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Abstract: This paper proposes an integrated design and optimization approach for radial inflow
turbines consisting of an automated preliminary design module and a flexible three-dimensional
multidisciplinary optimization module. The latter was constructed by an evolution algorithm, a
genetic algorithm-assisted self-learning artificial neural network and a dynamic sampling database.
The 3-D multidisciplinary optimization approach was validated by the original T-100 turbine and
the T-100re turbine obtained from the automated preliminary design approach, for maximizing the
total-to-static efficiency and minimizing the rotor weight while keeping the mass flow rate constant
and stress limitation satisfied. The validation results indicate that the total-to-static efficiency is 89.6%,
increased by 1.3%, and the rotor weight is reduced by 0.14 kg (14.6%) based on the T-100re turbine,
while the efficiency is 88.2%, increased by 2.2% and the weight is reduced by 0.49 kg (37.4%) based on
the original T-100 turbine. Moreover, the T-100re turbine shows better performance at the preliminary
design stage and conserves this advantage to the end, though both the aerodynamic performance of
the T-100 and the T-100re turbine are improved after 3-D optimization. At the same time, it is implied
that the preliminary design plays an essential role in the radial inflow turbine design process, and it
is hard for only 3-D optimization to get a further performance improvement.

Keywords: radial inflow turbine; evolutionary algorithm; genetic algorithm; artificial neural network;
multidisciplinary optimization

1. Introduction

It is well known that the design of radial inflow turbines is an inevitably multidisciplinary
problem, which needs iterations between aerodynamic performance and mechanical feasibility. This
complexity makes the design of radial inflow turbines a time-consuming task in the past decades and
pushes forward tremendous growth in numerical optimization research [1–3] at the same time.

Bonaiuti et al. [4] proposed a multiobjective and multipoint design approach for a turbomachinery
blade. This approach coupled inverse design and optimization techniques to reduce geometric
parameters necessary to accurately represent the blade geometry, thus it facilitated the use of automatic
optimization for more complex problems. He et al. [5] developed an optimization system which also
coupled inverse design and optimization techniques, but it introduced a stage-by-stage strategy to
facilitate multistage optimization. Fu [6,7] developed an integrated optimization design approach for
radial inflow turbines, in which the aerodynamic performance, the stress constraint, and the rotor
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weight were considered sequentially. An initial design is generated in the first iteration, and then
the outlet radius and the axial length are reduced by a small step in the following iterations until the
aerodynamic performance, the stress constraint, and the weight constraint are all satisfied. Al Jubori et
al. [8] presented a 3-D multiobjective optimization technique combined a response surface method
and multiobjective method. The optimization of the blade geometry was performed using 20 design
variables for both nozzle and rotor blades, based on the B-splines’ technique to represent the blade
angles and thickness distribution. The results of the optimized geometry with R245fa showed that the
turbine’s and the cycle’s thermal efficiencies were increased higher by 13.95% and 17.38%, respectively.

Verstraete et al. [9] conducted a multidisciplinary optimization for a micro gas turbine compressor
in order to maximize the efficiency while keeping maximum centrifugal stress at the specified level.
Mueller et al. [10] performed a multidisciplinary optimization for a turbocharger radial turbine. The
differential evolution algorithm and the artificial neural network (ANN) were used to improve the
efficiency and reduce the impeller inertia while limiting the stress to an allowable level at reasonable
computational cost. Van den Braembussche et al. [11] conducted a multidisciplinary multipoint
optimization for a transonic turbocharge compressor. The operating range is guaranteed by a two-step
optimization procedure. The first one is used to satisfy the choking mass flow rate and the second
one to evaluate the performance curve with specified choking mass flow rate. Shao [12] presented
a multidisciplinary integrated design and optimization method for radial inflow turbines in which
aerodynamic performance and structure realization were considered simultaneously.

Samad et al. [13] evaluated the multiple surrogate models including response surface, radial basis
neural network, and the Kriging method. An average model was built from those individual surrogate
models according to the global error level. The results show that more robust approximation can be
achieved than individual surrogates. Öksüz et al. [14] developed a multiploid genetic optimization
method to handle a multiobjective blade aerodynamic optimization problem and found that the
method proposed successfully accelerates the optimization.

Generally, the objective of numerical optimization strategy of turbomachinery is to construct a
coupled system fully considering the interaction effects of aerodynamic performance, solid mechanics
and sometimes acoustics with the aid of artificial intelligence techniques. A typical numerical
optimization system consists of four modules, the parameterization module, the computational flow
dynamics- and computational structural mechanics (CFD and CSM)-based high-fidelity evaluation
module, the optimization algorithm module, and the metamodel module. In optimization research,
evolutionary algorithms (EAs) are particularly effective for turbomachinery problems due to their
robustness and capability to handle discontinuous and multimodal objective functions. However,
numerical optimization involves a huge number of fitness evaluations which hinder its practical
application especially for large-scale computational cases, and therefore metamodel techniques become
more and more attractive in recent years.

A metamodel, which is also referred to as a surrogate model and approximation model, is a quick
response model of the fitness function used to replace the time- and resource-consuming CFD and CSM
based on high fidelity evaluation tools. There are a variety of techniques for constructing metamodel
such as response surface [15,16], radial basis functions [17], Kriging [18], ANN, etc. Two strategies are
mainly used in the literature to build the metamodel. The first one is based on an extremely coarse
database initially and then updates dynamically according to the error level [9], and the second one
is a one-shot strategy based on a very large database and does not update during the optimization
process [2,19].

It is well-known that the design procedure of a turbomachinery mainly includes two steps, one
is the preliminary design, and the other is the 3-D design. The preliminary design is fundamental
and it provides some main geometry parameters and aerodynamic performance parameters to the
sequential 3-D design. In this study, an integrated design and optimization approach for radial
inflow turbines was proposed, which consists of an automated preliminary design module and a
flexible 3-D multidisciplinary optimization module. In Part I [20], an automated preliminary design
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approach for radial inflow turbines has been developed to reduce the dependency on human expertise
by Genetic Algorithm (GA) driving exploration of the design space. The approach was verified by
T-100 turbine [21] and the redesign work was conducted to demonstrate it. The results show that
through the redesign, the total-to-static efficiency of T-100 turbine increases by 1.0% under design
condition and the rotor weight decreases by 0.35 kg (26.7%), which also indicates the importance of
the preliminary design.

As Part II of this integrated design approach, a 3-D multidisciplinary optimization method is
developed to maximize the total-to-static efficiency and minimize the rotor weight while keeping
the mass flow rate constant and guaranteeing the mechanical integrity of the rotor. Based on the
geometrical and aerodynamic parameters of T-100 turbine and T-100re turbine obtained in Part I [20],
the nozzle aerodynamic optimization and rotor multidisciplinary optimization for the two turbines are
carried out in this paper, respectively.

2. 3-D Optimization Methodology

In this paper, a flexible 3-D multidisciplinary optimization system is developed and Figure 1 shows
its flowchart. The system makes use of an optimization algorithm, a metamodel, a dynamic sampling
database and high fidelity simulation codes for CFD and CSM analyses, respectively. Four optimization
algorithms are integrated into this system, including genetic algorithm (GA), differential evolution
algorithm (DEA) [22], nondominated sorting genetic algorithm (NSGA-II) [23] and simulated annealing
algorithm (SAA). Besides, three metamodel techniques including the Kriging method, artificial neural
network (ANN), and support vector machine (SVM) are integrated into this system.

Figure 1. Flowchart of the optimization system. CFD: computational flow dynamics, CSM:
computational structural mechanics, NSGA: nondominated sorting genetic algorithm.

It is to be noted that NSGA-II used in this paper is from a toolbox called Inspyred, which is a
free, open source framework for creating biologically-inspired computational intelligence algorithms
in Python, and the algorithms provided in Inspyred are all tested through benchmark test problems
with excellent convergence. Also, NSGA-II is relatively popular and widely used in turbomachinery
design optimization area. Many papers can be found within ASME (American Society of Mechanical
Engineering) proceedings and journals that use this algorithm to drive their optimization.

In the present work, NSGA-II and ANN are used to perform the optimization and shorten
the computational time. The system can easily switch between the accurate optimization and
metamodel-assisted optimization. The initial database is generated using the Latin center hypercube
method and then evaluated by high fidelity CFD and CSM codes. The metamodel is then built based
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on the database and used to substitute the computational tools (CFD and CSM). After a specified
number of generations, 10 new individuals will be added in the database and the metamodel will be
updated for better performance. The 10 new individuals are selected through a dynamic sampling
algorithm, which makes the sampling as uniform as possible for fear that the database only reflects a
subzone of the whole design space.

The ANN topology (number of hidden layers and the number of neurons per hidden layer) and
the initial weight are optimized using GA because they greatly affect the precision of the obtained
ANN. The population size for the ANN optimization is 10, the maximum generation is 15, and then
the time for constructing metamodel increases, but the performance of the obtained metamodel is
improved at the same time. The measurement for the ANN training is the mean relative error.

In the present paper, the optimization is conducted for T-100 and T-100re turbines, respectively, so
as to assess the preliminary design influence of the radial inflow turbine according to the final results.
Aerodynamic optimization is firstly performed for the nozzle, and multidisciplinary optimization is
then performed for the rotor. The nozzle aerodynamic optimization involves two strategies. Accurate
optimization (red loop in Figure 1) without metamodel is adopted for T-100 nozzle optimization and
metamodel-assisted optimization (blue loop in Figure 1) is adopted for T-100re nozzle optimization.
Both T-100 and T-100re rotors use the accurate optimization because the GA optimized ANN becomes
time-consuming as the database grows. The detailed information about the metamodel is described in
the discussion section.

The objective for the nozzle optimization is to maximize the total-to-static efficiency while keeping
the mass flow rate constant. The main purpose is to lower the nozzle flow loss and improve the
match between the nozzle and the rotor. The objective for the rotor optimization is to maximize the
total-to-static efficiency and minimize the rotor weight while keeping the mass flow rate constant and
the stress at the allowable level. The main purpose is to further improve the turbine aerodynamic
performance and regulate the rotor to satisfy stress constraint.

3. Model Parameterization and Multidisciplinary Optimization

3.1. Parameterization of Nozzle and Rotor

The parameterization of the turbine nozzle and rotor is based on Bezier and BSpline curves. The
blade profile is defined by the blade thickness and beta-angle (the angle between the camber line and
the meridional direction) distributions (see Figures 2 and 3). The nozzle blade is controlled by one
section, thus the nozzle blade is a straight blade without lean and twist.

The thickness and beta-angle distributions are parameterized by five control points, respectively.
The first control point of the beta-angle distribution is fixed at 60◦ and the last control point of the
thickness distribution is fixed at 0.3 mm (0.6 mm for the trailing edge diameter). Therefore, eight
variables are involved in the nozzle optimization.

Figure 2. Blade angle definition.
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Figure 3. Blade thickness definition.

The variation range for the beta-angle on each variable control point is set to ±10% of its
complement angle. The variation range for the thickness on each variable control point is also
set to ±10% of the local thickness. The scope that the nozzle blade varies is examined to make sure
that an adequate design space is provided and no interference happens.

The rotor is defined by: (1) the meridional contour of both the solid and fluid domain (Figure 4);
(2) the beta-angle distribution of the camber line at hub, middle and tip sections (same as the nozzle
parameterization in Figure 2); and (3) the thickness distribution is normal to the camber line at the hub
and tip sections (same to the nozzle parameterization in Figure 3).

Figure 4. Definition of the meridional contour. (a) Backface profile parameterization; (b) hub and
shroud parameterization.

Figure 4 shows the definition of the meridional contours of both the solid and fluid domain. The
solid hub firmly holds all the blades against the centrifugal force. An initial back face profile is given
and parameterized with seven control points, the first and the last two control points are fixed, and the
other four control points can be modified in a prescribed range as indicated by the arrows in Figure 4a.
The blade patch corresponds to where the blade is located, and its hub and shroud profiles are defined
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with five control points, respectively. The first control points of both curves are fixed such that the inlet
blade height is kept constant and no translation occurs for the entire geometry. The rest control points
can be modified by the optimization program and the possible variation in axial and radial direction is
indicated by arrows in Figure 4b.

In Figure 2, the rotor blade camber line at the hub, middle, and tip section is defined through
beta-angle distribution with five equally spaced control points, respectively. The first control point at
the hub section is fixed and the rest can be modified in a prescribed range. The 3-D camber line can
be obtained using the transformation according to Figure 7 in Part I [20]. The thickness distribution
is added and normal to the camber line at the hub and tip sections in both directions, and the blade
shape between the two sections is interpolated. The thickness distribution is parameterized using the
B-Spline curve with five control points in Figure 3, and the thickness at each control point can also be
modified by the optimization program in a specified range.

The parameterization method mentioned above will provide the blade profiles at different layers.
They are 3-D curves consisted of discrete points out there. The blade profile on each layer represents
the blade geometry at a certain relative blade height. Then an open source 3-D modeling software
called FreeCAD, which is released by Matra Datavision Inc in France, is used to perform a skinning to
envelop the blade profile to form a solid blade entity. After that, the meridional profile including the
hub profile, back profile and front line are loaded in to revolve a cylinder. At last, the intersection part
of the blade and the cylinder is chamfered. All of the procedures can be done automatically through
coding without opening up the GUI (Graphical User Interface), so a lot of time can be saved during
this section. That’s the whole parameterization workflow for a cluster of discrete points to form a solid
rotor entity which can be used for the following CFD and CSM analyses.

For the CFD analysis, the computation domain is between the shroud and the hub surface. For
the CSM analysis, the computation domain is all inside the solid rotor entity.

3.2. Multidisciplinary Optimization

In the process of multidisciplinary optimization, the blade number of both T-100 and T-100re
design is fixed and not optimized in the 3-D optimization stage, because extra difficulty will be
imported for the rotor shell cut which is essential for the CSM analysis.

Regarding to the optimization variables, if a control point has variation in two coordinate
directions, radial direction, and axial direction, it will have two variables in shape optimization
process. Therefore, the total number of optimization variables for rotor optimization is 40, among
which five variables for the solid hub back face profile, 11 for the hub and shroud meridional profiles,
14 for the beta-angle distribution, and 10 for the thickness distribution. In addition, four dependent
variables whose positions are linked to one of the design variables are involved.

Table 1 shows the design parameters of T-100 turbine and T-100re turbine, and they are set in the
optimization. It should be noted that the rotor rotational speed of T-100re turbine is higher than that of
original T-100 turbine, after the T-100 turbine was redesigned by the automated preliminary design
proposed in Part I [20].

The flow simulations are conducted using ANSYS CFX, a commercial CFD software. The total
grid number of CFD is 478,613, as shown in Figure 5, in which the grid numbers of the nozzle, the
rotor, and the diffuser are 156,925, 289,363 and 32,325, respectively. The RANS coupled with the SST
turbulence model is solved with the first layer y+ less than 2. It is worth mentioning that the mesh
number and the turbulence model used were verified by mesh independency and various turbulence
models provided in ANSYS CFX, respectively. The details of verification can be found in Reference [12]
published by our research group.
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Table 1. Design parameters of T-100 turbine and T-100re turbine.

Items Unit Value

Fluid [-] Air
Inlet total temperature [K] 1056.5

Inlet total pressure [kPa] 580.4
Mass flow rate [kg/s] 0.33

Number of nozzle vanes [-] 19
Number of rotor blades [-] 16

Pressure ratio [-] 5.73
Power [kW] 121

Rotational speed (T-100) [r/min] 106,588
Rotational speed (T-100re) [r/min] 114,185

Figure 5. Computational mesh of flow simulation. (a) Whole computation domain of flow area;
(b) rotor inlet mesh.

In this paper, the software ANSYS Workbench is applied as the CSM solver. The total grid number
of CSM is 555,663, as shown in Figure 6. The coupling of the CFD and the CSM solvers adopt a
loose couple strategy, which at first evolves a CFD evaluation and then a CSM evaluation, and the
aerodynamic change caused by the rotor deformation is not considered. That is to say, the effect of
flow solid interaction was neglected because the blade of radial inflow turbines is relatively much
more rigid than that of axial turbines. The deformation of the rotor blade is so small that its effect is
negligible in this study for the aerodynamic performance.
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Figure 6. A Computational mesh of solid simulation.

Figure 7 illustrates the convergence history of flow simulation for a single CFD evaluation. It can
be seen that the higher convergence precision is obtained in a short time.

Figure 7. Convergence curves of flow simulation.

4. Results and Discussion

In this study, optimization is conducted for T-100 and T-100re turbine, respectively.
For T-100 turbine: (1) an accurate aerodynamic optimization for the nozzle is conducted firstly;

and (2) an accurate multidisciplinary optimization for the rotor is then performed.
For T-100re turbine: (1) an automated GA-driven preliminary design based on T-100 design

parameters was conducted firstly [20], (2) a metamodel-assisted aerodynamic optimization for
the nozzle is then performed, and (3) an accurate multidisciplinary optimization for the rotor is
conducted finally.

4.1. Nozzle Optimization Results

The T-100 nozzle optimization has evolved for 34 generations and 1020 CFD calculations are
performed. The optimal solution has an increase in total-to-static efficiency (ηts) by 0.1% and a decrease
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in total pressure loss (ξP) by 0.3%, compared with the T-100 baseline design. The change of the mass
flow rate (m) is less than 0.01% which is acceptable. Figure 8 and Table 2 show the comparison between
the baseline design and the optimal design. It can be seen that the improvement is very small because
the T-100 turbine is a well-developed design itself.

Figure 8. Comparison of T-100 nozzle profiles.

Table 2. Performance comparison between T-100 and T-100re turbines after nozzle optimization.

T-100 m [kg/s] ηts [-] ξP [-]

T-100 baseline 0.330 0.874 2.503
T-100 optimized 0.328 0.875 2.495
T-100re baseline 0.329 0.883 2.814

T-100re optimized 0.328 0.884 2.660

The T-100re nozzle optimization has evolved 30 iterations, and 600 CFD computations are
involved. Though the CFD computational cost is lower than the simple accurate optimization,
the ANN training time becomes longer as the database grows, and the training time even exceeds
the CFD computation time at the later stage of the optimization. In general, the final cost of the
metamodel-assisted optimization is nearly the same as the T-100 accurate optimization. Therefore, the
rotor optimization will not use a metamodel anymore.

However, the present metamodel training strategy does result in high precision ANN. Figure 9
shows the mean relative error of the ANN prediction and it can be seen that the error level is adequate
to provide a high precision prediction. The computational cost of the present work is not high itself,
therefore it is not cost-effective to use this GA-optimized ANN in this situation, but it is still useful for
large-scale computational cases.

Figure 9. Mean relative error of the ANN prediction. ANN: artificial neural network.
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The optimal solution of T-100re nozzle optimization has an increase in total-to-static efficiency by
0.1% and a decrease in total pressure loss by 5.4%, compared with the T-100re baseline design. The
change in the mass flow rate is less than 0.01%. Figure 10 shows the comparison of T-100re nozzle
profiles between the baseline and the optimized. From Table 2, it can be seen that the total-to-static
efficiency increases by 1%, which is the same as the growth after the preliminary design optimization
in Part I [20]. Both designs are improved after the nozzle aerodynamic optimization.

Figure 10. Comparison of T-100re nozzle profiles.

4.2. Rotor Optimization Results

Both T-100 rotor optimization and T-100re rotor optimization evolved for 35 generations and
took nine days on a workstation with two CPUs (main frequency 2.4 GHz, total 16 compute cores). A
single evaluation including CFD and CSM analysis took approximately 25 min. Table 3 shows
the performance at every design stage for comparison. It can be seen that the increase of the
total-to-static efficiency achieved in the rotor optimization for T-100 and T-100re turbine are 0.7% and
1.2%, respectively. Comparing T-100re optimized design with T-100 baseline design, the total-to-static
efficiency has been increased by 2.2%.

Table 3. Performance comparison between T-100 and T-100re turbines after rotor optimization.

Objectives
Preliminary Design

Nozzle Opt. Rotor Opt.
Mean Line CFD

T-100 ηts [-] 0.864 (exp.) 0.874 0.875 0.882
T-100re ηts [-] 0.874 0.883 0.884 0.896
T-100 W [kg] 1.31 - - 1.12

T-100re W [kg] 0.96 - - 0.82

According to Table 3, T-100 rotor weighs 1.31 kg after the preliminary design, and 1.12 kg after
the rotor optimization, so 14.5% of the weight is cut down. The T-100re rotor weighs 0.96 kg after
the preliminary design, and 0.82 kg after the rotor optimization, so 14.6% of the weight is cut down.
Comparing T-100re optimized design with T-100 baseline design again, the rotor weight decreases by
0.49 kg (37.4%). Both rotors are available regarding the stress level.

Figure 11 shows the 2-D objective space obtained from T-100 rotor optimization after 35
generations. Each symbol represents a radial turbine design which has been analyzed successfully
by the CFD and CSM solver as the rotor optimization adopts the accurate optimization strategy. The
designs that satisfy all constraints are indicated with a green color, the baseline design from the very
beginning is presented by a blue square, and the baseline design after the nozzle optimization is by a
light blue delta. It can be seen that most designs were generated with a higher total-to-static efficiency
and a lower weight compared to the baseline design.
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Figure 11. Change of rotor weight along with total-to-static efficiency (T-100).

However, most designs violate the equivalent stress constraint (Figure 12), the apparent Pareto
front towards the lower left-hand corner in Figure 11 can be considered as the pure aerodynamic
Pareto optimal solutions. Only seven individuals satisfy all constraints, which also demonstrates the
highly conflicting relationship between the total-to-static efficiency and the equivalent stress. In the
constraint-satisfied solutions, the four individuals generated in the early phase of the optimization
(Gen 3~9 in Figure 11) are not competitive, so only the three individuals generated in the later phase
(Gen 21~28) can be considered as the optimal solutions.

Figure 12. Change of equivalent stress along with total-to-static efficiency (T-100).

In T-100 rotor optimization, the individual from Gen 22 is selected as the best trade-off solution
(selected optimum), because it has the lowest weight (1.12 kg), the lowest stress (649 MPa), and higher
efficiency of 88.2%, which is quite close to the best achieved (88.3% at Gen 28). The total-to-static
efficiency increases by 0.7%, and the rotor weight decreases by 14.5%. The maximum stress is lower
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than the maximum allowable stress (684 MPa), and the change of mass flow rate is 0.13%, which
is acceptable.

Figures 13 and 14 show the 2-D objective space obtained from T-100re rotor optimization. It can be
seen from Figure 14 that most individuals violate the equivalent stress constraint too, so the apparent
Pareto front cannot be considered as trade-off solutions. Actually, there are 19 individuals satisfying all
the constraints, which are indicated in green color in Figure 13. The best trade-off solution is selected
from Gen 30 (selected optimum). The optimal rotor weighs 0.82 kg (reduced by 14.2%), generates
a maximum stress of 676 MPa (lower than the maximum allowable stress), achieves a total-to-static
efficiency of 89.6% (increased by 1.2%) and changes the mass flow rate less than 0.3%.

Figure 13. Change of rotor weight along with total-to-static efficiency (T-100re).

Figure 14. Change of equivalent stress along with total-to-static efficiency (T-100re).

Figure 15 shows the performance map under a range of velocity ratios. It can be seen that T-100re
optimal design show better performance under all conditions. In the rotor parameterization, very
small variation range is specified for the first three control points of the beta-angle distribution on the
hub, mid, and tip sections in order to avoid performance deterioration under the off-design condition,
and it is proved to be effective. Therefore, there is no need to conduct multipoint optimization for
the rotor.
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Figure 15. Comparison of total-to-static efficiency.

Figure 16 shows the comparison of Mach number contours between the original T-100 turbine and
the optimal T-100re turbine at mid-span section under design condition. At the outlet of the nozzle, the
Mach number of T-100 turbine is lower than that of the T-100re turbine, while it is adverse at the outlet
of the rotor. It is indicated that the enthalpy drop of the T-100re turbine in the nozzle and the rotor is
well redistributed after 3-D optimization, and the range of lower Mach number in the rotor passage is
reduced because of its higher rotational speed and reasonable rotor geometry. In addition, the absolute
outlet velocity of the T-100re turbine is 216.38 m/s, lower than that of T-100 turbine, 167.24 m/s, so the
total-to-static efficiency of the turbine is improved.

Figure 16. Comparison of Mach number contour at mid-span section. (a) T-100 turbine (original),
(b) T-100re turbine (optimal).
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4.2.1. Meridional Optimization Results

Figures 17 and 18 show the change of meridional contours after the rotor optimization. It can be
seen that both optimized rotors have a thinner backplate and a larger trailing edge height which has a
backward axial sweep. The thinner backplate contributes the most to reduce the rotor weight. The
lower hub contour benefits the rotor weight also, but at the risk of higher stress. The backward axial
swept trailing edge also reduces the rotor weight a little, but most importantly it lowers the centrifugal
force concentrating on the outlet hub region. Figure 19 shows the comparison of meridional contours
between T-100 baseline and T-100re optimized design. It can be seen that T-100re optimized design is
much more compact.

Figure 17. Meridional contour of the baseline and the optimized design (T-100).

Figure 18. Meridional contour of baseline and optimized design (T-100re).

Figure 19. Meridional contour of T-100 baseline and T-100re optimized design.

Figure 20 shows the total-to-static efficiency alone with the relative trailing edge height. It
indicates that the larger trailing edge height could improve the aerodynamic performance of the radial
inflow turbine, but most individuals violate the stress constraint. Figure 21 shows the equivalent stress
with respect to the sweep direction. It can be seen that backward axial sweep benefits the stress for
both T-100 and T-100re rotor, which reveals that the centrifugal force concentrating on the hub region
decreases due to the axial sweep of the trailing edge at the tip. The conflicted relationship between
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aerodynamic performance and centrifugal force is especially true in this area, so higher trailing edge
height with backward axial sweep becomes a trade-off solution between these two aspects.

Figure 20. Change of blade trailing edge height along with total-to-static efficiency. (a) T-100,
(b) T-100re.

Figure 21. Change of trailing edge sweep along with equivalent stress. (a) T-100, (b) T-100re.

4.2.2. Blade Angle Optimization Results

The blade angle (beta-angle) distribution does not affect the rotor weight too much, but does
affect the aerodynamic performance and the stress level. In this study, the blade angle distributions at
three sections (hub, middle, and tip) are optimized. The last beta-angle (βte) on each section indicates
the blade turning, which correlates to the aerodynamic performance. Figure 22 shows the total-to-static
efficiency with respect to the last trailing edge beta-angle at the hub, middle, and tip sections. It can be
seen that promising designs tend to have a bigger blade turning at each section for both T-100 and
T-100re rotor, and the trend is more obvious at the middle and tip sections of T-100re rotor. The label of
the horizontal axis in Figure 22 indicates the variation range specified for βte. It can be seen that the
range specified for βte at each section is sufficient because no concentration happens on two sides.

4.2.3. Blade Thickness Optimization Results

Figure 23a shows the blade thickness distribution at hub section for T-100 rotor. It can be seen that
the peak value of T-100 thickness is larger than the baseline design, and the location moves backward.
The new thickness distribution results in a reasonable maximum stress of 649 MPa, as indicated in
Figure 24a.
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It can be seen from Figure 23b that the peak value of T-100re thickness is smaller than that of the
baseline design, and the location also moves backward. The maximum stress in Figure 24b is larger
than that of T-100 optimal design because of higher rotational speed, but still lower than the allowable
value. A high-stress zone indicated by a red circle in Figure 24b appears on the suction surface near
the rotor outlet just under the mid-span. This is due to the high blade turning on the mid and tip
sections. It means this area is exposed under bending force which is also a reflection of the conflicting
relationship between aerodynamics and stress.

Figure 22. Change of total-to-static efficiency along with trailing edge blade angle. (a) T-100, (b) T-100re.

Figure 23. Thickness distribution at hub section. (a) T-100, (b) T-100re.
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Figure 24. Stress of T-100 and T-100re optimized design. (a) T-100 optimized, (b) T-100re optimized.

5. Conclusions

This study presents an integrated design and optimization approach for radial inflow turbines and
it is applied to the redesign of T-100 turbine in the Sundstrand Power Systems T-100 Multipurpose Small
Power Unit. In this paper, as Part II, a flexible 3-D multidisciplinary optimization system is developed.
Both nozzle aerodynamic optimization and rotor multidisciplinary optimization are performed using
the present approach for T-100 and T-100re turbines, respectively. Higher total-to-static efficiency and
lighter rotor weight are pursued in the whole process. From the above study, the mainly following
conclusions can be drawn:

(1) Preliminary design plays a critical role in the design process of radial inflow turbines. Therefore,
it is necessary to carry out an automated preliminary design and optimization for making a good
foundation. In the present work, the total-to-static efficiency increases by 2.2%, and the rotor
weight decreases by 0.49 kg (37.3%), comparing with that only conducting 3-D optimization on
the T-100 baseline design. The centrifugal stress is constrained at the allowable level.

(2) Large trailing edge height results in an improved efficiency, but does deteriorate the stress
condition. Backward sweep trailing edge lowers the stress level, which compensates for the
negative effect of trailing edge enlargement. Large blade turning at the middle and tip sections
improve the efficiency, but moves the high-stress zone toward blade mid-span on the suction
surface, which adds extra bending forces. In general, the stress level can be controlled through
blade thickness and blade angle adjustment.

(3) In the design process of radial inflow turbines, some key parameters like the blade number, rotor
inlet diameter, and blade height can be easily optimized in the preliminary design stage using
some correlations, while some local geometry parameters cannot be adjusted here and only be
optimized subsequently in the 3-D design stage. Therefore, an integrated design optimization
approach can be established by combining the automated preliminary design module and the
3-D multidisciplinary optimization module.
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