images are
not filtered with any manual filtering techniques. Images in the database reflect real-world conditions
of uncontrolled environments such as significant variations in pose, expression, lighting, image quality,
and resolution. The Adience is not designed for face recognition task so that the number of images
per subject is not balanced. Around 80 percent of the subjects in the database have only one image,
while the rest have around 100 to 400 images. When the number of images per subject is small for a
label, while it is bigger for other labels, the classifier will be biased for the labels with more images.

3. Results

3.1. Robust Feature Selection Method

In this work the Adience database is used to test and evaluate the proposed work. For each image
sample, the facial and the superpixels feature sets are extracted. Then, the proposed robust features are
extracted for each feature set. For each image sample, the facial, superpixels, and their derived robust
features are concatenated and two DNNs and one NN are trained for age classification task. The first
DNN is used for finding the projection matrix and the second DNN is used for training the original
features concatenated with their robust features. Both DNNs consist of two hidden layers and one
input layer of 4096 and 512 nodes. The size of the input features for the first DNN is 4096 and the size
of the input features for the second DNN is 4104. Dropout rate of 0.7, learning rate of 0.01, and weight
decay of 10−4 are used in both networks. Since the resulted robust feature sets are relatively small in
size, a neural network with one hidden layer (NN) is used to report the accuracy results as the robust
feature set is used as input features (Lines 3 and 6 in Table 1). The input for this network consists of
eight features, which is the robust feature set size for each image sample in the database. The hidden
layer consists of 50 nodes. The dropout rate is chosen to be 0.5 and the learning rate is set to 0.01. Table 1
shows the overall accuracies using all feature sets, the facial, superpixels, derived robust for facial,
derived robust for superpixels, facial concatenated with its robust, and superpixels concatenated with
its robust features. As it can be seen in Table 1, the robust features achieved classification accuracies
that are comparable to the performance of the original features (facial and superpixels feature sets).
As an advantage the dimension of the robust features is much smaller than the dimension of the
original features. These obtained results by using the robust features verify the effectiveness of the
proposed model in finding efficient and distinctive features (robust features) for the age classification
from wild facial images. Moreover, using NN with the robust feature sets instead of using DNN at
the classification stage reduces the computational time. DNN is used to find the accuracy results for
the other feature sets (lines 2, 4, 5, 7 in Table 1). DNN consists of several hidden layers, while NN
consists of one hidden layer. As well as, the number of nodes in each DNN layer much bigger than the
number of nodes in the NN single hidden layer. This means that the number of connection between
the nodes in the DNN is much higher than those in the NN, and this increases computation complexity
in the DNN.
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Table 1. Overall classification accuracies for facial robust features on Adience database (%). Appendix A
presents the confusion matrices for the robust facial and robust superpixels features.

Feature Sets

Age Groups
0–2 4–6 8–13 15–20 25–32 38–43 48–53 60– Accuracy 1-Off Acc

Facial 88.41 60.18 39.12 43.61 67.14 43.79 14.52 57.20 57.45 94.32
Robust-Facial 82.19 69.12 39.71 12.78 76.42 19.53 6.64 38.52 53.25 81.18
Facial + Robust-Facial 86.96 65.96 45.88 35.24 78.98 41.22 15.35 83.66 63.22 94.38
Superpixels Features 86.34 58.82 34.18 15.01 80.78 11.05 10.88 53.31 53.62 81.40
Robust-Superpixels 78.14 52.37 36.46 20.28 67.61 17.77 17.38 57.15 49.95 78.89
Superpixels +
Robust-Superpixels 87.56 56.82 43.57 31.05 78.31 24.81 29.70 60.96 58.31 86.17

The concatenation of the original features and their robust features improve the classification
accuracies by a wide margin. Based on the results in Table 1, it can be observed that features based
on the facial feature set performed better than the superpixels feature sets. There are two main
reasons. Firstly, the facial feature set was extracted from a pre-trained model on VGG-Face for face
identification and classification problem; whereas the superpixels feature set was extracted from a
model that was pre-trained for depth estimation problem. Facial and robust facial feature sets contain
more age-related information and more relevant to age estimation task. Secondly, the database (about
two million unconstrained face images) used in pre-training the VGG-Face model is much larger than
the database (about tens of thousands of images that not all are face images) used in pre-training the
depth estimation model.

The concatenation of both feature sets with their robust features improves the classification
accuracy significantly. A classification process depends on two main factors: feature extraction and
classification process. The facial and superpixels features have shown significant improvements in
age classification. Moreover, the newly derived robust features with the same settings and classifier
enhanced the model’s performance by reducing the computation time.

The proposed framework combines the efficiency of DNNs for extracting distinctive feature and
the powerfulness of the l2,1-norm for selecting robust features. The l2,1-norm is well known for its
ability to deal with the outliers in images. Since the unconstrained image database contains various
outlier images, the l2,1-norm based sigmoid cost function enables our model to focus on finding robust
age-related features and reducing the negative effects of the outliers. The contribution of l2,1-norm for
selecting robust features can be controlled by tuning the λ parameter. Figure 4 shows the impact of
choosing different values for λ on the classification accuracy.
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Figure 4. The effect of λ on the accuracy results achieved by the robust features. The best accuracy
result is achieved with λ = 0.1 for both feature sets, while the classification accuracy drops when the λ

value drifts away from 0.1 from both sides.

3.2. Jointly Fine-Tuning Robust Feature Sets

The extracted robust facial and superpixels feature sets are used as input for JFN-A and JFN-SS.
The performance of the jointly fine-tuning networks based on the amplified feature sets is evaluated
by using the proposed robust feature sets. The network is depicted in Figure 5.
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Figure 5. JFN-A is fed with facial and superpixels feature sets concatenated with their robust features.
The facial features that are concatenated with their corresponding robust features are fed to the first
part of the network, while the superpixels features and their corresponding robust features are fed to
the second part of the network.

The network settings for Part 1 and Part 2 of the JFN-A are chosen as two hidden layers of size
1024 and input layer size is 4096 and 512, respectively. The learning rate, dropout rate, and weight
decay are 0.1, 0.7, and 10−3, respectively, for both parts. Both parts are jointly fine-tuned by using
Part 3. Two more hidden layers of size 512 are added on the top of the last hidden layers of Part 1
and Part 2. Then, one output layer with eight age labels is added. The learning rate for Part 3 is set
to 0.01, with dropout rate of 0.8, and weight decay of 10−4. The training is stopped when there is no
improvement in the validation set results. The performance of the second joint fine-tuning method [10]
and the proposed robust feature sets are evaluated. The two feature sets that are concatenated with
their robust features are trained and tested, as shown in Figure 6.
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The JFN-A and JFN-SS with the two feature sets concatenated with their robust features
outperform the accuracies that are observed by using each feature set alone. The results are given in
Table 2. The performance of the networks that are using the facial features concatenated with their
robust features is better than that of the superpixels features and their robust features for some classes
for the same reasons that are explained in the previous section.
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Table 2. Overall classification accuracies for facial and superpixels concatenated with their robust
features by JFN-A and JFN-SS on Adience database (%).

Features

Age Groups
0–2 4–6 8–13 15–20 25–32 38–43 48–53 60– Accuracy 1-Off Acc

(1) Superpixels Features
concatenated with their
robust features

87.56 56.82 43.57 31.05 78.31 24.81 29.70 60.96 58.31 86.17

(2) Facial Features
concatenated with their
robust features

86.96 65.96 45.88 35.24 78.98 41.22 15.35 83.66 63.22 94.38

(1) + (2) as input
for JFN-A 88.5 63.44 49.84 37.97 82.55 43.29 27.92 81.61 65.55 94.86

(1) + (2) as input
for JFN-SS 88.72 68.58 48.23 34.86 82.56 35.89 28.46 83.67 65.20 91.39

The proposed jointly fine-tuned networks by using the proposed robust features enhanced the
overall accuracy in the age estimation. Moreover, it is noticed that both JFN-A and JFN-SS achieve
significant results. One-off accuracy of the JFN-A is about 3% higher than that of the JFN-SS. This might
be due to the nature of the sigmoid function that is used in the JFN-SS. The sigmoid cost function
is mostly used in binary classification and focuses on the target label. It does not care about how
close the other labels to the target label. The JFN-A uses the softmax cost function only. The softmax
cost function evaluates the probabilities of all the labels, so that it increases the one-off accuracy of
the model. These models take the advantage of using two different feature sets and also take the
advantage of training the data set on two different DNNs. The JFN-A model trains and minimizes the
error by using three different cross-entropy functions as cost functions.

The effects of hidden nodes per layer and the number of hidden layers on the classification
accuracy of the JFN-A are shown in Figure 7.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 18 
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Figure 7. The accuracy of the JFN-A with respect to (a) the number of hidden nodes and (b) the number
of hidden layers.

Figure 7a presents the accuracies for different number of hidden nodes for part 3 of the JFN-A.
The highest accuracy is observed when the number of nodes was 512. Moreover, Figure 7b shows how
the accuracy significantly decreases when the number of hidden layers exceeds 2. Since we have two
level of classification, the inputs of the Part 3 in the JFN-A network are high level features, which do
not need deep architecture to enhance these features further, while the purpose is to jointly fine-tune
the features together. The top row in Figure 8 shows a set of images that are incorrectly classified,
and the bottom row shows a set of images that are classified correctly by the proposed networks.
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Figure 8. Challenging images in the Adience database. Images in the top row were classified incorrectly
by the proposed networks. Images in the bottom row were classified correctly by the proposed work.

4. Discussion

The state-of-the-art on the Adience database is listed in Table 3. The facial image alignment was
studied to improve the classification accuracies along with the effects of dropout by using the SVM
based classifier [57]. The work in [5] was the first step in age and gender classification from face images
by using DNNs. It employed a relatively simple and shallow network for feature extraction and
classification stages and it proposed an over-sampling technique to solve the misalignment challenge
partially. Hebda and Kryjak proposed a compact DCNN architecture for age and gender estimation [58].
The aim of their work is to train a fast DCNN as a base for the DNN in video training with the input
image size of 32 × 32. Zhu et al. studied a DCNN for a multitask learning to train the shared features
for age and gender tasks in end-to-end manner [59]. The works in [5,58,59] built simple CNNs without
utilizing any pre-trained models. Based on their reported results, one can notice that the methods are
not efficient for extracting age-related features, since the models were trained by using the Adience
database, which is considered to be a relatively small database.

A cascaded CNN is introduced in age estimation in [35]. It consists of three modules: age group
classifier, DCNN bases regressors, and erroneous age prediction. Rothe et al. utilized a deep CNN
architecture that is based on the VGG-16 model that was pre-trained for image classification. It does
not rely on facial landmarks to extract facial age-related features. The pretrained DNN was used as
a facial feature extractor [60]. The models are mainly built and trained for apparent age estimation.
Since apparent age estimation and real age estimation are different tasks, the reported improvements
are limited when compared with other works [35,60].

A new face descriptor model is presented in [61] that is based on three attributes: (1) The age
primitives, which finds the crucial texture primitives; (2) The latent second direction to keep the
structural information; and, (3) The global adaptive threshold to discriminate in the flat and textured
region. The new descriptor was used to extract facial features for age classification. In work [62],
the label-sensitive deep metric learning (LSDML) is proposed to learn a discriminative feature similarity
in facial age estimation. The goal was to exploit the label correlation between the training face samples
in term of the labels (subspace) to achieve balanced training samples. In [63], a new hybrid architecture
is developed based on CNN and extreme learning machine (ELM). Both techniques combined together
to deal with age and gender classification. The CNN is used for feature extraction, while the ELM is
used as a classifier. Different techniques for facial age estimation are proposed in [60–63].

A new DCNN model that was based on an attention network is introduced in [64]. This model
estimates the most informative patches in low-resolution images, which are further processed in a
patch network in higher resolution.
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Table 3. Comparison of state-of-the-art results (%).

Method Exact Accuracy 1-Off Accuracy

[5]
Shallow CNNs Using Single Crop 49.5 84.6
Shallow CNNs Using Over-Sample 50.7 84.7

[10]
DNN1 with Facial Features 57.45 94.32
DNN2 with Superpixels Features 53.62 81.40
Facial and Superpixels as input for JFN-SS 62.37 94.46

[35] Cascaded Convolutional Neural Network 52.88 88.45

[57]

LBP 41.4 78.2
LBP + FPLBP 44.5 80.7
LBP + FPLBP + Dropout 0.5 44.5 80.6
LBP + FPLBP + Dropout 0.8 45.1 79.5

[58] Compact DCNN architecture as base for video learning 42.0 -

[59] Employ light weight DCNN for a multitask learning scheme (age
+ gender), best model single-6-conv 49.7 -

[60] DCNNs based on VGG-16 architecture + softmax expected
function for refinement 55.6 89.7

[61]
Subject-Exclusive DAPP 54.9 -
Subject-Inclusive DAPP 62.2 -

[62]

LSDML: w/o data augmentation 56 -
LSDML: random cropping + horizontal flipping 56.9 -
M-LSDML: w/o data augmentation + 3 DB 58.2 -
M- LSDML: random cropping + horizontal flipping + 3 DB 60.2 -

[63]
Proposed CNN-ELM + Dropout 0.5 51.4 -
Proposed CNN-ELM + Dropout 0.7 52.3 -

[64] VGG-16-Faces + Attention Network 61.8 95.1

This work

Facial and Superpixels as input for JFN-A 63.78 93.70
(1) Superpixels Features Concatenated with Their Robust Features 58.31 86.17
(2) Facial Features Concatenated with Their Robust Features 63.22 94.38
(1) + (2) as input for JFN-A 65.55 94.86
(1) + (2) as input for JFN-SS 65.20 91.39

In Table 3, the proposed work outperforms the state-of-the-art methods because the proposed
method extracts more effective age-related feature sets and uses more capable classifier architectures,
while all of the previous works focused on only one of these tasks. Previous works, which did not
use DNNs or used a shallow DNN that was trained on one relatively small database, did not achieve
satisfactory results [5,35,57,59]. Previous works that used relatively deep NNs trained on several age
databases with different augmentations to increase the training samples achieved slightly improved
results, such as the work in [60], subject-exclusive DAPP in [61], LSDML and M-LSDML in [62],
and [63]. The highest accuracy reported on the Adience database is 62.2%. It was found by using
the subject-inclusive protocol [61]. Same subjects are allowed to appear as test and train samples in
subject-inclusive protocol. Similar classification accuracy is reported in [64] as 61.8%. Although the
reported accuracy rate is relatively competitive, the work relied on several very deep CNNs (Res-50
DNNs) to extract the feature set and it resulted in high computation time. Our proposed work achieved
the highest accuracies in the literature of age and gender classification from unconstrained facial images
by following the subject-exclusive protocol. Among our proposed methods, the JFN-A and JFN-SS
achieved the highest exact accuracies of 65.55% and 65.20%, respectively. In general, the following
points should be considered in order to perform an efficient and successful age estimation:

- The availability of large databases is essential to perform efficient age classification from facial
images. It is especially important when the model utilizes deep and very deep NNs. Otherwise,
the model is liable to overfitting problem. Database should contain sufficient examples of
reflecting real environment challenges, such as pose, illumination, resolution, and other real
conditions. In the case of relatively small databases, transferable learning could be used to
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compensate the limited facial images. For example, pre-trained models, which were trained over
large databases for different yet related tasks, could be used and customized.

- Extracting distinctive feature set(s) is also a very important step. Distinctive features allow for
the classifier to differentiate between different age groups efficiently. Finding such feature sets is
not an easy task and it needs a thorough investigation and study.

- Choosing a classifier to utilize and customize for the age classification task from facial images
plays a major role in reaching a satisfactory and competitive classification accuracies.

5. Conclusions

In this work, a new method for enhancing the ability of the DNN as a feature selector is proposed.
The new method embeds the l2,1-norm into the cost function of the DNN forming a new cost function.
The DNN minimizes the new cost function to find the robust features from the input feature set. Several
experiments are carried out to evaluate the performance of the proposed cost function. The new method
is tested over a publicly available bench mark of facial images for age estimation (Adience). The new
method is applied on two feature sets: the facial features and the superpixels features, both of the
features were extracted while using pre-trained models. In addition, the robust features extracted
using the proposed method are tested over two joint fine-tuning techniques, JFN-A and JFN-SS.
The performance of the proposed method outperforms the state-of-the-art results by almost 3% in
terms of the overall accuracy. Moreover, utilizing the resulted robust features by using the proposed
work improved the performance of the joint fine-tuning methods.
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Appendix A

Table A1. Confusion matrix for the robust facial features (%).

Actual
Predict 0–2 4–6 8–13 15–20 25–32 38–43 48–53 60–

0–2 82.19 15.73 0.21 0.00 1.86 0.00 0.00 0.00
4–6 13.51 69.12 12.98 1.23 2.81 0.18 0.00 0.18

8–13 0.59 5.88 39.71 5.59 44.12 3.82 0.00 0.29
15–20 0.44 0.88 15.42 12.78 65.64 3.96 0.00 0.88
25–32 0.19 0.38 5.49 1.52 76.42 11.65 0.76 3.60
38–43 0.59 0.39 1.97 0.59 62.73 19.53 3.55 10.65
48–53 0.83 0.41 3.73 2.49 52.70 23.24 6.64 9.96
60– 0.00 0.39 1.17 0.00 29.97 27.24 2.72 38.52

Table A2. Confusion matrix for the robust superpixels features (%).

Actual
Predict 0–2 4–6 8–13 15–20 25–32 38–43 48–53 60–

0–2 78.14 17.35 2.24 0.32 1.41 0 0 0.54
4–6 28.27 52.37 9.42 4.64 2.92 1.16 0.64 0.58

8–13 2.31 7.67 36.46 8.54 38.12 5.03 0 1.87
15–20 0 4.99 14.08 20.28 53.24 3.92 1.85 1.64
25–32 1.88 2.43 6.04 7.93 67.61 9.51 1.23 3.37
38–43 1.63 2.66 3.49 6.7 55.44 17.77 5.08 7.23
48–53 0 3.96 5.65 3.72 44.29 11.89 17.38 13.11
60– 0.07 2.07 3.69 7.81 20.83 5.46 2.92 57.15
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