
applied  
sciences

Article

Side-Channel Vulnerabilities of Unified Point
Addition on Binary Huff Curve and Its
Countermeasure

Sung Min Cho 1 , Sunghyun Jin 1 and HeeSeok Kim 2,*
1 Center for Information Security Technologies (CIST), Korea University, Seoul 02841, Korea;

muji0828@korea.ac.kr (S.M.C.); sunghyunjin@korea.ac.kr (S.J.)
2 Department of Cyber Security, College of Science and Technology, Korea University, Sejong 30019, Korea
* Correspondence: 80khs@korea.ac.kr

Received: 18 September 2018; Accepted: 19 October 2018; Published: 22 October 2018
����������
�������

Abstract: Unified point addition for computing elliptic curve point addition and doubling is
considered to be resistant to simple power analysis. Recently, new side-channel attacks, such as
recovery of secret exponent by triangular trace analysis and horizontal collision correlation analysis,
have been successfully applied to elliptic curve methods to investigate their resistance to side-channel
attacks. These attacks turn out to be very powerful since they only require leakage of a single
power consumption trace. In this paper, using these side-channel attack analyses, we introduce two
vulnerabilities of unified point addition on the binary Huff curve. Also, we propose a new unified
point addition method for the binary Huff curve. Furthermore, to secure against these vulnerabilities,
we apply an equivalence class to the side-channel atomic algorithm using the proposed unified point
addition method.

Keywords: unified point addition; binary Huff curve; recovery of secret exponent by triangular trace
analysis; horizontal collision correlation analysis

1. Introduction

Side-channel attacks (SCAs) are major threats to the security of cryptographic embedded devices.
Power analysis, the most actively researched SCA technique, can be used to find secret information by
using the power consumption data extracted during the cryptographic operations of embedded
devices. Power analysis attacks on elliptic curve cryptosystems (ECCs) are classified into two
types: simple power analysis (SPA) and differential power analysis (DPA) [1]. SPA exposes secret
information by observing the power consumption of a single execution of a cryptographic algorithm.
For example, a secret key can be easily extracted from the binary scalar multiplication algorithm
by differentiating the point addition signal from the point doubling signal. On the other hand,
DPA reveals secret information by statistically analyzing many executions of the same algorithm
with different inputs without the physical decapsulation of the target device, even if it is impossible
to apply SPA. DPA utilizes a correlation between power consumption and specific key-dependent
bits that appear at the cryptographic computations. Among the representative countermeasures
against DPA are randomization techniques, e.g., scalar/message blinding methods and randomized
projective coordinates, which make it impossible to guess the specified values [2]. The countermeasures
against SPA can be divided into two main categories. The first strategy is to perform point
addition and point doubling, regardless of the secret bit value, such as the double-and-add-always
method and Montgomery ladder algorithm [2,3]. The second approach is to make basic operations
indistinguishable, such as side-channel atomicity and unified point addition [4,5].
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Recently, two new SCAs using only one power consumption trace—recovery of secret exponent
by triangular trace analysis (ROSETTA) and horizontal collision correlation analysis (HCCA)—have
been proposed to analyze various countermeasures against DPA and SPA [6,7]. While ROSETTA can
find secret information by distinguishing whether the operands of a field multiplication are the same
or different, HCCA can find it by distinguishing whether the two field multiplications have at least
one operand in common. These two attacks do not require any prior knowledge of the input operands
of the field multiplications.

Unified point addition is useful for resisting ECCs to SPA. This technique, by which point addition
and point doubling use the same sequence of field operations, was first introduced by Brier and Joye in
affine and projective coordinates [5]. After that, various unified point addition formulae were proposed
for their application to many kinds of elliptic curves, such as Edwards curves, binary Huff curves, and
so on. Recently, unified point addition for the binary Huff curve was proposed by Debigne and Joye
at the CT-RSA 2011 conference [8]. However, at the CHES 2013 conference, S. Ghosh et al. showed
that unified point addition was insecure against SPA. They further proposed a modified unified point
addition formula for the binary Huff curve which would provide resistance to SPA [9].

In this paper, we demonstrate two vulnerabilities of unified point addition on the binary Huff
curve using ROSETTA and HCCA. Unified point addition operates with an identical sequence of field
operations, regardless of the input points. However, some field multiplications of the unified point
addition computation can be affected by investigating whether the two input points are equal or not. If
two input points of the unified point addition operation are equal, field multiplications are computed
with the same operands (i.e., squaring). Also, there are some field multiplication pairs with common
operands. Hence, unified point addition can be exposed to the risk of these vulnerabilities using
ROSETTA and HCCA. In order to show that unified point addition actually has these weaknesses,
we implemented unified point addition on a binary Huff curve on an ARM cortex-m4 processor that
performs field multiplications depending on the secret bit value, repeatedly. Then, we analyzed a
power consumption trace collected from the implementation by using our attack methods. As a result
of the actual experiments, we were able to find secret bit values more than 94% of the time, which
proves that this unified point addition operation is indeed vulnerable to our attacks, and the single
trace attack is a practical threat.

To provide security against our attack methods, we propose a new countermeasure using an
equivalence class for unified point addition. By using the equivalence class, even though two input
points of the unified point addition operation are in the same class, the two points can be different
projective coordinate values. In addition, to provide perfect security against our attack methods,
we reconfigured the operations of the unified point addition formula. The proposed unified point
addition method for the binary Huff curve using the equivalence class is just about 2∼4.4% slower
than the existing unified point addition method from [8,9]. In addition, the proposed method is
about 8.5∼17.5% faster than an existing countermeasure that provides same security, i.e., unified point
addition using blinding operands of a field multiplication [10]. We applied the aforementioned attacks
to the unified point addition formulae of other elliptic curves and confirmed that most unified point
addition formulae have these vulnerabilities.

This paper is organized as follows. Section 2 introduces basic knowledge of binary Huff curves
and a description of ROSETTA and HCCA. In Sections 3 and 4, we explain the vulnerabilities
of the unified point addition formulae and describe the experimental results of applying these
methods. Section 5 proposes our method to make unified point addition secure against our attacks.
In Section 6, we compare the proposed method with previous methods. Finally, Section 7 addresses
our conclusions. In addition, we explain the vulnerabilities of several unified addition formulae and
their countermeasures in the Appendix A.
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2. Preliminaries

2.1. Binary Huff Curve and Unified Point Addition

At CT-RSA in 2011, a Huff curve for the binary field was proposed by Devigne and Joye. Instead
of providing general point addition, this construction provides a unified point addition operation to
resist side-channel attacks. However, at CHES in 2013, Ghosh et al. demonstrated that the unified
point addition method from CT-RSA 2011 was insecure against SPA. Even though both point addition
and point doubling are computed with the same formula and executed by the same sequence of finite
field operations, they demand different amounts of power consumption. Specifically, point doubling
with unified point addition produces a zero value in some intermediate operations. However, point
addition does not. Such zero values in point doubling are used in some field multiplications in unified
point addition. Apparently, the outputs are also zero. The power consumption of these multiplications
with zero and nonzero inputs are significantly different. Therefore, it is possible to distinguish between
point doubling and point addition. Hence, they proposed a new unified point addition formula which
is secure against SPA. Here, we provide a brief description.

Definition 1 ([11]). A generalized binary Huff curve is the set of projective points (X : Y : Z) ∈ P2(F2m)

satisfying the equation

E/F2m : aX(Y2 + f YZ + Z2) = bY(X2 + f XZ + Z2), (1)

where a, b, f ∈ (F)∗2m and a 6= b.

There are three points at infinity that satisfy the curve equation, namely, (a : b : 0), (1 : 0 : 0),
and (0 : 1 : 0). Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2); then, we get P1 + P2 = (X3 : Y3 : Z3)

with unified point addition [8]:

X3 = (Z1Z2 + Y1Y2)((X1Z2 + X2Z1)(Z2
1 Z2

2 + X1X2Y1Y2)+

αX1X2Z1Z2(Z1Z2 + Y1Y2))

Y3 = (Z1Z2 + X1X2)((Y1Z2 + Y2Z1)(Z2
1 Z2

2 + X1X2Y1Y2)+

βY1Y2Z1Z2(Z1Z2 + X1X2))

Z3 = (Z1Z2 + X1X2)(Z1Z2 + Y1Y2)(Z2
1 Z2

2 + X1X2Y1Y2),

(2)

where α = (a + b)/b and β = (a + b)/a. The unified point addition formula in Equation (2) can be
evaluated as described in [9]:

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,
m4 = (X1 + Z1)(X2 + Z2), m5 = (Y1 + Z1)(Y2 + Z2),
m6 = m1m3, m7 = m2m3, m8 = m1m2 + m2

3,
m9 = m6(m2 + m3)

2, m10 = m7(m1 + m3)
2, m11 = m8(m2 + m3),

Z3 = m11(m1 + m3), X3 = m4m11 + αm9 + Z3,
Y3 = m5m8(m1 + m3) + βm10 + Z3.

The above operation needs 17 field multiplications, which is exactly the same as in the original
one. Since point doubling does not have a zero value in any intermediate operation, it is secure
against SPA. Recently, however, SCAs such as SPA using only one power consumption trace have been
proposed [6,7]. Therefore, security analysis of the unified point addition formula should be considered
not only for SPA but also for other analyses. Using these analyses, we present the vulnerabilities of
the unified point addition method from [9] and report our experimental results in Sections 3 and 4,
respectively.
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2.2. ROSETTA and HCCA

Recovery of secret exponent by triangular trace analysis (ROSETTA) [7] and horizontal collision
correlation attack (HCCA) [6] are based on the observations of the power consumption of the
cryptosystems during the executions of field multiplications. They are powerful attacks on elliptic
curve cryptosystems since they use only one power consumption trace for SPA. ROSETTA and HCCA
can be used to reveal secret information by analyzing the correlation between the secret bit value and
the power consumption of field multiplications without any prior knowledge of the inputs. Details of
the analyses are as follows.

ROSETTA. Clavier’s attack needs a single power consumption trace to recover secret information.
For each field multiplication, ROSETTA detects whether the operation is x · x (squaring) or
x · y (multiplication). Let x = (xm−1, xm−2, ..., x0)2w and y = (ym−1, ym−2, ..., y0)2w . A w-bit
multiplication xi · yj can be identified from the specific pattern in side-channel power consumption.
ROSETTA considers the observation O1 and O2 extracted from the multiplication xi · yj for all
i 6= j:

(O1) : x · y s.t x = y⇒ Prob(xi · yj = xj · yi)= 1 for all i 6= j

(O2) : x · y s.t x 6= y⇒ Prob(xi · yj = xj · yi)≈ 0 for all i 6= j

From the observations O1 and O2, collisions between xi · yj and xj · yi for all i 6= j can be used to
identify squarings from multiplications. To identify these collisions of field multiplication trace,
ROSETTA exploits a triangle trace analysis which uses a Euclidean distance distinguisher relying
on a collision correlation technique.

HCCA. Bauer et al. introduced this method to extract keys using the collision of field
multiplications in a single power consumption trace. The core idea of this attack is that collision
occurs during two field multiplication computations when the same operands are used, which
can be detected by HCCA. When performed in a horizontal setting, the observations O1 and O2

are extracted from the two field multiplications.

(O1) : x1 · y1 and x2 · y2 s.t x1 = x2 and y1 = y2 ⇒ Prob((x1)i · (y1)j = (x2)i · (y2)j) = 1 for all i, j

(O2) : x1 · y1 and x2 · y2 s.t x1 6= x2 and y1 6= y2 ⇒ Prob((x1)i · (y1)j 6= (x2)i · (y2)j) ≈ 0 for all i, j

The correlation between the two observations is then estimated by Pearson’s coefficient in order
to determine whether the two operands of the field multiplications are the same or different.

The advantage of these analyses is that the inputs of field multiplication can remain unknown since
the adversary does not need to compute intermediate values. Countermeasures against ROSETTA and
HCCA include shuffling the operands and blinding the operands of a field multiplication [10]. For n-bit
field multiplication, the blinding operand method requires t2 + 2t + 1 w-bit multiplications, where
t = dn/we. Unified point addition using blinding operands requires a great additional computational
cost. Therefore, for efficiency, we propose a suitable and efficient countermeasure for the unified point
addition operation, and we compare and analyze the proposed method with the existing unified point
addition method using blinding operands on the binary Huff curve.

3. Vulnerabilities of Unified Point Addition

Many methods have been proposed to prevent SPA, such as unified point addition and the
Montgomery ladder algorithm. Since unified point addition can compute point addition and point
doubling with the same formula, it is secure against SPA. In addition, it can be applied to various
algorithms easily. In this section, we define two types of vulnerabilities of unified point addition and
find vulnerabilities of unified point addition of the binary Huff curve in [9].
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3.1. Vulnerabilities of Unified Point Addition

We describe the vulnerabilities of unified point addition considering ROSETTA and HCCA. Both
are analyses using the correlation between the input data and operations. ROSETTA can determine
whether the operands of a field multiplication are equal (squaring) or different (multiplication). HCCA
can determine whether two field multiplications have the same or different operands. We defined the
two types of vulnerabilities exposed by these analyses.

Type 1. (Vulnerability by ROSETTA): The unified point addition operation can compute
the point doubling and point addition with the same formula. However, depending on the
input points of unified point addition, field multiplications can be performed as squaring or
multiplication. For example, let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) be the two input
points of the unified point addition formula. Note that there exists the operation X1 · X2 in
unified point addition. If P1 = P2, then this operation computes to X1 · X1. If P1 6= P2, then this
operation computes to X1 · X2. Then, this operation becomes a vulnerability that is exploitable
by ROSETTA.

Type 2. (Vulnerability by HCCA): Considering two field multiplications, if they have at least
one common operand, they can be distinguished by HCCA. In unified point addition, the two
different multiplications can be identically computed according to the inputs. For example, the
operations X1 · Y1 and X2 · Y2 exist in unified point addition. If P1 = P2, then X1 · Y1 will be
computed twice. If P1 6= P2, then X1 · Y1 and X2 · Y2 will be computed. Then, these operations
become a vulnerability that is exploitable by HCCA.

3.2. Vulnerabilities of Binary Huff Curve

In this section, we find Type 1 and Type 2 vulnerabilities of unified point addition on the binary
Huff curve from [9] during the computations of P1 + P2 for P1 6= P2 and P1 = P2. Let P1 = (X1 : Y1 : Z1)

and P2 = (X2 : Y2 : Z2). In each case, the unified point addition formula can be evaluated as shown
in Table 1.

Table 1. Unified point addition on binary Huff curve.

Out P1 = P2 P1 6= P2

m1 [X1] · [X1] [X1] · [X2]
m2 [Y1] · [Y1] [Y1] · [Y2]
m3 [Z1] · [Z1] [Z1] · [Z2]
m4 [(X1 + Z1)] · [(X1 + Z1)] [(X1 + Z1)] · [(X2 + Z2)]
m5 [(Y1 + Z1)] · [(Y1 + Z1)] [(Y1 + Z1)] · [(Y2 + Z2)]

m6 = m1 ·m3 [X2
1 ] · [Z2

1 ] [X1X2] · [Z1Z2]
m7 = m2 ·m3 [Y2

1 ] · [Z2
1 ] [Y1Y2] · [Z1Z2]

m8 = m1 ·m2 + m2
3 [X2

1 ] · [Y2
1 ] + (Z2

1)
2 [X1X2] · [Y1Y2] + (Z1Z2)

2

m9 = m6 · (m2 + m3)
2 [X2

1 Z2
1 ] · [(Y2

1 + Z2
1)

2] [X1X2Z1Z2] · [(Y1Y2 + Z1Z2)
2]

m10 = m7 · (m1 + m3)
2 [Y2

1 Z2
1 ] · [(X2

1 + Z2
1)

2] [Y1Y2Z1Z2] · [(X1X2 + Z1Z2)
2]

m11 = m8 · (m2 + m3) [(X2
1 Y2

1 + Z4
1)] · [(Y2

1 + Z2
1)] [(X1X2Y1Y2 + (Z1Z2)

2)] · [(Y1Y2 + Z1Z2)]
Z3 = m11 · (m1 + m3) [(X2

1 Y2
1 + Z4

1)(Y2
1 + Z2

1)] ·[(X2
1 + Z2

1)] [(X1X2Y1Y2 + (Z1Z2)
2)(Y1Y2 + Z1Z2)] ·[(X1X2 + Z1Z2)]

X3 = m4 ·m11 [(X2
1 + Z2

1)] ·[(X2
1 Y2

1 + Z4
1)(Y2

1 + Z2
1)] [(X1 + Z1)(X2 + Z2)] ·[(X1X2Y1Y2 + (Z1Z2)

2)(Y1Y2 + Z1Z2)]
+α ·m9 + Z3 +[α] · [X2

1 Z2
1(Y

2
1 + Z2

1)
2] + Z3 +[α] · [X1X2Z1Z2(Y1Y2 + Z1Z2)

2] + Z3
Y3 = [(Y2

1 + Z2
1)] · [(X2

1 Y2
1 + Z4

1)] [(Y1 + Z1)(Y2 + Z2)]
m5 ·m8 · (m1 + m3) ·[(X2

1 + Z2
1)] ·[(X1X2Y1Y2 + (Z1Z2)

2)] · [(X1X2 + Z1Z2)]
+β ·m10 + Z3 +[β] · [Y2

1 Z2
1(X2

1 + Z2
1)

2] + Z3 +[β] · [Y1Y2Z1Z2(X1X2 + Z1Z2)
2] + Z3

Type 1 vulnerability: Let us consider the computation of m1 = [X1] · [X2]. In this formula, it is
computed as [X1] · [X1] for P1 = P2, whereas it is computed as [X1] · [X2] for P1 6= P2. Similarly, for
P1 = P2, for m2, m3, m4, and m5, these are computed as [Y1] · [Y1], [Z1] · [Z1], [(X1 + Z1)] · [(X1 +

Z1)], and [(Y1 + Z1)] · [(Y1 + Z1)], respectively. Thus, an adversary can distinguish between
P1 = P2 and P1 6= P2.

Type 2 vulnerability: In Table 1, let us consider the computations of [m11] · [(m1 + m3)], [m4] ·
[m11], and [m5m8] · [(m1 + m3)] for Z3, X3, and Y3, respectively. If P1 = P2, then m4 = (X1 +
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Z1)(X1 + Z1) = X1X1 + Z1Z1 + X1Z1 + X1Z1. Since the value of X1Z1 + X1Z1 is zero in F2m ,
then m4 = X1X1 + Z1Z1 = m1 + m3 for P1 = P2. Also, m5m8 = (Y2

1 + Z2
1)(X2

1Y2
1 + Z4

1) = m11 for
P1 = P2. Thus, the operands of [m11] · [(m1 +m3)], [m4] · [m11], and [m5m8] · [(m1 +m3)] for Z3, X3,
and Y3 are the same for P1 = P2 but different for P1 6= P2. Similarly, consider [m8] · [(m2 + m3)]

and [m5] · [m8] for m11 and Y3. Since m5 = (Y1 + Z1)(Y2 + Z2) = Y1Y1 + Z1Z1 = m2 + m3,
[m8] · [(m2 + m3)] and [m5] · [m8] have the same inputs for P1 = P2 but different inputs for
P1 6= P2. Therefore, they can be distinguished between P1 = P2 and P1 6= P2.

In this section, we have defined the two types of vulnerabilities and highlighted them in unified
point addition on the binary Huff curve. These vulnerabilities can also be found in unified point
additions on other elliptic curves. We explain how to find these vulnerabilities of unified point addition
on other elliptic curves in the Appendix A.

4. Experiments

In this section, we provide experimental results showing that unified point addition on the binary
Huff curve is vulnerable to HCCA and ROSETTA. For this, we implemented a field multiplication for
unified point addition on the binary Huff curve on an ARM cortex-m4 processor on the ChipWhisperer
CW308 UFO evaluation board [12]. The scheme of the experimental setup used for measuring the
power consumption is shown in Figure 1.

Figure 1. The scheme of the experimental setup used for measuring power consumption.

We collected a power consumption trace which is measured when 192 field multiplications are
performed. We randomly selected whether the two operands of the two multiplications of each pair
are identical or not for HCCA. Also, we randomly selected whether the operands of the multiplication
are identical or not for ROSETTA. The power consumption trace was acquired using a Lecroy HDO
oscilloscope with a sampling rate of 5 GS/s. We preprocessed the power consumption trace with
a 168 MHz low-pass filter and 3-point maximum compression only for ROSETTA. Figure 2 shows
a power consumption trace of field multiplications for unified point addition on the binary Huff
curve. Using SPA and a cross-correlation technique, we identified each w-bit multiplication in a field
multiplication and separated these into subtraces which correspond to each w-bit multiplication,
as shown in Figure 3. For the experiment, we divided them into 96 pairs of subtraces of field
multiplications for (x1) · (y1) and (x2) · (y2) for HCCA. Similarly, we separated a power consumption
trace into subtraces of 192 field multiplications for (x) · (y) for ROSETTA. To perform HCCA and
ROSETTA, each subtrace was classified into two groups appropriately according to each analysis
method. To find a pairwise collision, we separated the subtraces into two groups based on the following
fact. Since HCCA determines whether a collision occurs during two field multiplications or not, we
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divided the subtraces of the w-bit multiplications (x1)i · (y1)j and (x2)i · (y2)j for all i, j of the two
multiplications (x1) · (y1) and (x2) · (y2) into each group. In the case of ROSETTA, similar to HCCA,
we divided the subtraces of the w-bit multiplications (x)i · (y)j and (x)j · (y)i for all i 6= j of a field
multiplication x · y into each group.

Figure 2. A single power consumption trace of field multiplications for binary Huff curve software
implementation on an ARM cortex-m4 processor. The power consumption trace is composed of
subtraces corresponding to field multiplications.

Figure 3. Beginning of a field multiplication power consumption trace. Each w-bit multiplication
subtrace in a field multiplication can be identified using simple power analysis (SPA) and
cross-correlation.

To find points of interest (POIs), i.e., those having the most collision-related leakage information,
we calculated the sum of squared pairwise t-differences (SOST), which is Welch’s t-test of two groups,
using the following:  m1 −m2√

σ2
1

n1
+

σ2
2

n2


2

(3)

where mi is the mean trace of group i, and σ2
i is the variance trace of group i [13,14]. SOST is a tool

mainly used to identify side-channel leakage and is discussed in the SCA literature [15–17]. Because
SOST is computed depending on the group’s statistics and each group is separated based on the
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operand of w-bit multiplication, points having high SOST indicate POIs. Since HCCA uses both the
inputs and the output of w-bit multiplication, we selected points having a SOST value higher than
some heuristic threshold. However, ROSETTA uses the output of w-bit multiplication, and we selected
points having leakage of manipulating the output, considering the sequence of the multiplication. The
SOST results and POIs for HCCA and ROSETTA are shown in Figure 4a,b, respectively.

(a) HCCA (b) ROSETTA
Figure 4. Squared pairwise t-differences (SOST; line) and points of interest (POIs; red circle).
(a) Points having higher SOST values than the heuristic threshold are chosen for HCCA’s POIs.
(b) Unlike HCCA, ROSETTA’s POIs, upon which the output value of w-bit multiplication is processed,
are chosen heuristically.

We checked for a collision between subtraces corresponding to each group. The occurrence of a
collision was determined by calculating Pearson’s correlation coefficients. For this, we reconstructed
all subtraces composed of values of POIs only. Then, Pearson’s correlation coefficients were calculated
between subtraces corresponding to each group over every point. Then, correlation coefficients
corresponding to the same field multiplications and the same groups were averaged over the points.
The values of the correlation coefficient sequences indicating a collision were averaged. As a result,
this averaged value became a criterion for determining whether a collision occurs or not. We set
the threshold by averaging all final values, which were the criteria for each collision check, and
confirmed collisions by comparing the magnitude of each value and threshold. If a value was higher
than the threshold, we guessed that collision occurs; otherwise, the collision was assumed not to
occur. The analysis results of HCCA and ROSETTA are shown in Figure 5a,b, respectively. As a result,
the success rates of HCCA and ROSETTA are 97.92% and 94.79%, respectively. These results prove
that the aforementioned HCCA and ROSETTA vulnerabilities are real.
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(a) HCCA

(b) ROSETTA
Figure 5. Results of the secret bit value guess by (a) HCCA and (b) ROSETTA. The blue line is the secret
bit value guess and the horizontal red line is the threshold value for the secret bit value discrimination;
points with a black circle indicate where the attack failed.

5. Countermeasures

5.1. Countermeasures

As for the two types of vulnerabilities considered in this paper, we introduce the following
interesting properties: they make use of a single power consumption trace, yet they do not require
knowledge of the inputs to the unified point addition formula for the binary Huff curve. Due to
these properties, the application of classical blinding countermeasures (point blinding, scalar blinding,
random projective coordinates) is not recommended. We propose new countermeasures against these
vulnerabilities of unified point addition.

Type 1 and Type 2 vulnerabilities are due to two problems in unified point addition on the binary
Huff curve. The first is that each coordinate of input points of the unified point addition operation has
the same value. This problem can be solved by using the equivalence class of projective coordinates [18].
Let F be a finite field. In a binary Huff curve, the equivalence class containing (X, Y, Z) is
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(X : Y : Z) = {(rX, rY, rZ) : r ∈ F}. (4)

Notice that if (X′, Y′, Z′) ∈ (X : Y : Z), then (X′ : Y′ : Z′) = (X : Y : Z). Let P = (X : Y : Z)
and P′ = (X′ : Y′ : Z′) be the equivalence class, where X′ = rX, Y′ = rY, and Z′ = rZ, r 6= 1. Then,
(X : Y : Z) = (X′ : Y′ : Z′). When considering P3 = P + P′ and P4 = P + P, each coordinate of input
points of P and P′ has a different value, but P3 = P4. The equivalence class has been used in random
projective coordinates (RPCs), which is a countermeasure of DPA [19]. However, RPCs are generally
applied only to the input P of the elliptic curve scalar multiplication. Of course, RPCs can be applied
to every execution or after each unified point addition. Unfortunately, in this case, the computational
cost is disadvantageously increased for RPCs. Since we only need to convert P to a different coordinate
of the same equivalence class, the bit size of r need not be the same as the bit size of the finite field.
Therefore, for computational efficiency, we propose a w-bit random projective coordinate (wRPC) that
limits the size of r to w bits. The proposed wRPC for the binary Huff curve is depicted in Algorithm 1.

Algorithm 1: A w-bit random projective coordinate for the binary Huff curve (wRPC)

Require: P = (X : Y : Z)
Ensure: P′ = (X′ : Y′ : Z′)

1: Generate a w-bit random number r with r 6= 1
2: X′ ← rX; Y′ ← rY; Z′ ← rZ
3: return P′

In Algorithm 1, w is the bit size of a word multiplication for a field multiplication. In this work,
we only considered the application of wRPC on a side-channel atomic algorithm using unified point
addition [4]. The side-channel atomic algorithm using wRPC is described by Algorithm 2. We show
the additional cost of Algorithm 2 in Section 5.

Algorithm 2: Side-channel atomic algorithm using wRPC

Require: P = (X : Y : Z), k = (kn−1...k0)2
Ensure: kP

1: R0 ← O; R1 ← P; R2 ← O; i← n− 1;
2: k′ ← 0
3: while (i ≥ 1) do
4: R0 ← wRPC(R2)
5: R1 ← wRPC(R1)
6: R2 ← R2 + Rk′
7: k′ ← k′

⊕
ki

8: i← i−¬k
9: end while

10: return R0

Although Algorithm 2 using unified point addition is secure against Type 1 vulnerabilities, it is
still insecure against Type 2. We show in the next subsection that it is not secure against Type 2
vulnerabilities. To be secure against Type 2 vulnerabilities, it is necessary to reconstruct the calculation
process of unified point addition. For this reason, we propose a new unified point addition formula
for the binary Huff curve as follows:

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,
m4 = (X1 + Z1)(X2 + Z2), m5 = (Y1 + Z1)(Y2 + Z2),
m6 = m1m3, m7 = m2m3, m8 = m1m2 + m2

3,
m9 = m6(m2 + m3)

2, m10 = m7(m1 + m3)
2, m11 = m8(m2 + m3),

m12 = m8(m1 + m3),
Z3 = m11(m1 + m3),
X3 = (m4 + m11)m11 + m2

11 + αm9 + Z3,
Y3 = (m5 + m12)m12 + m2

12 + βm10 + Z3.



Appl. Sci. 2018, 8, 2002 11 of 23

The proposed unified point addition operation is based on masking by m4 and m5. To use the
advantage of almost no computational cost for squaring in a binary field, we configured the calculation
of masking m4 and m5 by squaring. Thus, the proposed method needs 17 field multiplications, which
is exactly the same as in [9]. Furthermore, we explain Type 1 and Type 2 vulnerabilities of several
unified point addition formulae and propose countermeasures in the Appendix A.

5.2. Security Analysis of the Proposed Method

In this section, we analyze Type 1 and Type 2 vulnerabilities of Algorithm 2 using the proposed
unified point addition method. Let the input R2 = (X1 : Y1 : Z1) in step 4 and let the input
R1 = (X2 : Y2 : Z2) in step 5. Then, in step 6, the two inputs R2 and Rk′ of the proposed unified point
addition are P1 = R2, P2 = R0 if k′ = 0 and P1 = R2, P2 = R1 if k′ = 1. The two inputs are expressed
as follows: {

P1 = (X1 : Y1 : Z1), P2 = (r1X1 : r1Y1 : r1Z1) If k′ = 0,

P1 = (X1 : Y1 : Z1), P2 = (r2X2 : r2Y2 : r2Z2) If k′ = 1.
(5)

where r 6= 1. The proposed unified point addition method can be evaluated as shown in Table 2.

Table 2. The proposed unified point addition method on the binary Huff curve in Algorithm 2.

Out P1 = P2(k′ = 0) P1 6= P2(k′ = 1)

m1 [X1] · [r1X1] [X1] · [r2X2]
m2 [Y1] · [r1Y1] [Y1] · [r2Y2]
m3 [Z1] · [r1Z1] [Z1] · [r2Z2]
m4 [(X1 + Z1)] · [(r1X1 + r1Z1)] [(X1 + Z1)] · [(r2X2 + r2Z2)]
m5 [(Y1 + Z1)] · [(r1Y1 + r1Z1)] [(Y1 + Z1)] · [(r2Y2 + r2Z2)]

m6 = m1 ·m3 [r1X2
1 ] · [r1Z2

1 ] [r2X1X2] · [r2Z1Z2]
m7 = m2 ·m3 [r1Y2

1 ] · [r1Z2
1 ] [r2Y1Y2] · [r2Z1Z2]

m8 =
[r1X2

1 ] · [r1Y2
1 ] + (r1Z2

1)
2 [r2X1X2] · [r2Y1Y2] + (r2Z1Z2)

2
m1 ·m2 + m2

3
m9 =

[r2
1X2

1 Z2
1 ] · [(r1Y2

1 + r1Z2
1)

2] [r2
2X1X2Z1Z2] · [(r2Y1Y2 + r2Z1Z2)

2]
m6 · (m2 + m3)

2

m10 =
[r2

1Y2
1 Z2

1 ] · [(r1X2
1 + r1Z2

1)
2] [r2

2Y1Y2Z1Z2] · [(r2X1X2 + r2Z1Z2)
2]

m7 · (m1 + m3)
2

m11 =
[r2

1(X2
1Y2

1 + Z4
1)] · [r1(Y2

1 + Z2
1)] [r2

2(X1X2Y1Y2 + (Z1Z2)
2)] · [r2(Y1Y2 + Z1Z2)]m8 · (m2 + m3)

m12 =
[r2

1(X2
1Y2

1 + Z4
1)] · [r1(X2

1 + Z2
1)] [r2

2(X1X2Y1Y2 + (Z1Z2)
2)] · [r2(X1X2 + Z1Z2)]m8 · (m1 + m3)

Z′3 = [r3
1(X2

1Y2
1 + Z4

1)(Y
2
1 + Z2

1)] [r3
2(X1X2Y1Y2 + (Z1Z2)

2)(Y1Y2 + Z1Z2)]
m11 · (m1 + m3) ·[r1(X2

1 + Z2
1)] ·[r2(X1X2 + Z1Z2)]

X′3 = [r1(X2
1 + Z2

1) [r2(X1 + Z1)(X2 + Z2)
(m4 + m11) ·m11 +r3

1(X2
1Y2

1 + Z4
1)(Y

2
1 + Z2

1)] +r3
2(X1X2Y1Y2 + (Z1Z2)

2)(Y1Y2 + Z1Z2)]
+m2

11 ·[r3
1(X2

1Y2
1 + Z4

1)(Y
2
1 + Z2

1)] ·[r3
2(X1X2Y1Y2 + (Z1Z2)

2)(Y1Y2 + Z1Z2)]
+α ·m9 + Z3 +(r3

1(X2
1Y2

1 + Z4
1)(Y

2
1 + Z2

1))
2 +(r3

2(X1X2Y1Y2 + (Z1Z2)
2)(Y1Y2 + Z1Z2))

2

+[α] · [r4
1X2

1 Z2
1(Y

2
1 + Z2

1)
2] + Z3 +[α] · [r4

2X1X2Z1Z2(Y1Y2 + Z1Z2)
2] + Z3

Y′3 = [r1(Y2
1 + Z2

1) [r2(Y1 + Z1)(Y2 + Z2)
(m5 + m12) ·m12 +r3

1(X2
1Y2

1 + Z4
1)(X2

1 + Z2
1)] +r3

2(X1X2Y1Y2 + (Z1Z2)
2)(X1X2 + Z1Z2)]

+m2
12 ·[r3

1(X2
1Y2

1 + Z4
1)(X2

1 + Z2
1)] ·[r3

2(X1X2Y1Y2 + (Z1Z2)
2)(X1X2 + Z1Z2)]

+β ·m10 + Z3 +(r3
1(X2

1Y2
1 + Z4

1)(X2
1 + Z2

1))
2 +(r3

2(X1X2Y1Y2 + (Z1Z2)
2)(X1X2 + Z1Z2))

2

+[β] · [r4
1Y2

1 Z2
1(X2

1 + Z2
1)

2] + Z3 +[β] · [r4
2Y1Y2Z1Z2(X1X2 + Z1Z2)

2] + Z3

Type 1 vulnerability: As shown in Table 2, if P1 = P2(k′ = 0), then the output of the proposed
unified point addition operation is X′3 = r4

1X3, Y′3 = r4
1Y3, Z′3 = r4

1Z3, where (X3 : Y3 : Z3) is the
output of Table 1. Since (X′3, Y′3, Z′3) ∈ (X3, Y3, Z3), then (X′3, Y′3, Z′3) = (X3 : Y3 : Z3). In addition,
if P1 = P2, then m1, m2, m3, m4, and m5 can be computed as follows:
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m1 = (X1)(r1X1), m2 = (Y1)(r1Y1), m3 = (Z1)(r1Z1),

m4 = (X1 + Z1)(r1X1 + r1Z1), m5 = (Y1 + Z1)(r1Y1 + r1Z1).

For m1, although P1 = P2, the operands X1 and r1X1 are different. Similarly, the operands
of the field multiplications for m2, m3, m4, and m5 are different. Also, there is no other field
multiplication vulnerable to Type 1. Thus, the proposed algorithm is secure against the Type 1
vulnerability for the binary Huff curve.

Type 2 vulnerability: Although wRPC is applied to the proposed unified point addition
operation, m4 = [(X1 + Z1)] · [(r1X1 + r1Z1)] = r1(X1X1 + Z1Z1) and m1 + m3 = r1X1X1 +

r1Z1Z1 when P1 = P2(k′ = 0). Thus, m4 = m1 + m3. Similarly, m5m8 = m11. Thus, if we compute
[m11] · [(m1 + m3)], [m4] · [m11], and [m5m8] · [(m1 + m3)] as the previous unified point addition
operation, their operands are the same when P1 = P2. On the other hand, they are different
when P1 6= P2. Likewise, the operands of [m8] · [(m2 + m3)] and [m5] · [m8] are the same when
P1 = P2. They become targets to a Type 2 vulnerability. The reason for this vulnerability is that
the same intermediate results occur in the previous unified point addition operation. They are
used as inputs to more than one multiplication without modification for P1 = P2. Thus, we
used the proposed method to mask the operands of vulnerable multiplications. Considering
[m4] · [m11] and [m11] · [(m1 + m3)] in Table 1, since the operand m11 is identically used in two
multiplications, they do not affect the vulnerability. Thus, we only have to mask the other operand
m4 (or m1 + m3). Specifically, we computed [m4] · [m11] as [(m4 + M)] · [m11] + M ·m11 so that
an adversary cannot distinguish between P1 = P2 and P1 6= P2 using a Type 2 vulnerability.
However, we additional cost is incurred for M ·m11. To reduce this additional cost, we computed
[m4] · [m11] as [(m4 + m11)] · [m11] + m2

11 to use the advantage of zero computational cost for
squaring in a binary field, which is almost free. Similarly, we applied masking to [m5] · [m12]

as [(m5 + m12)] · [m12] + m2
12. In addition, for [m8] · [(m2 + m3)] and [m5] · [m8], we modified the

computation of Y3 as m12 = m8(m1 + m3) and Y3 = (m5 + m12)m12 + m2
12 + βm10 + Z3 without

performing [m5] · [m8]. Based on the proposed algorithm, Type 1 and Type 2 vulnerabilities no
longer exist (Table 2).

6. Comparisons

We compared the proposed method with the previously presented unified point addition
operations with respect to computational cost. Also, we compared the proposed method with the
previously unified point addition formulae to which we applied the blinding operands of field
multiplication. In this work, as the side-channel atomic algorithms, we considered (i) the proposed
method, (ii) the unified point additions in [8,9], and (iii) the application of the blinding operands of a
field multiplication [10] on the unified point addition method in [8,9]. We analyzed two aspects, that is,
security against SCAs and computational cost. Table 3 shows the security against SCAs. The unified
point additions described in [8,9] using the blinding operands in [10] are secure against ROSETTA and
HCCA.

Table 3. The security against side-channel attacks (SCAs) of algorithms.

Algorithm SPA ROSETTA HCCA

[8] insecure insecure insecure
[9] secure insecure insecure

[8] using [10] secure secure secure
[9] using [10] secure secure secure

proposed method secure secure secure

The computational costs of [8,9] are the same. Also, the computational cost of the proposed
unified point addition method is the same as that of the previous one. Thus, the computational costs
of the algorithms are affected by the additional cost of wRPC and [10]. Let w = 32 and let n be the bit
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size of a finite field. Also, let t = dn/32e. We consider that n has one of the bit sizes of the standard
binary curve in FIPS 186-3 [20] (233, 283, 409, and 571). The computational cost of an iteration of the
algorithms is shown in Table 4.

Table 4. The computational cost of the algorithms of the binary Huff curve.

n Algorithm M Additional Cost Total Cost Ratio

233
[8,9] 64 - 1088 1.000

[8,9] using [10] 81 - 1377 1.266
proposed method 64 48 1136 1.044

283
[8,9] 81 - 1377 1.000

[8,9] using [10] 100 - 1700 1.235
proposed method 81 54 1431 1.039

409
[8,9] 169 - 2873 1.000

[8,9] using [10] 196 - 3332 1.160
proposed 169 78 2951 1.027

571
[8,9] 324 - 5508 1.000

[8,9] using [10] 361 - 6137 1.114
proposed method 324 108 5616 1.020

In Table 4, M is the number of w-bit multiplications of a field multiplication. Namely, M = t2

in [8,9] and in the proposed method. Also, M = t2 + 2t + 1 in [8,9] with [10]. The additional
cost is the number of w-bit multiplications of wRPC in the proposed method. Namely, (additional
cost) = 2 ∗ (3 ∗ t) for the proposed method. The total cost is the number of w-bit multiplications
of an iteration of the side-channel atomic algorithm using unified point additions. Namely, (total
cost) = 17 ∗ M+ (additional cost). The ratio is the overhead of the algorithm when the original
algorithm [8,9] is assumed as 1. This shows that the proposed algorithm is about 0.2∼4.4% slower
than [8,9]. However, the methods from [8,9] are not secure against ROSETTA and HCCA. The proposed
method is about 8.5∼17.5% faster than the previous methods from [8,9] using [10], which are secure
against ROSETTA and HCCA. In addition, the previous methods ([8,9] using [10]) also require random
number generation for r1 and r2 in each field multiplication.

7. Conclusions

In this paper, we present two vulnerabilities of unified point addition on the binary Huff
curve; these vulnerabilities are exploitable by ROSETTA and HCCA. In particular, we found
these vulnerabilities of unified point addition on the binary Huff curve as presented in [9].
As countermeasures, we propose wRPC and present a new unified point addition method for the
binary Huff curve. Additionally, we show the proposed unified point addition method and wRPC
applied to the side-channel atomic algorithm. The proposed method is secure against ROSETTA and
HCCA. In addition, the proposed unified point addition method has no additional cost compared to
the previous one. However, wRPC does incur additional cost. Depending on the size of the base field
of an elliptic curve, the proposed method is about 0.2∼4.4% slower than the original one. However,
it is about 8.5∼17.5% faster than unified point additions using blinding operands as a countermeasure.
Additionally, we present our analyses of the vulnerabilities of unified point addition on other elliptic
curves, such as Weierstraß, Hessian, Edwards, Jacobi intersections, Jacobi quartic, and binary Edwards
elliptic curves in the Appendix A.
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Appendix A

We applied Type 1 and Type 2 vulnerabilities to unified point additions on other elliptic curves.
As a result, we found that most unified point additions on these elliptic curves (such as Weierstraß,
Hessian, Edwards, Jacobi intersections, Jacobi quartic, and binary Edwards elliptic curves) have
these vulnerabilities. Table A1 shows the vulnerability of each unified point addition. In the case of
Hessian, Edwards, Jacobi intersections, and Jacobi quartic curves, it is enough to apply wRPC to unified
point additions to ensure security against Type 1 and Type 2 vulnerabilities. However, in the case of
Weierstraß and binary Edwards elliptic curves, we need to modify the unified point addition formula.
In this section, we explain the vulnerabilities of unified point addition and its countermeasure for
Weierstraß, Hessian, Edwards, Jacobi intersections, Jacobi quartic, and binary Edwards elliptic curves.

Table A1. The vulnerabilities of the elliptic curve forms and it countermeasures.

Curve Type 1 Type 2 Countermeasures

Weierstraß insecure insecure wRPC
The modified unified point addition

Hessian insecure insecure wRPC

Edwards insecure secure wRPC

Jacobi secure insecure wRPCintersections

Jacobi insecure insecure wRPCquartic

binary insecure insecure wRPC
Edwards The modified unified point addition

Appendix A.1 Weierstraß Elliptic Curve

A Weierstraß elliptic curve has the parameters a and b that satisfy the following equations:

y2 = x3 + ax + b (A1)

The projective coordinates have the assumption a = −3 and represent x, y as X, Y, Z to satisfy the
following equations:

x = X/Z and y = Y/Z

The equivalence class containing (X, Y, Z) is

(X : Y : Z) = (rX, rY, rZ) : r ∈ F. (A2)

We describe a projective form of the unified point addition method (add-2007-bl) given in [21].
Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2); then, we can get P1 + P2 = (X3 : Y3 : Z3) by the
unified point addition formula for the Weierstraß elliptic curve:

X3 = 2FW

Y3 = R(G− 2W)− 2L2

Z3 = 4F3,

(A3)

where

U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1,
Z = Z1Z2, T = U1 + U2, M = S1 + S2,
R = T2 −U1U2 + aZ2, F = ZM, L = MF,
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G = (T + L)2 − T2 − L2, and W = 2R2 − G.

This formula requires 11 field multiplications and 6 field squarings. We found both Type 1 and
Type 2 vulnerabilities during the computations of P1 + P2 for P1 6= P2 and P1 = P2.

Type 1 vulnerability: Let us consider the computation Z = [Z1] · [Z2]. In this formula, it is
computed as [Z1] · [Z1] for P1 = P2, whereas it is computed as [Z1] · [Z2] for P1 6= P2. Similarly, for
U1 ·U2 in R, this is computed as [X1Z1] · [X1Z1] for P1 = P2. Thus, we can distinguish between
P1 = P2 and P1 6= P2 using ROSETTA.

Type 2 vulnerability: Let us consider the computations U1 = [X1] · [Z2] and U2 = [X2] · [Z1].
If P1 = P2, then [X1] · [Z1] is computed twice. Namely, the operands of [X1] · [Z2] and [X2] · [Z1] for
U1 and U2 are the same for P1 = P2 but different for P1 6= P2. Similarly, considering S1 = [Y1] · [Z2]

and S2 = [Y2] · [Z1], the multiplications for S1 and S2 have the same operands for P1 = P2 but
different operands for P1 6= P2. Therefore, we can distinguish between P1 = P2 and P1 6= P2

using HCCA.

Applying wRPC to unified point addition on the Weierstraß elliptic curve, the two inputs are
expressed as follows: {

P1 = (X1 : Y1 : Z1), P2 = (r1X1 : r1Y1 : r1Z1) If k′ = 0,

P1 = (X1 : Y1 : Z1), P2 = (r2X2 : r2Y2 : r2Z2) If k′ = 1.
(A4)

where r 6= 1. Although wRPC is applied to unified point addition, U1 · U2 in R is computed as
[rX1Z1] · [rX1Z1] for P1 = P2. Thus, we need to modify U1 ·U2 in R. We modified R as follows:

R = T2 −U1U2 + aZ2

= (U1 + U2)
2 − (U1 + U2)U2 + U2

2 + aZ2

= (U1 + U2)((U1 + U2)−U2) + U2
2 + aZ2

= TU1 + U2
2 + aZ2

After applying the above modification to unified point addition, 11 field multiplications and
6 field squarings were required, which are exactly the same as those required by the original one.
After applying wRPC to the modified unified point addition formula, Type 1 and Type 2 vulnerabilities
no longer exist (Table A2).

Table A2. The proposed unified point addition method on the Weierstraß elliptic curve by applying wRPC.

Out P1 = P2 P1 6= P2

U1 [X1] · [r1Z1] [X1] · [r2Z2]
U2 [r1X1] · [Z1] [r2X2] · [Z1]
S1 [Y1] · [r1Z1] [Y1] · [r2Z2]
S2 [r1Y1] · [Z1] [r2Y2] · [Z1]
Z [Z1] · [r1Z1] [Z1] · [r2Z2]

T = U1 + U2 r1X1Z1 + r1X1Z1 r2X1Z2 + r2X2Z1
M = S1 + S2 r1Y1Z1 + r1Y1Z1 r2Y1Z2 + r2Y2Z1

R = T ·U1 + U2
2 [2r1X1Z1] · [r1X1Z1] + (r1X1Z1)

2 [r2(X1Z2 + X2Z1)] · [r2X1Z2] + (r2X2Z1)
2

+aZ2 +a(r1Z2
1)

2 +a(r2Z1Z2)
2

...
...

...

Appendix A.2 Hessian Elliptic Curve

A Hessian elliptic curve has a parameter d that satisfies the following equation:

x3 + y3 + 1 = 3dxy (A5)
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The projective coordinates represent x, y as X, Y, Z satisfying the following equation:

x = X/Z and y = Y/Z

The equivalence class containing (X, Y, Z) is

(X : Y : Z) = (λX, λY, λZ) : λ ∈ F. (A6)

We describe a projective form of the unified point addition formula (add-2009-bkl) given in [21].
Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2); then, we get P1 + P2 = (X3 : Y3 : Z3) with the unified
point addition formula for the Hessian elliptic curve:

X3 = DC− FA

Y3 = BA− DE

Z3 = FE− BC,

(A7)

where

A = Y1X2, B = Y1Y2, C = Z1Y2,
D = Z1Z2, E = X1Z2, F = X1X2.

This formula requires 12 field multiplications. We can identify vulnerabilities of Type 1 and Type
2 during the computations of P1 + P2 for P1 6= P2 and P1 = P2.

Type 1 vulnerability: Let us consider the computation B = [Y1] · [Y2]. In this formula, it is
computed as [Y1] · [Y1] for P1 = P2, whereas it is computed as [Y1] · [Y2] for P1 6= P2. Similarly,
in D = [Z1] · [Z2] and F = [X1] · X2], these are computed as [Z1] · [Z1] and [X1] · [X1] for P1 = P2,
respectively. Thus, we can distinguish between P1 = P2 and P1 6= P2 using ROSETTA.

Type 2 vulnerability: Let us consider the computations A = [Y1] · [X2] and C = [Z1] · [Y2].
If P1 = P2, then [Y1] · [X1] and [Z1] · [Y1] are computed. Thus, they have the same operand Y1

when P1 = P2 but not when P1 6= P2. Similarly, considering C = [Z1] · [Y2] and E = [X1] · [Z2],
the multiplications for C and E have the same operand Z1 for P1 = P2 and different operands for
P1 6= P2. Also, the multiplications for A and E have the same operand X1 for P1 = P2. Therefore,
we can distinguish between P1 = P2 and P1 6= P2 using HCCA.

When applying wRPC to unified point addition on the Hessian elliptic curve, the two inputs are
expressed as follows: {

P1 = (X1 : Y1 : Z1), P2 = (r1X1 : r1Y1 : r1Z1) If k′ = 0,

P1 = (X1 : Y1 : Z1), P2 = (r2X2 : r2Y2 : r2Z2) If k′ = 1.
(A8)

where r 6= 1. It is sufficient to secure against Type 1 and Type 2 vulnerabilities by applying wRPC to
unified point addition. The application of wRPC to unified point addition is evaluated in Table A3.
Table A3 shows that vulnerabilities of Type 1 and Type 2 no longer exist.
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Table A3. Unified point addition for the Hessian elliptic curve form.

Out P = Q P 6= Q

A [Y1] · [r1X1] [Y1] · [r2X2]
B [Y1] · [r1Y1] [Y1] · [r2Y2]
C [Z1] · [r1Y1] [Z1] · [r2Y2]
D [Z1] · [r1Z1] [Z1] · [r2Z2]
E [X1] · [r1Z1] [X1] · [r2Z2]
F [X1] · [r1X1] [X1] · [r2X2]

...
...

...

Appendix A.3 Edwards Elliptic Curve

An Edwards elliptic curve has the parameters c and d that satisfy the following equation:

x2 + y2 = c2(1 + dx2y2) (A9)

The inverted projective coordinates represent x, y as X, Y, Z to satisfy the following equation:

x = Z/X and y = Z/Y

The equivalence class containing (X, Y, Z) is

(X : Y : Z) = (λX, λY, λZ) : λ ∈ F. (A10)

We describe a inverted projective form of the unified point addition formula (add-2007-bl) given
in [21]. Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2). Then, we get P1 + P2 = (X3 : Y3 : Z3) by the
unified point addition formula for the Edwards elliptic curve:

X3 = c(E + B)H

Y3 = c(E− B)I

Z3 = AHI,

(A11)

where

A = Z1Z2, B = dA2, C = X1X2, D = Y1Y2,
E = CD, H = C− D, I = (X1 + Y1)(X2 + Y2)− C− D.

This formula requires 9 field multiplications and 1 field squaring. We can identify vulnerabilities
of Type 1 and Type 2 during the computations of P1 + P2 for P1 6= P2 and P1 = P2.

Type 1 vulnerability: Let us consider the computation A = [Z1] · [Z2]. In this formula, it is
computed as [Z1] · [Z1] for P1 = P2, whereas it is computed as [Z1] · [Z2] for P1 6= P2. Similarly,
in C = [X1] · [X2], D = [Y1] · [Y2] and I = [(X1 + Y1)] · [(X2 + Y2)] − C − D, and these are
computed as [X1] · [X1], [Y1] · [Y1], and [(X1 +Y1)] · [(X1 +Y1)]− C−D for P1 = P2, respectively.
Thus, we can distinguish between P1 = P2 and P1 6= P2 using ROSETTA.

Type 2 vulnerability: The vulnerability of Type 2 does not exist.

When applying wRPC to unified point addition for the Edwards elliptic curve, the two inputs are
expressed as follows: {

P1 = (X1 : Y1 : Z1), P2 = (r1X1 : r1Y1 : r1Z1) If k′ = 0,

P1 = (X1 : Y1 : Z1), P2 = (r2X2 : r2Y2 : r2Z2) If k′ = 1.
(A12)
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where r 6= 1. It is sufficient to secure against a Type 1 vulnerability by applying wRPC to unified point
addition. The application of wRPC to unified point addition is evaluated in Table A4. Table A4 shows
that vulnerability of Type 1 no longer exists.

Table A4. Unified point addition for the Edwards elliptic curve.

Out P = Q P 6= Q

A [Z1] · [r1Z1] [Z1] · [r2Z2]
B d(r1Z2

1)
2 d(r2Z1Z2)

2

C [X1] · [r1X1] [X1] · [r2X2]
D [Y1] · [r1Y1] [Y1] · [r2Y2]

E = C · D [r1X2
1 ] · [r1Y2

1 ] [r2X1X2] · [r2Y1Y2]
H = C− D [r1X2

1 ]− [r1Y2
1 ] [r2X1X2]− [r2Y1Y2]

I = (X1 + Y1) · (X2 + Y2) [(X1 + Y1)] · [(r1X1 + r1Y1)] [(X1 + Y1)] · [(r2X2 + r2Y2)]
−C− D −[r1X2

1 ]− [r1Y2
1 ] −[r2X1X2]− [r2Y1Y2]

...
...

...

Appendix A.4 Jacobi Intersections Elliptic Curve

An elliptic curve in Jacobi intersection form has the parameter a and coordinate s, c, d that satisfy
the following equations:

s2 + c2 = 1 as2 + d2 = 1 (A13)

The projective coordinates represent s, c, d as S, C, D, Z to satisfy the following equations:

s = S/Z, c = C/Z and d = D/Z

The equivalence class containing (S, C, D, Z) is

(S : C : D : Z) = (λS, λC, λD, λZ) : λ ∈ F. (A14)

We describe a projective form of the unified point addition formula (add-20080225-hwcd) given
in [21]. Let P1 = (S1 : C1 : D1 : Z1) and P2 = (S2 : C2 : D2 : Z2); then, we get P1 + P2 = (S3 : C3 : D3 :
Z3) with the unified point addition formula for the Jacobi intersection elliptic curve:

S3 = (H + F)(E + G)− J − K

C3 = (H + E)(F− G)− J + K

D3 = (B− aA)(C + D) + aJ − K

Z3 = (H + G)2 − 2K,

(A15)

where

A = S1C1, B = D1Z1, C = S2C2, D = D2Z2,
E = S1D2, F = C1Z2, G = D1S2, H = Z1C2,
J = AD, K = BC.

This formula requires 13 field multiplications and 1 field squaring. We can identify vulnerabilities
of Type 1 and Type 2 during the computations of P1 + P2 for P1 6= P2 and P1 = P2.

Type 1 vulnerability: The vulnerability of Type 1 does not exist.

Type 2 vulnerability: Let us consider the computations of A = [S1] · [C1] and C = [S2] · [C2].
If P1 = P2, then [S1] · [C1] are computed twice. Namely, the operands of [S1] · [C1] and [S2] · [C2]

for A and B are the same for P1 = P2 and different for P1 6= P2. Similarly, consider multiplications
for B and D, E and G, F and H, and J and K. These multiplication pairs have the same operands
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for P1 = P2 and different operands for P1 6= P2. Also, consider multiplication of A = [S1] · [C1]

and G = [D1] · [S1]. If P1 = P2, then [S1] · [C1] and [D1] · [S1] are computed. Thus, they have the
same operand S1 when P1 = P2 but not when P1 6= P2. Similarly, the multiplication pairs A and
H, B and E, B and F, C and E, C and F, D and G, and D and H have the same operand C1, D1,
Z1, S1, C1, D1, and Z1 for P1 = P2, respectively. Therefore, we can distinguish between P1 = P2

and P1 6= P2 using HCCA.

Applying wRPC to unified point addition of the Jacobi intersection elliptic curve, the two inputs
are expressed as follows:{

P1 = (S1 : C1 : D1 : Z1), P2 = (r1S1 : r1C1 : r1D1 : r1Z1) If k′ = 0,

P1 = (S1 : C1 : D1 : Z1), P2 = (r2S2 : r2C2 : r2D2 : r2Z2) If k′ = 1.
(A16)

where r 6= 1. It is sufficient to secure against a Type 2 vulnerability by applying wRPC to unified point
addition. The application of wRPC to unified point addition is evaluated in Table A5. Table A5 shows
that vulnerability of Type 2 no longer exists.

Table A5. Unified point addition for the Jacobi intersection elliptic curve form.

Out P = Q P 6= Q

A [S1] · [C1] [S1] · [C1]
B [D1] · [Z1] [D1] · [Z1]
C [r1S1] · [r1C1] [r2S2] · [r2C2]
D [r1D1] · [r1Z1] [r2D2] · [r2Z2]
E [S1] · [r1D1] [S1] · [r2D2]
F [C1] · [r1Z1] [C1] · [r2Z2]
G [D1] · [r1S1] [D1] · [r2S2]
H [Z1] · [r1C1] [Z1] · [r2C2]

J = A · D [S1C1] · [r2
1D1Z1] [S1C1] · [r2

2D2Z2]
K = B · C [D1Z1] · [r2

1S1C1] [D1Z1] · [r2
2S2C2]

...
...

...

Appendix A.5 Jacobi Quartic Elliptic Curve

An elliptic curve in the Jacobi quartic form has the parameter a and coordinates x, y that satisfy
the following equation:

y2 = x4 + 2ax2 + 1 (A17)

The projective coordinates represent x, y as X, Y, Z to satisfy the following equations:

x = X/Z and y = Y/Z2

The equivalence class containing (X, Y, Z) is

(X : Y : Z) = (λX, λ2Y, λZ) : λ ∈ F. (A18)

We describe a projective form of the unified point addition formula (add-2007-bl) given in [21].
Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2); then, we get P1 + P2 = (X3 : Y3 : Z3) with the unified
point addition formula for the Jacobi quartic elliptic curve:

X3 = E1E2 − I − K

Y3 = F(4K + aG) + (D1D2 − F)G

Z3 = 2(J − H),

(A19)

where
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A2 = X2
2 , C2 = Z2

2 , D2 = A2 + C2, B2 = (X2 + Z2)
2 − D2,

E2 = B2 + Y2, A1 = X2
1 , C1 = Z2

1 , D1 = A1 + C1,
B1 = (X1 + Z1)

2 − D1, E1 = B1 + Y1, H = A1 A2,
I = B1B2, J = C1C2, K = Y1Y2, F = J + H, F = 2I.

This formula requires 8 field multiplications and 6 field squarings. We can identify vulnerabilities
of Type 1 and Type 2 during the computations of P1 + P2 for P1 6= P2 and P1 = P2.

Type 1 vulnerability: Let us consider the computation B = [Y1] · [Y2]. In this formula, it is
computed as [Y1] · [Y1] for P1 = P2, whereas it is computed as [Y1] · [Y2] for P1 6= P2. Similarly,
in D = [Z1] · [Z2] and F = [X1] · X2], these are computed as [Z1] · [Z1] and [X1] · [X1] for P1 = P2,
respectively. Thus, we can distinguish between P1 = P2 and P1 6= P2 using ROSETTA.

Type 2 vulnerability: Let us consider the computations A = [Y1] · [X2] and C = [Z1] · [Y2].
If P1 = P2; then, [Y1] · [X1] and [Z1] · [Y1] are computed. Thus, they have the same operand Y1

when P1 = P2 but not when P1 6= P2. Similarly, considering C = [Z1] · [Y2] and E = [X1] · [Z2],
the multiplications for C and E have the same operand Z1 for P1 = P2 and different operands for
P1 6= P2. Also, the multiplications for A and E have the same operand X1 for P1 = P2. Therefore,
we can distinguish between P1 = P2 and P1 6= P2 using HCCA.

By Algorithm 2, to use unified point addition on the Jacobi quartic elliptic curve, the two inputs
of step 8 are expressed as follows:{

P1 = (X1 : Y1 : Z1), P2 = (r1X1 : r2
1Y1 : r1Z1) If k′ = 0,

P1 = (X1 : Y1 : Z1), P2 = (r2X2 : r2
2Y2 : r2Z2) If k′ = 1.

(A20)

where r 6= 1. It is sufficient to secure against Type 1 and Type 2 vulnerabilities by applying wRPC to
unified point addition. The application of wRPC to unified point addition is evaluated in Table A6.
Table A6 shows that vulnerabilities of Type 1 and Type 2 no longer exist.

Table A6. Unified point addition for the Jacobi quartic elliptic curve form.

Out P = Q P 6= Q

A [Y1] · [r1X1] [Y1] · [r2X2]
B [Y1] · [r2

1Y1] [Y1] · [r2
2Y2]

C [Z1] · [r2
1Y1] [Z1] · [r2

2Y2]
D [Z1] · [r1Z1] [Z1] · [r2Z2]
E [X1] · [r1Z1] [X1] · [r2Z2]
F [X1] · [r1X1] [X1] · [r2X2]

...
...

...

Appendix A.6 Binary Edwards Elliptic Curve

A binary Edwards elliptic curve has the parameters d1 and d2 that satisfy the following equation:

d1(x + y) + d2(x2 + y2) = (x + x2)(y + y2) (A21)

The projective coordinates represent x, y as X, Y, Z to satisfy the following equation:

x = X/Z and y = Y/Z

The equivalence class containing (X, Y, Z) is

(X : Y : Z) = (rX, rY, rZ) : r ∈ F. (A22)
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We describe a projective form of the unified point addition formula (add-2008-blr-4) given in [21].
Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2); then, we can get P1 + P2 = (X3 : Y3 : Z3) with unified
point addition for the binary Edwards elliptic curve:

X3 = V + D(A + D)(G + D)

Y3 = V + D(B + D)(H + D)

Z3 = U + (d2 + d1)CK2,

(A23)

where

A = X1X2, B = Y1Y2, C = Z1Z2, D = d1C, E = C2, F = D2,
G = (X1 + Z1)(X2 + Z2), H = (Y1 + Z1)(Y2 + Z2), I = A + G,
J = B + H, K = (X1 + Y1)(X2 + Y2), U = C(F + d1K(K + I + J + C)),
V = U + DF + K(d2(d1E + GH + AB) + (d2 + d1)I J).

This formula requires 18 field multiplications. We found both Type 1 and Type 2 vulnerabilities
during the computations of P1 + P2 for P1 6= P2 and P1 = P2.

Type 1 vulnerability: Let us consider the computation A = [X1] · [X2]. In this formula, it is
computed as [X1] · [X1] for P1 = P2, whereas it is computed as [X1] · [X2] for P1 6= P2. Similarly,
for B = [Y1] · [Y2], C = [Z1] · [Z2], G = [(X1 + Z1)] · [(X2 + Z2)], H = [(Y1 + Z1)] · [(Y2 + Z2)], and
K = [(X1 + Y1)] · [(X2 + Y2)], these are computed as B = [Y1] · [Y1], C = [Z1] · [Z1], G = [(X1 +

Z1)] · [(X1 + Z1)], H = [(Y1 + Z1)] · [(Y1 + Z1)], and K = [(X1 + Y1)] · [(X1 + Y1)] for P1 = P2.
Also, if P1 = P2, I and J compute as follows:

I = A + G = X1X1 + (X1 + Z1)(X1 + Z1) = X2
1 + X2

1 + Z2
1 = Z2

1 and

J = B + H = Y1Y1 + (Y1 + Z1)(Y1 + Z1) = Y2
1 + Y2

1 + Z2
1 = Z2

1 .

Thus, if P1 = P2, [I] · [J] = [Z2
1 ] · [Z2

1 ]. An adversary can distinguish between P1 = P2 and P1 6= P2

using ROSETTA.

Type 2 vulnerability: Let us consider the computations U = [C] · [(F + d1K(K + I + J + C))],
[(d2 + d1)] · [I] · [J] in V and [(d2 + d1)] · [C] · [K2] in Z3. If P1 = P2, since C = I = J, both
operations have at least one same operand. Therefore, they can be distinguished using HCCA.

By Algorithm 2, to use unified point addition on the binary Edwards elliptic curve, the two inputs
of step 8 are expressed as follows:{

P1 = (X1 : Y1 : Z1), P2 = (r1X1 : r1Y1 : r1Z1) If k′ = 0,

P1 = (X1 : Y1 : Z1), P2 = (r2X2 : r2Y2 : r2Z2) If k′ = 1.
(A24)

where r 6= 1. Although wRPC is applied to unified point addition, C = I = J for P1 = P2. Thus,
we need to modify the unified point addition formula. The collision pairs exposed by HCCA are
(U = [C] · [(F + d1K(K + I + J + C))] and [(d2 + d1)] · [I] · [J] in V) or ([(d2 + d1)] · [C] · [K2] in Z3 and
[(d2 + d1)] · [I] · [J] in V). Since both collision pairs contain the operation [(d2 + d1)] · [I] · [J], we only
have to mask its operands. We modified [(d2 + d1)] · [I] · [J] in V as follows:

(d2 + d1) · I · J = ((d2 + d1) · (I + d2 + d1) + (d2 + d1)
2) · J

= ((d2 + d1) · (I + d2 + d1) + (d2 + d1)
2) · (J + (d2 + d1)I)

+((d2 + d1)I)2.
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To use the advantage of the free computational cost of squaring in a binary field, we configured
the masking of d2 + d1 and (d2 + d1)I by squaring. The proposed unified point addition method for
the binary Edwards elliptic curve is as follows:

X3 = V + D(A + D)(G + D)

Y3 = V + D(B + D)(H + D)

Z3 = U + (d2 + d1)CK2,

(A25)

where

A = X1X2, B = Y1Y2, C = Z1Z2, D = d1C, E = C2, F = D2,
G = (X1 + Z1)(X2 + Z2), H = (Y1 + Z1)(Y2 + Z2), I = A + G,
J = B + H, L = (d2 + d1)(I + d2 + d1) + (d2 + d1)

2 K = (X1 + Y1)(X2 + Y2),
U = C(F + d1K(K + I + J + C)),
V = U + DF + K(d2(d1E + GH + AB) + L(J + L) + L2).

After applying the above modification to the unified point addition, 18 field multiplications were
required, which was exactly the same as in the original one. After applying wRPC to the modified
unified point addition method, Type 1 and Type 2 vulnerabilities no longer exist (Table A7).

Table A7. The proposed unified point addition method on the binary Edwards elliptic curve.

Out P1 = P2(k′ = 0) P1 6= P2(k′ = 1)

A [X1] · [r1X1] [X1] · [r2X2]
B [Y1] · [r1Y1] [Y1] · [r2Y2]
C [Z1] · [r1Z1] [Z1] · [r2Z2]

D = d1 · C [d1] · [r1Z2
1 ] [d1] · [r2Z1Z2]

E = C2 (r1Z2
1)

2 (r2Z1Z2)
2

F = D2 (r1d1Z2
1)

2 (r2d1Z1Z2)
2

G [(X1 + Z1)] · [(r1X1 + r1Z1)] [(X1 + Z1)] · [(r2X2 + r2Z2)]
H [(Y1 + Z1)] · [(r1Y1 + r1Z1)] [(Y1 + Z1)] · [(r2Y2 + r2Z2)]

I = A + G r1X2
1 + (r1X2

1 + r1Z2
1) r2X1X2 + (X1 + Z1)(r2X2 + r2Z2)

J = B + H r1Y2
1 + (r1Y2

1 + r1Z2
1) r2Y1Y2 + (Y1 + Z1)(r2Y2 + r2Z2)

L = (d2 + d1) [(d2 + d1)] [(d2 + d1)]
·(I + d2 + d1) ·[(r1Z2

1 + d2 + d1)] ·[(r2X1X2 + r2(X1 + Z1)(X2 + Z2) + d2 + d1)]
+(d2 + d1)

2 +(d2 + d1)
2 +(d2 + d1)

2

K [(X1 + Y1)] · [(r1X1 + r1Y1)] [(X1 + Y1)] · [(r2X2 + r2Y2)]
[r2Z1Z2] · [((r2d1Z1Z2)

2 + [d1]
U = C · (F + d1 [r1Z2

1 ] · [((r1d1Z2
1)

2 + [d1] ·[r2(X1 + Y1)(X2 + Y2)]
·K · (K + I ·[(r1X2

1 + r1Y2
1 )] · [(r1X2

1 + r1Y2
1 ·[(r2(X1 + Y1)(X2 + Y2) + r2X1X2

+J + C)) +r1Z2
1 + r1Z2

1 + r1Z2
1)])] +r2(X1 + Z1)(X2 + Z2) + r2Y1Y2

+r2(Y1 + Z1)(Y2 + Z2) + r2Z1Z2)])]

...
...

...
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