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Abstract: The failure of wind turbine blades is a major concern in the wind power industry due
to the resulting high cost. It is, therefore, crucial to develop methods to monitor the integrity of
wind turbine blades. Different methods are available to detect subsurface damage but most require
close proximity between the sensor and the blade. Thermography, as a non-contact method, may
avoid this problem. Both passive and active pulsed and step heating and cooling thermography
techniques were investigated for different purposes. A section of a severely damaged blade and a
small “plate” cut from the undamaged laminate section of the blade with holes of varying diameter
and depth drilled from the rear to provide “known” defects were monitored. The raw thermal
images captured by both active and passive thermography demonstrated that image processing
was required to improve the quality of the thermal data. Different image processing algorithms
were used to increase the thermal contrasts of subsurface defects in thermal images obtained by
active thermography. A method called “Step Phase and Amplitude Thermography”, which applies a
transform-based algorithm to step heating and cooling data was used. This method was also applied,
for the first time, to the passive thermography results. The outcomes of the image processing on
both active and passive thermography indicated that the techniques employed could considerably
increase the quality of the images and the visibility of internal defects. The signal-to-noise ratio of
raw and processed images was calculated to quantitatively show that image processing methods
considerably improve the ratios.
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1. Introduction

The most crucial components of wind turbines, the blades, are susceptible to different types
of damage during their operation. The failure of one blade may damage nearby blades and wind
turbines, increasing the total damage cost. Most blades consist of two halves made of a fiberglass
composite and shear webs, which are glued together with strong adhesive materials [1]. The main
function of the shear webs is to increase the strength of the structure. These bonded zones are potential
sites for damage initiation and propagation [2]. Different surface and subsurface defects, including
delamination, cracks, air inclusion, fiber-matrix debonding, and others, may be introduced to the
blade during manufacturing or operation [3]. Harsh environmental conditions and airborne particles
such as hail, snow, rain, ice, and dirt, expose wind turbine blades to more potential harm. Defective
blades are rarely replaced because of the high cost of manufacturing. To prevent failure, blades need
to be continuously monitored through Non-Destructive Testing (NDT) methods [4]. Different NDT
techniques such as Ultrasonic Testing (UT), Acoustic Emission (AE), Fiber Bragg Grating (FBG) strain
sensors, Vibration Analysis, and Tap Tests have been employed to inspect the integrity of wind turbine
blades [5–9]. Conventional NDT techniques generally require close proximity between the sensor and
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the blade [10]. Since access to a blade is difficult and requires an industrial climber or crane, which
can be dangerous and/or time-consuming, the practical implementation of conventional methods
sometimes requires blade removal. Developing new NDT techniques that are capable of detecting
faults in the blades from larger distances is essential.

Infrared (IR) thermography is a non-contact, long-distance NDT technique that can inspect
extensive areas quickly by capturing thermal images of the object’s surface. In general, defective areas
alter the temperature distributions on the surface that are measured by IR cameras. Thermographic
inspection is typically divided into two categories: active and passive. In active thermography, different
heating sources such as flash and halogen lamps are employed for heating the object making the
technique less usual for operating wind turbines. It is used here largely to allow comparison with
passive thermography which utilizes solar radiation [2] to heat a blade (usually around sunrise) or to
cool it at sunset. This method has been widely used to detect subsurface defects of different materials
including metals [11], composites [12,13], and concrete [14].

Different studies have used thermography to detect faults in wind turbine blades. Meinlischmidt
and Aderhold [2] employed passive thermography to detect internal structural features and subsurface
defects such as poor bonding and delamination. Beattie and Rumsey [15] employed thermography to
inspect blades during fatigue tests of a 13.1 m blade made from wood-epoxy-composite and a 4.25 m
fiberglass blade. This experiment identified the root region of the blade as a defective area. Shi-bin [16]
employed infrared thermal wave testing to detect subsurface faults such as foreign matter and air
inclusions at various depths of a blade section. Galleguillos [17] conducted a new experiment to inspect
an installed wind turbine blade. They mounted an IR camera on an unmanned aerial vehicle (UAV)
and captured thermal images of installed blades while the blades were stationary, demonstrating
the capability for fast data acquisition and inspection with this setup. Other research evaluated the
suitability of different weather conditions for revealing the internal features of a blade section with
thermal imaging [18,19]. Doroshtnasir [20] proposed a new passive thermography technique that can
inspect operating blades from the ground. This experiment developed a new image processing
technique to improve the thermal contrast quality by removing the effect of disruptive factors
such as environmental reflections. Active thermography has been used by different researchers to
quantitatively evaluate the presence of defects in different materials including composite and metallic
samples. Lahiri [21] employed phase information obtained from the processing of active thermography
data to determine quantitative information associated with flat-bottomed holes (FBHs) embedded
in different materials including glass fiber reinforced polymer, high-density rubber and low-density
rubber. Shin [22] used the Pulsed Phase Thermography (PPT) method to inspect the subsurface fatigue
damage in adhesively bonded joints between fiber reinforcement polymer components. Maierhofer [23]
compared the phase values obtained from pulsed and lock-in thermography applied on steel and
Carbon Fiber Reinforced Plastic (CFRP) materials. They also compared the spatial resolution calculated
from data captured through flash and lock-in thermography at different frequencies. In another
study, Almond [24] used long pulsed thermography to detect the FBHs of different sizes and depths
created in different materials including aluminum alloy, mild steel and stainless steel, and a CFRP
composite plate.

Different image processing methods have been developed to improve the contrast of subsurface
defects in images. Maldague and Marinetti [25] proposed PPT, which has the advantages of both pulsed
and lock-in thermography. Lock-in thermography can detect deeper defects by continuously heating
the surface using a periodic heat source [26] such as a modulated halogen lamp [27] but it may take a
long time to detect a fault while pulsed thermography is fast. PPT uses a transform-based algorithm
such as Fast Fourier Transform (FFT) to convert time domain data to frequency. Shin [24] employed this
method to detect the initiation and propagation of defects in adhesively bonded joints under fatigue
loading. This method has been widely used by different researchers to quantitatively and qualitatively
evaluate the subsurface damages in different materials. Pawar [28], for example, inspected barely
visible impact damage from low-velocity impacts. For this purpose, he first calibrated the defect depth



Appl. Sci. 2018, 8, 2004 3 of 19

with a blind frequency, the limited frequency at which the subsurface defect at a certain depth is visible
in the recorded thermal data, for carbon epoxy laminate, and then applied the findings of depth and the
blind frequency relationship to the specimen with barely visible impact damage on it. Castanedo [29]
proposed an interactive methodology in a PPT experiment that connected acquisition parameters
such as time and frequency resolution and storage capacity to each other in order to inspect defects at
different depths with a single test. He used a combination of phase contrast and blind frequency and
applied his proposed interactive methodology to a CFRP specimen with artificial defects at different
depths to quantify the depth of the defects. Thermographic Signal Reconstruction [30] increases the
quality of the thermal signatures associated with internal defects based on the known behavior of
simple forms of the heat conduction equation. It improves the signal-to-noise ratio (SNR), while at
the same time reducing image blurring and increasing the sensitivity [31]. This method was recently
applied to the thermal image sequence of step heating thermography and gave reliable results [32].
Matched Filters (MF) have also been proposed to improve image contrast of subsurface defects by
increasing the contrast of defective areas and reducing the signals from sound areas [31,33,34].

The present investigation developed passive and active thermographic inspection of wind turbine
blades. During the active experiment, both pulsed and step heating thermography were employed
and their results compared with each other (images were obtained and processed in some cases after
the heating had finished and so strictly should be called “step cooling”. We will use the term “step
heating” in a purely generic manner to cover both cases). Several image processing techniques were
applied to the raw thermal images to increase the contrast associated with internal defects. Once the
most appropriate technique was determined, a passive thermography experiment was designed and
the image processing technique was applied to the thermograms and the maps of surface temperature,
to improve their quality. Passive thermography was also performed at different times of the day
to assess the most favorable times for the best results. This paper is arranged as follows: Section 1
reviews the literature regarding NDT techniques and thermal imaging methods. The experimental
procedures and materials are outlined in Section 2. Section 3 provides the theory of quantitative
evaluation. Section 4 contains the results and discussion regarding experimental thermography for the
inspection of subsurface defects. Finally, Section 5 provides a summary and conclusion.

2. Experimental Procedure

2.1. Materials

All samples used in this experiment came from a 50 m long wind turbine blade made of fiberglass
composite obtained after it had been damaged in transit to a wind farm. The blade was never installed
or operated. Figure 1a shows the 3 m long blade section with significant surface damage that was
used for the passive thermography experiments. The laminate thickness in the damaged section was
14 mm. The chord length was approximately 1 m. The yellow/orange regions in Figure 1a are the
exposed sandwich core on the rear section of the suction surface where there is very little laminate.
Some patches of glue on the suction side resulted in different effusivity than the background and
therefore generated spots with different brightnesses on the thermograms. The upper side of the blade
section contained a crack which was visible to the naked eye.

A “defect plate” with dimensions of 170 mm × 195 mm × 8 mm was cut from the laminate skin
of another section of the blade closer to the tip where the laminate skin was thinner. Flat-bottomed
holes with different diameters and depths were drilled from the rear to produce a range of known
“defects”. The holes had diameters ranging from 4 mm to 20 mm with depths between 0.5 mm and
3 mm. Figure 1c is a schematic of the plate that illustrates the geometry and pattern of the defects.
No holes penetrated the outer surface of the plate which corresponded to the outer surface of a blade
and all thermograms were of the outer surface. The defect plate was attached to the surface of the
damaged blade section during passive thermography experimentation. It was also the only blade
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material tested with active thermography. The holes were used to evaluate the minimum defect that
can be detected using passive and active thermography.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 19 
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In the passive thermography experiment, the suction side of the blade was monitored outdoors 
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to the IR camera during this time. This experiment, whose setup is depicted in Figure 2, sought to 
determine the most favorable conditions to reveal the most defects and to evaluate the fault detection 
capability of thermography when the blade is heated by the sun.  

The experiment was conducted on a sunny day in July 2017 from 9:00 a.m. to 7:30 p.m. Sunrise 
and sunset on this day were 5:53 a.m. and 9:30 p.m., respectively. During the experiment, the sky was 
clear, the humidity was almost 36%, and the temperature varied between 16 °C and 26 °C. A T1030Sc 
IR camera made by FLIR Systems was located 4 m from the blade section and equipped with a 21.2 
mm lens, resulting in a spatial resolution of 4 mm per pixel. ResearchIR, a software package 
developed by FLIR Systems that provides high-speed data recording and image analyzing 
capabilities was used to record thermograms at a frequency of 1 Hz. 

Figure 1. (a) The damaged wind turbine blade. (b,c) The defect plate with flat-bottomed holes. All holes
were drilled from the rear and did not penetrate the outer surface.

2.2. Passive Thermography

In the passive thermography experiment, the suction side of the blade was monitored outdoors
during a sunny day from morning until the afternoon. The blade’s position was not changed relative
to the IR camera during this time. This experiment, whose setup is depicted in Figure 2, sought to
determine the most favorable conditions to reveal the most defects and to evaluate the fault detection
capability of thermography when the blade is heated by the sun.

The experiment was conducted on a sunny day in July 2017 from 9:00 a.m. to 7:30 p.m. Sunrise
and sunset on this day were 5:53 a.m. and 9:30 p.m., respectively. During the experiment, the sky was
clear, the humidity was almost 36%, and the temperature varied between 16 ◦C and 26 ◦C. A T1030Sc
IR camera made by FLIR Systems was located 4 m from the blade section and equipped with a 21.2
mm lens, resulting in a spatial resolution of 4 mm per pixel. ResearchIR, a software package developed
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by FLIR Systems that provides high-speed data recording and image analyzing capabilities was used
to record thermograms at a frequency of 1 Hz.
Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 19 

 
Figure 2. Passive thermography experiment. 

2.3. Pulsed and Step Heating Thermography 

These techniques were used only on the defect plate mounted 1.5 m from the IR camera. Despite 
being mounted near windows, the defect plate was always in a shadow during the experiments. 
During pulsed thermography, the defect plate was heated by a 2400 W flash lamp and thermal images 
were recorded at a frequency of 15 Hz immediately after flashing the sample. To heat the surface 
uniformly, the flash lamp was around 0.3 m from the object with the angle of around 15° with respect 
to the normal of the defect plate. The pulsed thermography experiment is depicted in Figure 3. The 
spatial resolution of thermal images obtained by active thermography was almost 0.5 mm per pixel.  

 

Figure 3. Pulsed thermography experiment. 

The step heating thermography experiment, shown in Figure 4, used two 500 W halogen lamps 
to continuously heat the surface. The sample was heated between 10 and 75 s and the thermal 
evolution on the surface of the specimen was recorded at a frequency of 15 Hz. Once heating was 
finished, thermal decay was recorded with the same frequency. The room temperature was 23 ± 2 °C 
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few seconds of heating. 

Figure 2. Passive thermography experiment.

2.3. Pulsed and Step Heating Thermography

These techniques were used only on the defect plate mounted 1.5 m from the IR camera.
Despite being mounted near windows, the defect plate was always in a shadow during the experiments.
During pulsed thermography, the defect plate was heated by a 2400 W flash lamp and thermal images
were recorded at a frequency of 15 Hz immediately after flashing the sample. To heat the surface
uniformly, the flash lamp was around 0.3 m from the object with the angle of around 15◦ with respect to
the normal of the defect plate. The pulsed thermography experiment is depicted in Figure 3. The spatial
resolution of thermal images obtained by active thermography was almost 0.5 mm per pixel.
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Figure 3. Pulsed thermography experiment.

The step heating thermography experiment, shown in Figure 4, used two 500 W halogen lamps to
continuously heat the surface. The sample was heated between 10 and 75 s and the thermal evolution
on the surface of the specimen was recorded at a frequency of 15 Hz. Once heating was finished,



Appl. Sci. 2018, 8, 2004 6 of 19

thermal decay was recorded with the same frequency. The room temperature was 23 ± 2 ◦C during the
experiment. The thermal contrast associated with the defects could be observed after a few seconds
of heating.
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Figure 4. Step heating thermography experiment.

3. MF Algorithms

MF is a method to improve image contrast of subsurface defects by increasing the contrast of
defective areas and reducing the signals from sound areas [31,33,34]. Different types of MF algorithms
have been developed, all of which are based on the assumption that [31,34]:

Tobs = Tref l = Tideal (1)

at any time. Tobs is the temperature recorded by the IR camera, Trefl is the temperature response
reflected from the defective area, and Tideal is the ideal temperature response of the sound area.
Equation (1) can be represented in vector form:

X = S + W (2)

where these vectors collect all recordings over time and X = Tobs, S = Trefl, and W = Tideal. Equation (2)
is multiplied by a vector q that maximizes the visibility of the reflected temperature from the defective
area and minimizes the response of non-defective areas. The vector q can, therefore, be calculated
by [31,34]:

max
q
‖qTS‖2 subject to min

q
‖qW‖2 (3)

where qT is the transpose of q. Different methods for finding q result in the different types of MF
algorithms. Each MF algorithm considers a certain q vector to increase the contrast of defective areas
and decrease the signals from sound areas. The q vector for the spectral angle map (SAM) is

SAM =
STXij√

STS
√

XT
ij Xij

(4)
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where i and j imply that the calculation is repeated for all pixels of all thermal images to provide a
single correlation image and ST. The adaptive coherence estimator (ACE) uses as q:

ACE =
STC−1Xij√

STC−1S
√

XT
ij C
−1Xij

(5)

where C is covariance matrix of the ideal temperature vector defined as:

C =
1
m

m

∑
i=1

WWT . (6)

The t- and F-statistics use the different q vectors to improve the contrast associated with
defective areas:

Fstat =

(
ST R−1xij

)2

XT
ij R
−1Xij − ρ2

(
ST R−1Xij

)2 ρ2(d− 1) (7)

and

tstat =
ST R−1xij√

XT
ij R
−1Xij − ρ2

(
ST R−1Xij

)2
ρ
√

d− 1 (8)

where ρ =
(
ST R−1S

)−1/2.

4. Quantitative Evaluation

The SNR of the images is a measure of the quality of data. The traditional definition of SNR is the
ratio of the average magnitude of a signal to the magnitude of the background noise, determined as
described in Section 5. If a distorted signal, y(n), is considered as:

y(n) = x(n) + u(n), (9)

where x(n) is a signal and u(n) is the background noise, the SNR can be written for N samples as [35]:

SNR =
∑N−1

n=0 |[x(n)]|
2

Nσ2 , (10)

where |[x(n)]| is the magnitude of a signal and σ2 is the variance of the background noise. Since most
signals have wide dynamic ranges, the SNR is usually given in decibels (dB), [36]:

SNR = 10 log
(

∆2

σ2

)
, (11)

where ∆ is the peak value of the signal. Equation (11) can be simplified as:

SNR = 20 log
(

∆
σ

)
. (12)

5. Results and Discussion

The results of both the passive and active thermography are presented in this section. All temperatures
were measured using the IR camera. The different image processing algorithms, employed to increase
the quality of the thermal images, are described and their results are discussed in detail.
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5.1. Active Thermography

The temperature distribution profiles depicted in Figure 5b are plotted along with the rows
identified in Figure 5a. The most visible contrasts of the defects revealed, as expected, that the deeper
the defect, in terms of the distance from the bottom of the hole to the surface, the less detectable it was.
Moreover, the size of the defect was important. The raw thermograms do not show smaller defects
located deep within the plate. Defects with a diameter of 4 mm were barely detected. It can also be
seen that the defects in the middle part of the plate are clearer than those towards the plate edges.
This was primarily caused by non-uniform heating where the middle part of the sample received more
thermal energy than the boundaries. The temperature distribution profiles during the step heating
thermography for all pixels along the lines shown in Figure 5a are illustrated in Figure 5c. Figure 5c
was recorded after heating for 75 s. The signals generated by the defects located in the last row,
which have the smallest diameters, were not strong enough to be easily detected. Contrary to pulse
thermography, Figure 5c shows that the surface of the object has been uniformly heated during the
step heating thermography, which increased the efficiency of this method in detecting internal defects.
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Temperatures near the defects were measured and analyzed to better evaluate the effects of the
defect’s depth and size on the temperature variation. The temperatures measured at the locations of
the flat-bottomed holes with various depths are illustrated in Figure 6. The sample was heated by two
halogen lamps for 75 s, during which time data were recorded. It can be concluded from this figure
that an increase in a defect’s depth reduces its temperature variation, which makes detection more
difficult because there is not a significant change in the surrounding temperature.
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By increasing the size of the defect, the slope of the temperature variation also increased,
which implied that the effect of the depth variation on the temperature was more significant for
larger defects.

The SNRs for the defect plate profiles shown in Figure 5a were determined to provide a
quantitative evaluation of the detection. The signal values of the defects were measured first.
The difference between the signal values of the defects and the background signals was identified
as the peak value signal for the SNR calculation. Then, by calculating the standard deviation of the
background noise and using Equation (12), the SNR of each defect was calculated. By comparing the
visual results obtained from image processing and the corresponded SNR tables, defects with a SNR of
more than almost three times the background noise was considered as a defect that can be identified
by this method. The SNRs, related to raw thermal data captured by flash and step heating (heating
and cooling periods) thermography, are listed in Tables 1–3. Defect position names used in these
tables are defined in Figure 1c. It can be observed from these tables that bigger defects closer to the
surface generated high SNRs. It can also be concluded from the results presented in these tables that
raw thermograms of flash thermography can provide more details than step heating thermography.
It should be noted that the SNRs of raw thermograms are compared later with values of the processed
thermal images to show the strength of each of the image processing algorithms.

Table 1. Signal to Noise Ratio (SNR) (dB) related to raw data captured by step heating thermography
(heating period).

1 2 3 4 5

A 18.4 18.2 17.8 14.4 3
B 18.1 18 17.7 12.9 6
C 17.9 17.5 17 11 NA
D 12.3 12 8.6 NA NA

Table 2. SNR related to raw data captured by step heating thermography (cooling period).

1 2 3 4 5

A 25.7 24.9 22.8 19.4 12.3
B 24.4 20 20.4 17.5 11.9
C 7.4 10.2 15.2 11.5 5.9
D NA 2.58 2.5 NA NA
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Table 3. SNR related to raw data captured by flash thermography.

1 2 3 4 5

A 16.3 18.5 18.5 13.7 3.4
B 10.2 15.8 17 11.9 2.9
C 2.5 4.2 13.1 4.9 2.6
D NA 2.1 2.3 2.1 NA

5.2. Image Processing and Quantitative Evaluation

The results for the fourth row in Figure 5 show that some subsurface defects cannot generate
visible contrasts. This suggests the need for image processing to improve the resolution. Different
algorithms, including MF, and a combination of PPT as a transform-based technique were employed
to increase the SNR and the visibility of the defects. We will use the term “Step Phase and Amplitude
Thermography” (SPAT) for the analysis of thermograms after heating and successfully used for passive
thermal data processing.

5.2.1. Matched Filters (MF)

Applying MF to the step heating thermograms improved the quality of the results, as shown in
Figure 7. All four versions of MF increased the visibility and contrast of the defects. Three of these
filters, including the SAM, the ACE, and the F-statistic, showed very promising results where all
defects could be detected. However, the t-statistic highly improved the quality of the raw thermal data
and compared to other MF methods provided less details regarding subsurface defects.
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By using the above results, it can be seen that the diameter-to-depth ratio of the minimum
detectable defect for each of SAM, ACE and F-statistic was 1.33, while this value for t-statistic was 2.
To quantitatively evaluate the MF results, the SNRs for defective areas were determined. Figure 8a
illustrates the signals of the F-statistic results obtained from the step heating data. The background
noise around A2 is also shown in Figure 8b. These results were averaged to get the representative noise.
It should be noted that all of the processed images have been normalized by dividing the intensity of
each pixel over the difference between the maximum and minimum intensity available on the image.
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The SNRs are presented in Tables 4–7. The percentage improvement in the SNRs compared to the
raw values is shown in parenthesis for each defect. These tables show that higher SNR values were
obtained when MFs were applied to the step heating data. Therefore, the application of MFs to step
heating data improved the resolution of the internal defects.

Tables 4–7 also reveal that larger defects closer to the surface generated higher SNR values.
There were some exceptions to this general conclusion, however, primarily due to the non-uniformity
of the heating.

Table 4. SNR (dB) for SAM on step heating thermal data.

1 2 3 4 5

A 36.8 (99%) 35.3 (94%) 31.8 (78%) 26.9 (87%) 15.1 (396%)
B 33.5 (84%) 33.7 (87%) 31.2 (76%) 27.9 (116%) 17 (185%)
C 30.7 (72%) 29.3 (67%) 29.1 (70%) 26.3 (139%) 18.8
D 16.1 (31%) 18.7 (55%) 18.6 (116%) 13.9 5.5
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Table 5. SNR (dB) for ACE on step heating thermal data.

1 2 3 4 5

A 33.2 (79%) 31.9 (76%) 29.1 (63%) 24.3 (68%) 11.6 (282%)
B 30.6 (68%) 29.9 (66%) 28.5 (60%) 25.4 (97%) 15.3 (185%)
C 26.4 (48%) 27.1 (54%) 26.5 (55%) 24 (118%) 16.7
D 14.7 (19%) 16.9 (40%) 16.9 (96%) 11.7 8.5

Table 6. SNR (dB) for the t-statistic on step heating thermal data.

1 2 3 4 5

A 44.3 (139%) 41.6 (129%) 34.9 (95%) 28.5 (90%) 15.7 (416%)
B 35.6 (95%) 37 (105%) 34.5 (95%) 38.8 (201%) 22.7 (280%)
C 28.2 (58%) 30.2 (72%) 30.3 (77%) 27.6 (151%) 19.4
D 13.5 (10%) 18.4 (53%) 16 (85%) 11.3 6.6

Table 7. SNR (dB) for the F-statistic on step heating thermal data.

1 2 3 4 5

A 40.2 (117%) 37.6 (107%) 32.7 (83%) 27 (87%) 13.8 (354%)
B 33 (82%) 33.8 (88%) 32.2 (82%) 28.3 (120%) 17.8 (198%)
C 27.2 (52%) 28.9 (65%) 28.6 (68%) 26.1 (137%) 18.5
D 13.5 (10%) 17.2 (44%) 16.5 (92%) 11.6 2.7

5.2.2. Transform-Based Techniques: Step Phase and Amplitude Thermography

Pulsed thermograms were converted to a frequency domain using the FFT and the phase
images were analyzed. Since the surface was excited uniformly during step heating, both phase
and amplitude images of the transformed step heating thermograms were evaluated. Figure 9a,b
shows a comparison of the raw pulsed thermograms and the normalized phase contrast obtained using
the FFT. PPT significantly increased the contrast so that all defects, except D5, were detected. The same
normalization method as the one used for the MF method was applied to the results obtained using
the transformed-based techniques.
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Figure 9. (a) Raw thermogram and (b) phase image (acquisition time = 53.2 s) obtained from the
thermal image sequence recorded during cooling after flashing the surface.

The SNR values for the phase images depicted in Figure 9 are presented in Table 8, which shows
that larger defects that were closer to the surface had higher SNRs. The first column of defects is an
exception to this observation, mainly due to non-uniform heating of the surface.
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Table 8. SNR (dB) for Pulsed Phase Thermography (PPT) data.

1 2 3 4 5

A 25.5 (56%) 26.8 (45%) 24.9 (35%) 23.2 (69%) 20.7 (511%)
B 23.1 (127%) 26.5 (67%) 26.9 (58%) 23.4 (96%) 19.9 (591%)
C 19.6 (677%) 20.8 (397%) 19.8 (52%) 14.2 (190%) 12.9 (401%)
D 13.9 16.4 12.8 7 (234%) NA

Figure 10a,b shows the phase and amplitude images at the minimum frequency where the FFT
was applied to the step heating thermograms captured during cooling after heating for 75 s.
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Figure 10. (a) Amplitude image and (b) phase image of the thermograms captured during cooling after
75 s of heating.

The diameter-to-depth ratio of the minimum detectable defect in each of phase images of PPT and
SPAT was 2, while the amplitude of SPAT provided a better value of 1.33. It can be concluded from
these results that the application of the FFT transform to step heating thermography was more effective
than it was for flash thermography. This was especially true for the amplitude data, where clearer
results with higher contrasts were achieved. Phase images revealed that defects with a better contrast
compared to the amplitude images, in some cases. This demonstrated that a reliable inspection could
be achieved by evaluating both results. Figure 11 shows the results of an FFT transform applied to
thermograms captured during heating for 75 s. The phase image captured all defects—assumed to be
indicated by the signals that were more than three times the background level—demonstrating that
phase images extracted from the heating data provided more visibility compared to the data obtained
from cooling. The amplitude images obtained during cooling were less noisy and contained more
detail, which allowed the shape of defects to be determined.

Figure 12a presents a further analysis of the normalized amplitude contrast distribution of the
thermograms captured during cooling after 75 s of heating. The curves in this figure are the amplitude
variation along the lines shown in Figure 5a. A significant change occurred between the sound and
defective areas in the amplitudes, leading to a sharp boundary around the defects. The normalized
phase contrast distribution of thermograms obtained after heating for 75 s is depicted in Figure 12b.
Bigger defects closer to the surface generated higher phase contrasts and were subsequently more
visible in the phase image. By analyzing these plots, all defects, except D5, on the defect plate
were detected.
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Figure 12. (a) Normalized amplitude value and (b) normalized phase value distributions of the defects
where the thermograms were obtained during cooling and heating, respectively.

The SNR values for the phase and amplitude images captured by the application of FFT on the
step heating data are listed in Tables 9–11. These results demonstrate that amplitude images extracted
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from thermal data captured during cooling had higher SNR values and revealed more details of
subsurface defects. The SNRs of both the phase and amplitude images show that larger defects closer
to the surface provided higher values.

Table 9. SNR (dB) of amplitude image captured during cooling after 75 s heating.

1 2 3 4 5

A 46.2 (80%) 45.1 (81%) 42.2 (85%) 38.4 (98%) 29.7 (141%)
B 41 (68%) 41.3 (106%) 39.6 (94%) 36.7 (109%) 28.7 (140%)
C 33.1 (349%) 33.7 (231%) 34.6 (128%) 33.4 (190%) 25.9 (338%)
D 14.9 23.5 (809%) 21.2 (763%) 17 13.6

Table 10. SNR (dB) of phase image captured during 75 s heating.

1 2 3 4 5

A 38.5 (183%) 30.9 (144%) 29.2 (127%) 27.6 (180%) 23.6 (774%)
B 36 (302%) 32 (160%) 29.2 (132%) 27.5 (208%) 23.2 (896%)
C 21.5 (1211%) 26.3 (707%) 27.8 (164%) 26.6 (580%) 22.9 (907%)
D 19 13.3 (1044%) 18.3 (827%) 17.7 (710%) 12.7

Table 11. SNR (dB) of amplitude image captured during 75 s heating.

1 2 3 4 5

A 33.6 (106%) 41.9 (127%) 40.8 (120%) 38.3 (179%) 31.6 (834%)
B 26.9 (163%) 38.5 (142%) 37.6 (121%) 34.7 (191%) 29.2 (915%)
C 20.3 (706%) 26.2 (527%) 30.1 (130%) 28.7 (484%) 24.2 (842%)
D 8 13.1 (537%) 12.7 (455%) 10.8 (416%) 9.4

By comparing the results presented in Tables 8–11, it can be concluded from the results presented
in Tables 9–11 that the application of the FFT transform to step heating thermography was more
effective than its application to flash thermography. This was especially true for the amplitude data,
where higher SNRs were achieved. The amplitude images extracted from step heating thermography
were an effective means of revealing subsurface damage, as they detected even small and deep defects.

By comparing the results presented in Tables 1–9 related to the SNRs of raw and processed
thermal data, it is concluded that the image processing algorithms significantly increased the visibility
of subsurface defects especially those of smaller sizes, which are embedded in deeper areas.

5.3. Passive Thermography

Passive thermal imaging of the damaged blade section was conducted at different times of the
day. Typical results are shown in Figure 13. The results demonstrated that passive thermography was
capable of capturing cracks, delamination, and internal features of the blade section.

Early morning experiments provided a visible contrast of the defects on the defect plate attached
to the damaged blade section primarily due to the considerable temperature change on the blade
during this period [2,18,19]. All defects in the plate, except the smallest 4 mm ones, were detected
during this period. Less useful information about the defects was obtained when the experiment
was performed around noon. None of the defects were visible during the evening (around 6 pm),
which was mainly due to the balanced temperature on the blade surface after several hours of heating.

Thermal contrasts associated with dirt (glue on the surface), within the blue box in Figure 13,
were most pronounced at noon. These contrasts faded during the afternoon. The blade’s internal
features such as shear webs were detected as cold regions during the morning and at noon but became
hot signatures during the evening after several hours of heating.

Cracks and delamination on the suction side were apparent near the blade’s trailing edge. At noon,
with peak sunlight, cracks and delamination were detected. Delamination in the upper area, identified
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by the green box in Figure 13, were not detected clearly during the morning. The evening thermograms
did not provide any information regarding cracks and delamination, so noon was the best time for
crack and delamination monitoring.
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Figure 13. (a) Thermographic results of the experiment around 9 a.m., (b) noon and (c) 6 p.m. (sunrise
and sunset were around 5.53 a.m. and 9.30 p.m., respectively). The vertical arrows and dashed lines
indicate the shear webs.

The transform-based technique, discussed in Section 5.2.2, SPAT, was employed for the first time
to increase the quality of the passive thermography results. The phase images captured using this
method were not sensitive to non-uniform heating. The FFT was applied to passive thermograms
obtained at morning. The results are shown in Figure 14. Part (b) illustrates that the amplitude
images considerably increased the quality and visibility of the visualized subsurface defects, as the
visibility of cracks, delamination, and a large portion of the flat-bottomed hole defects was improved.
Phase images have noticeably increased the contrast of shear webs signatures, marked by red arrows
in Figure 14a.

Cracks and delamination are marked by white boxes in Figure 14b. The thermoplastic foam near
the leading edge was detected in the amplitude results and is highlighted by the red box in Figure 14b.
This method not only increased the quality of the thermal images and improved the detectability of
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thermography but also eliminated the false indications associated with environmental reflections, dirt,
and dust on the surface.
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frequency of 0.0165 Hz.

6. Conclusions

The blades, the most critical components of wind turbines, are susceptible to failure due to
initiation and propagation of subsurface damage in a number of forms. This study investigated
thermography techniques for monitoring the condition of wind turbine blades. Active thermography,
using pulsed and step heating, was conducted on a specially-constructed defect plate to evaluate
this method’s potential for detecting subsurface defects. The 170 × 195 mm plate was cut from the
laminate skin of a wind turbine blade. Flat-bottomed holes were drilled from the inside to produce
“defects” with known diameters and penetrations. The results demonstrated that active thermography
is a powerful method for the monitoring and fault detection of wind turbine blades but that the signals
generated by some small defects could not be detected.

Passive thermography was conducted on a damaged blade section and attached defect plate.
This experiment was conducted at different times of day to determine the most favorable time of a
day for maximum defect detection. The results showed that early morning and noon were best for
detecting certain types of defects. Cracks, delamination, and surface dirt generated the most visible
signatures around noon, while defects such as flat-bottomed holes in the defect plate were more visible
in the morning as the sun heated the targets. This conclusion applies to the day time experiments as
there were not any overnight tests.

The raw thermograms obtained by both passive and active thermography could not reveal the
small defects located deep in the laminate skin. Different image processing algorithms including
Matched Filters, Thermal Signal Reconstruction, and Pulsed Phase Thermography were used to
increase the quality of active thermograms. “Step Phase and Amplitude Thermography”, was used to
analyze the step heating data. This technique gave the best detection of defects as measured by the
diameter-to-depth ratio of 1.33. All the image processing algorithms improved the contrast in the active
thermograms but some drawbacks can be considered for the Matched Filters method. The Matched
Filters method is not fully automated and requires manual selection of points in a sound area of the
damaged blade, which is time-consuming and affects the quality of results. In order to quantitatively
evaluate the results, the signal-to-noise ratios of the raw and processed images were calculated. Higher
ratios can be obtained when image processing algorithms are applied to the raw thermal data. As an
obvious observation, larger defects closer to the surface generated higher ratios.
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Step Phase and Amplitude Thermography, as a successful method for improving active
thermography results, was applied to passive thermal data. The quality of passive thermograms
was increased as a result. This method could also eliminate the false indications associated with
environmental reflections and dirt on the surface. Nevertheless, it was not possible to resolve the
smallest defects of 4 mm diameter whatever the depth. The minimum diameter-to-depth ratio for
these defects was thus 1.25.
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