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Featured Application: This paper proposed a finite difference method that can model the
interfacial slip of FRP-concrete hybrid beam (FCHB). This method was used to evaluate the
interfacial slip and deflection of FCHB using different shear connections.

Abstract: Interfacial slip can cause rigidity degradation and stress concentration in fiber-reinforced
polymer-concrete hybrid beam (FCHB). Therefore, precisely evaluating the composite action between
fiber-reinforced polymer (FRP) and concrete of FCHB plays a pivotal role in structural analysis and
design. Previous push-out tests showed that most connections for FCHB behave nonlinearly in
load-slip relationships even at a low load level. However, existing analytical equations have their
limitations due to the assumption of linear load-slip interfacial relationship which is not suitable for
FCHB. The originality of this paper is to propose a finite difference method (FDM) to elaborate the
interfacial slip and shear stress. FDM agreed well with the analytical solutions of the linear load-slip
relationships for connections. Results indicate that higher accurateness can be obtained by using
more elements. And 40 elements for half span of FCHB can reduce the error of numerical results to
1%. Then, the proposed FDM was expanded to predict the interfacial behavior of FCHB considering
nonlinear interfacial load-slip relationships. It was found that perforated FRP rib connections can
ensure nearly full composite action and the bolted connection can lead to a very high slip level.
The use of ultra-high performance concrete (UHPC) results in a higher degree of composite action
than normal concrete. The deflection considering slip was computed by adding deformation under
full composition action and that caused by the slip effect. It was suggested that high strength steel
bolts are effective both in normal concrete and UHPC. When the slip modulus is suggested to be
larger than 20 kN/mm, the capacity per bolt should be larger than 20 kN.

Keywords: FRP-concrete hybrid beam (FCHB); composite action; finite difference method (FDM);
nonlinear interfacial load-slip relationship

1. Introduction

High strength-to-weight ratio and durability under corrosive chemical conditions have made
fiber-reinforced polymer (FRP) composite materials an attractive solution to bridge members [1–3].
In the last two decades, there has been an increasing interest in using FRP composites to repair and
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strengthen reinforced concrete (RC) and steel structures [4,5]. In the new construction of bridge
superstructures, hybrid FRP-concrete beams and decks provide benefits by combining the stiffness and
low cost of concrete with the light-weight, fabrication speed, high strength, and durability of FRP [6].
Among them, pultruded FRP-concrete hybrid beams/decks have been proposed as an advanced [7–9]
solution for bridge superstructures. After taking into account the expected improvements in transport,
installation, and life-cycle differences, the initial cost of FRP can be offset, thereby leading the
system competitive in the standard short-span bridge market and bridge decks [10–12]. The primary
difference between these FRP-concrete hybrid beams/decks and the currently widely used traditional
steel-concrete composite beams is that the FRP cannot be welded easily like steel, so the interfacial
connections are usually weaker in terms of capacity and slip modulus [13–18]. The static [19–21],
fatigue [22], aggressive exposure [22], dynamic [23], and long-term [24] performances have been
investigated in previous research. Hence the interfacial slip between FRP and concrete is expected
to be high and reduces the stiffness and capacity and fiber-reinforced polymer-concrete hybrid
beam (FCHB) [19,20,25,26]. Strong interfacial connections are recommended to be used in the real
applications of FCHB bridges [27–30]. However, theoretically speaking, there should be a slip between
FRP concrete even when strong connectors (e.g., perforated FRP ribs [10,13] and FRP shear keys [14,18])
are used. The evaluation of interfacial slip is an inevitable topic in the research and design of FCHB.
Many researchers have proposed analytical solutions to quantifying the interfacial slip of FCHB
according to a linear load-slip relationship of shear connection [31,32]. A slip modulus was employed
based on a chord slope of FRP-concrete push-out testing [10,14,16]. However, this simplification is not
true for nearly all the connectors because nonlinearity occurs even at low load level which makes the
chord slope different from the tangential slope [10,14–16,31–33]. Therefore, a method that can consider
the nonlinear interfacial load-slip relationship is needed.

This study reports a simple but fairly accurate solution for the nonlinear slip process using the
finite difference method (FDM) in association with linear and nonlinear bond-slip models. Based on
the computation results, existing analytical solutions using linear interfacial load-slip relationships
were calibrated, and different bond-slip models are discussed.

2. Construction of Governing Equation

Assuming that (a) only shear connectors provide composite action between the FRP and concrete
components; (b) the concrete slab and FRP profile can be simplified as two components discontinuously
joined (see Figure 1), the longitudinal shear flow across the interface is transferred at a discrete number
of points by the action of the shear connectors; and (c) there is no separation along the normal direction
of the interface, the interfacial shear force flow can be obtained as

v(x) = nQ(s)/p (1)

where v(x) is the distributed interfacial shear force, n is the connector number of the connector in
the lateral direction, Q(s) is load-slip relationship per connector, and p is the longitudinal space
between connectors.
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Figure 1. Model of sectional analysis of section dx.

For a simply supported beam, equilibrium of the finite length dx (Figure 1) in the horizontal
direction gives

dFNC(x)
dx

=
dFNF(x)

dx
= −v(x) (2)

where FNC(x) and FNF(x) are the axial force in concrete and FRP, respectively.
Equilibriums in the vertical direction of the shear force and moment give

Vc(x) + VF(x) = V(x) (3)

dMc(x)
dx

− v(x) · hc

2
+

r(x)dx
2

+ Vc(x) = 0 (4)

dMF(x)
dx

− v(x) · hF
2
− r(x)dx

2
+ VF(x) = 0 (5)

where Vc(x) and VF(x) are the shear force carried by concrete and FRP, respectively, V(x) is the
sectional shear force. Mc(x) and MF(x) are flexural moment carried by concrete and FRP, respectively;
hc is the distance from the bottom of concrete to its neutral axis; hF is the distance from the top of FRP
to its neutral axis, and r(x) is distributed normal force along FRP-concrete interface.

Considering assumption (v), the curvature compatibility between the concrete and FRP gives

φ(x) =
Mc(x)
Ec Ic

=
MF(x)
EFx IFx

(6)

where EFx is the elastic modulus of FRP; IFx is moment inertia of FRP; Ec is the elastic modulus of
concrete; Ic is moment inertia of concrete, and φ is the curvature of the beam.

FRP-concrete hybrid beams/decks are modeled elastically since FRP materials are inherent linear
elastic and the concrete stays at a low stress level before the failure of FRP webs. The orthotropic
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mechanical properties of the FRP composite material are the same in the web and flanges, however, in
this study, the longitudinal modulus of FRP is employed to compute the sectional rigidity. Therefore,
strains of concrete εc(x, y) and FRP εc(x, y) are calculated from the moment and axial force as

εc(x, y) =
Mc(x)(hc/2− y)

Ec Ic
− FNC(x)

Ec Ac
, 0 ≤ y ≤ hc (7)

εF(x, y) = −MF(x)(hF/2 + y)
EFx IFx

+
FNF(x)
EFx AF

,−hF ≤ y ≤ 0 (8)

where y is the vertical coordinate that has an original point at FRP-concrete interface and has a direction
upward. Equations (7) and (8) give the strains at the interface respectively as

εcb(x) = εc(x, 0) =
Mc(x)hc

2Ec Ic
− FNC(x)

Ec Ac
(9)

εFt(x) = εF(x, 0) = −MF(x)hF
2EFx IFx

+
FNF(x)
EFx AF

(10)

where AC and AF are the area of concrete and FRP, respectively.
The relative strain difference caused by the slip at the interface εslip(x) is calculated as

εslip(x) = εcb(x)− εFt(x) (11)

Also, the relative slip strain at the interface is calculated by differentiating the slip

s′(x) = εslip(x) (12)

Substituting Equations (7)–(11) to (12), the difference of the slip would be

s′(x) = φ(x)h0 −
FNC(x)
Ec Ac

− FNF(x)
EFx AF

(13)

Solving Equations (6) and (13) yields

φ′(x) =
V(x)− nh0Q(x)/p

EFx I0
(14)

Derivation with respect to x in Equation (13) and then using Equation (14) gives the differential
equation as:

s′′ (x)− A1

EFx I0

n
p

Q(s) = −
A2

1h0

EFx I0
V(x) (15)

where A1 = I0/A0 + h2
0, A0 = AF AC/(αE AF + AC), I0 = IC/αE + IF, and αE = EFx/EC.

The boundary conditions are given by symmetricity at mid-span as

s(L/2) = 0 (16)

And at the supports
ds
dx

(0) =
ds
dx

(L) = 0 (17)

Since Q(s) is usually a nonlinear function, so the analytical solution is needed to solve
Equation (15).
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3. Numerical Solution of the Governing Equation Using FDM

For similarity, Equation (15) is rewritten as

s′′ (x)−mQ(s) = −ηV(x) (18)

where m = A1
EFx I0

n
p , and η =

A2
1h0

EFx I0
. And for one-point loading, V(x) = P/2.

The central difference approximations for Equation (18) lead to

d2s(xi)

dx2 =
si+1 − 2si + si−1

h2 (19)

where h is the discretization step, which is given by h = L/N, L is the bond length of the
composite-substrate interface and N is the number of discretization. The step h between consecutive
points xi, i = 0, 1, 2, . . . , N, was selected with N as the largest integer above which no gain in accuracy
could be detected.

Substituting Equation (19) into Equation (18) yields to

si+1 − 2si + si−1

h2 −mQ(si) = −
ηP
2

(20)

Rearranging Equation (12) gives

si+1 − 2si + si−1 − h2mQ(si) = −
ηP
2

h2 (21)

Boundary conditions Equations (16) and (17) give

s1 − s−1 = 0 (22)

However, s−1 is not in the domain thereby creating a difficulty. The solution is to extend the
original domain from [0, Nh] to [−1, Nh]. Therefore, the nonlinear system in Equation (13) becomes

s1 − s−1 = 0
si+1 − 2si + si−1 − h2mQ(si) + ηPh2/2 = 0, i = 0, 1, 2, . . . , N

sN = 0
(23)

Since Q(si) results in nonlinearity of Equation (23), the system of equations cannot be solved
using Gaussian elimination or any special linear system. Hence, Equation (23) was solved by the
system of equations with the Newton-Raphson iteration technique as follows:

{si}j+1 = {si}j − J−1(si) ∗ fi(si) (24)

where {si}j and {si}j+1 are the slip at the j-th and j+1-th iteration, respectively, J−1(s) is the inverse of
the Jacobian matrix for this system, and fi(si) is the first member of Equation (23) at point i.

The convergence of the system was defined according to:∣∣∣{si}j+1 − {si}j

∣∣∣ ≈ 0 (25)

4. Validation of Numerical Models Against Analytical Solution

In this section, the results of FDM will be compared with the existing results given in the
literature. In previous research, when only the linear part of the load-slip curve is considered in
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analysis procedures, the theory can be based on a constant slip modulus, K. Therefore, Q(s) = Ks can be
used for Equation (15), by doing so one has

s′′ (x)− α2s(x) = −α2βV(x) (26)

where α2 = kA1/(EFx I0), β = A1h0/k.
Solving Equation (26) gives

s(x) =
βP
2

[
1− cos h(αx)/ cos h(

αL
2
)

]
, 0 < x < L/2 (27)

Given the initial design of a FCHB as inputs: concrete width by height bc ∗ hc = 400 mm × 250 mm,
FRP height hF = 750 mm, FRP width bF = 200 mm, FRP flange thickness tFlg = 10 mm, FRP web thickness
tweb = 20 mm, longitudinal space of steel bolts p = 400 mm, slip modulus of connectors K = 6 kN/mm,
length of FCHB, L =10 m, longitudinal modulus of FCHB, EFx = 12.5 GPa, Young’s modulus of
concrete Ec = 30 GPa, and load at the mid-span P = 500 kN.

Figure 2 shows the results of slip distribution along the longitudinal direction given by FDM and
analytical solutions given by Equation (27), respectively. Good agreement can be obtained by FDM.
Figure 3 and Table 1 show the relationship between the error of FDM and the numbers of elements in
half span. It can be clearly seen that the error decreases with the increasing of the element number.
When the element number is 40, the error at quarter beam is less than 1%.
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Table 1. Errors of slip between FDM using different numbers of half span.

Equation (27)
FDM

10 20 40 60 80 100 1000

Beam end slip (mm) 1.4853 1.4742 1.4828 1.4847 1.4850 1.4851 1.4852 1.4853
Quarter span slip (mm) 1.2707 1.3197 1.2958 1.2834 1.2792 1.2771 1.2758 1.2713
Error at beam end (%) −0.745 −0.166 −0.039 −0.017 −0.010 −0.006 0.000

Error at quarter span (%) 3.850 1.975 0.998 0.667 0.501 0.401 0.040

5. Load-slip Models for Connection of FRP-concrete Hybrid Beams/Decks

In this section, the choice of Q(s) models were made based on some formulas found in
literatures [13–15]. The formulas have been given by the authors of this paper in previous literatures,
which are presented in Table 2 and Figure 4.

Table 2. Alternative load-slip models (s in unit of mm).

Name Model Type Formula Equation Parameters

Model_1 Linear
Q(s) = Ks (28a)

K = 7.27 kN/mm
Model_2 Linear K = 11.58 kN/mm
Model_3 Linear K = 112.67 kN/mm

Model_4 Trilinear Q(s) = Qu


0.25s, 0 < s < 0.8

0.353s− 0.082, 0.8 < s < 2.5
0.467 + 0.133s, 2.5 < s < 4.0

(28b)
Qu = 28.5 kN

Model_5 Trilinear Qu = 40.8 kN

Model_6 Trilinear Q(s) = Qu


0.8s, 0 < s < 0.25

0.133 + 0.27s, 0.25 < s < 2.5
0.467 + 0.133s, 2.5 < s < 4.0

(28c) Qu = 52.3 kN
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Model_1~3 are based on linear load-slip relationship and different values of K given by Table 2 in
Reference [13]. Model_1 and Model_2 reflect the average slip modulus of normal and high strength
steel bolts, respectively. Model_3 uses the value of K for perforated FRP ribs.

Model_4~6 are based on nonlinear load-slip relationship given by Figure 11 in Reference [15] and
can be seen in Figure 4 below. Model_5 is for the interface between FRP and normal concrete, and it
consists of three parts: the compacting stage (0~0.2Qu); the hardening stage (0.2Qu~0.8Qu), and the
softening stage (0.8Qu~Qu). The compacting stage is caused by packing the initial clearance between
the bolt and the predrilled hole as well as the torsion of the bolts. In the hardening stage, the shear
resistance is provided by the elastic flexure and shear deformation of the bolt. Finally, in the softening
stage, the large deformation of the bolts and the local FRP around the hole provide the shear resistance.

Model_6 is for the high strength bolted connection between FRP and ultra-high performance
concrete (UHPC) also consists of three parts, but they appear in a different pattern: the hardening
stage (0~0.2Qu) is first, followed by the compacting stage (0.2Qu~0.8Qu), and finally the softening
stage (0.8Qu~Qu).

Herein, according to the experimental data in Table 5 in Reference [15] and is also shown in Table 2
of this paper. The average load per bolts of ordinary strength bolts in the normal concrete is 28.5 kN.
And the average loads of the high strength bolts in the normal strength concrete and the high strength
bolts in UHPC are 40.8 kN and 52.3 kN, respectively.

Figure 5a shows that the Model_3 has a very small slip level (less than 0.1 mm at the load of
500 kN), which shows that almost full composite action has been obtained, which indicates that this
type of connection is suitable for FCHB system. Also, Model_1 leads to almost 50% larger slip than
Model_2 which means that the interfacial slip is very sensitive to the value of slip modulus of bolts.
Figure 5b shows that the Model_6 ends at slip level less than 0.25 mm at the load of 500 kN, which
shows that almost full composite action has been obtained by high-strength steel bolts in UHPC. So,
which shows that the use of UHPC can impede the slip and ensure a high degree of composite action
of FCHB system, which is experimentally validated by the flexural testing of an FRP truss-UHPC
hybrid bridge system [34]. Also, Model_1 leads to almost 50% larger slip than Model_2 which means
that the interfacial slip is very sensitive to the value of slip modulus of bolts.
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Figure 6 shows that the relationship between slip at the beam end and the value of slip modulus
of connectors. It can be seen that slip decreases dramatically with the increases of 2.5 kN/mm to about
25 kN/mm, and when K increases from 25 kN/mm to 100 kN/mm, the slip drops very slightly. This
can be used to guide the design of FCHB system.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 14 
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Figure 7 shows that the slip along the half span for different values of Qu in Model_6. It can be
seen that for low composite action (Qu ≤ 20 kN) design, the slip level is high because the slip close
to the beam end enters the compacting stage (0.8 mm~2.5 mm). When the value of Qu changes from
20 kN to 25 kN, the slip increases dramatically (see Figure 8).
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6. Evaluation of Deflection Considering Slip Effect

The total deflection can be computed by adding the additional deflection caused by slip to the
deflection without slip [35].

δ(x) = δ f ull(x) + δslip(x) (29)

where δ(x) is the total deflection, δ f ull(x) is the deflection assuming that full composite action is
ensured between FRP and concrete, and δslip(x) is the deflection caused by the slip effect.
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The additional curvature due to the slip is a calculation from Equations (11) and (12) as

∆φ(x) =
εslip(x)

h0
=

s′(x)
h0

(30)

Therefore, the deflection of the FCHB caused by slip effect can be computed as second order
integration of Equation (30).

δslip(x) =
x x

0
∆φ(x)dx (31)

The mid-span deflection, δslip(L/2) of the FCHB caused by slip effect for three-point bending
scenario has been analytically given in [35,36] as

δslip

(
L
2

)
=

βP
2h0

[
L
2
+

1
α

(
1− e−αL

1 + e−αL

)]
(32)

Herein, δslip(L/2) is computed numerically using Equation (31) and analytically by Equation (32).
The results are given in Table 3. It is found that with the increase of element numbers, the difference
between the analytical and numerical result of δslip(L/2) decreases. It should be noted that even using
10 elements in half span can lower the error of FDM to 0.225%.

Table 3. Errors of mid-span deflection δ(L/2) between finite difference method (FDM) using different
numbers of half span.

Analysis
FDM

N = 10 N = 20 N = 40 N = 60 N = 80 N = 100 N = 1000

δ(L/2) (mm) 0.13432 0.13462 0.13449 0.13441 0.13438 0.13437 0.13436 0.13433
Error (%) 0.225 0.128 0.067 0.046 0.034 0.028 0.003

Figure 9 shows that the deflection distribution of FCHB using Model_1, Model_2, and Model_3.
The deflections at the mid-span of Model_1, Model_2, and Model_3 are 0.133 mm, 0.130 mm and
0.124 mm, respectively. It is interesting to see that using these three connections leads to a difference
of less than 7.1%, which means that all of these connections behave similarly in terms of deflection.
The deflections at the mid-span of Model_4, Model_5, and Model_6 are 0.176 mm, 0.130 mm, and
0.125 mm, respectively. The difference between Model_5 and Model_6 is 4.04%, which means using
high strength bolts is effective both for normal concrete and UHPC. Therefore, it is suggested that
high strength bolts are beneficial for limiting deflection caused by slip and the UHPC is not that a
significant factor.
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Figure 9. Deflection distribution of (a) Model_1~3, and (b) Model_4~ 6.
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Figure 10 shows the relationship between mid-span deflection considering slip effect and the
value of slip modulus of connectors (K). It can be found that in with the increase of K from very low to
20 kN/mm, mid-span deflection decreases sharply to a relatively stable value. And when K decreases
from 40 kN/mm to 100 kN/mm, the drop is gradual. Thus K > 40 kN/mm is suggested to be used
in FCHB.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 14 

Figure 9 shows that the deflection distribution of FCHB using Model_1, Model_2, and Model_3. 
The deflections at the mid-span of Model_1, Model_2, and Model_3 are 0.133 mm, 0.130 mm and 
0.124 mm, respectively. It is interesting to see that using these three connections leads to a difference 
of less than 7.1%, which means that all of these connections behave similarly in terms of deflection. 
The deflections at the mid-span of Model_4, Model_5, and Model_6 are 0.176 mm, 0.130 mm, and 
0.125 mm, respectively. The difference between Model_5 and Model_6 is 4.04%, which means using 
high strength bolts is effective both for normal concrete and UHPC. Therefore, it is suggested that 
high strength bolts are beneficial for limiting deflection caused by slip and the UHPC is not that a 
significant factor. 

Figure 10 shows the relationship between mid-span deflection considering slip effect and the 
value of slip modulus of connectors (K). It can be found that in with the increase of K from very low 
to 20 kN/mm, mid-span deflection decreases sharply to a relatively stable value. And when K 
decreases from 40 kN/mm to 100 kN/mm, the drop is gradual. Thus K > 40 kN/mm is suggested to be 
used in FCHB. 

A similar conclusion can be drawn in Figure 11. It can be found that in with the increase of ܳ௨ 
from very low to 25 kN, mid-span deflection decreases sharply to a relatively stable value. ܳ௨ ≥25	kN is suggested to be used in FCHB. 

  
(a) (b) 

Figure 9. Deflection distribution of (a) Model_1~3, and (b) Model_4~6. 

 
Figure 10. Relationship between mid-span deflection and slip modulus of connectors (K). 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.0 1.0 2.0 3.0 4.0 5.0
D

ef
le

ct
io

n 
(m

m
)

x (m)

Model_1

Model_2

Model_3

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.0 1.0 2.0 3.0 4.0 5.0

D
ef

le
ct

io
n 

(m
m

)

x (m)

Model_4

Model_5

Model_6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 20 40 60 80 100

M
id

-s
pa

n 
de

fle
ct

io
n 

(m
)

K (kN/mm)

Figure 10. Relationship between mid-span deflection and slip modulus of connectors (K).

A similar conclusion can be drawn in Figure 11. It can be found that in with the increase of Qu

from very low to 25 kN, mid-span deflection decreases sharply to a relatively stable value. Qu ≥ 25 kN
is suggested to be used in FCHB.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 14 
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7. Conclusions

The interfacial load-slip model is an important material parameter for FRP-concrete hybrid
beam systems. This paper presents a finite difference method based procedure to solve the problem.
The following main conclusions can be drawn:

(i) The finite difference method provides a numerical solution for the interfacial slip that can well
agree with the analytical solution of linear load-slip relationship for connections.

(ii) Higher accurateness can be obtained by using more elements. It is found that 40 elements for a
half span of FCHB can lead to a small error (less than 1%).

(iii) The FDM can be used for nonlinear load-slip relationship of connection.
(iv) Perforated FRP rib connection, which normally has slip modulus larger than 100 kN/mm,

provides nearly the full composite action.
(v) The bolted connection in normal concrete leads to very high slip level, and when using UHPC as

the concrete slab, the slip can be substantially reduced. And
(vi) The FDM is effective and easy to be implemented using computer programs. Based on the

findings in this paper, this method is recommended to predict the linear and nonlinear interfacial
behavior of FRP-concrete hybrid beam.

(vii) It was suggested that high strength steel bolts are effective both in normal concrete and UHPC.
Moreover, when the slip modulus is suggested to be larger than 20 kN/mm and the capacity per
bolt should be larger than 20 kN.
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