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Abstract: Photonic crystals are engineered structures able to control the propagation and properties
of light. Due to this ability, they can be fashioned into optical components for advanced light
manipulation and sensing. For these applications, a particularly interesting case study is the gyroid
srs-network, a three-dimensional periodic network with both cubic symmetry and chirality. In this
work we present the fabrication and characterization of three-dimensional cubically symmetric 8-srs
photonic crystals derived from combination of eight individual gyroid srs-networks. We numerically
and experimentally investigate optical properties of these photonic crystals and study in particular,
the impact of cubic symmetry on transmission and optical activity (OA). Gyroid photonic crystals
fabricated in this work can lead to the development of smaller, cheaper, and more efficient optical
components with functionalities that go beyond the concept of lenses.

Keywords: photonic crystal; gyroid; 8-srs network; optical activity; direct laser writing; galvo-dithered
direct laser writing; cubic symmetry

1. Introduction

Light can be used to collect environmental parameters and provide information about the material
that it passes through. For example, polarization and orbital angular momentum of light represent
fundamental optical degrees of freedom that are able to reveal physical mechanisms of light-matter
interaction [1]. In order to use the information that light can collect, it is essential to develop optical
devices and sensors that are able to interact with optical degrees of freedom [2]. Optical sensors
are used in a wide range of research and commercial applications and play a significant role in
emerging technologies [2–5]. For example, systems that implement machine learning and artificial
intelligence make large use of optical sensors and require new solutions to provide new functionalities
and improved performance. To harvest their full potential, optical sensors need to become smaller,
cheaper, and more efficient. Moreover, they need to cover a wide range of wavelengths and incorporate
new functionalities.

Photonic crystals (PhCs) are engineered structures that are able to manipulate all the degrees
of freedom of light [6] and can therefore be employed as optical components for light manipulation
and sensing [7–10]. For these applications, an excellent candidate is the gyroid srs-network [11,12],
a three-dimensional periodic network with both cubic symmetry and chirality [13,14].

In this work we present the fabrication and characterization of three-dimensional (3D) cubically
symmetric 8-srs PhCs derived from a combination of eight gyroid srs-networks. We numerically
and experimentally investigate optical properties of this PhC and in particular the impact of cubic
symmetry on optical activity (OA), i.e., the ability to rotate the plane of polarization of linearly polarized
light. We will work in the mid-infrared (IR) spectral region, a region of tremendous scientific and
technological interest [15,16]. This spectral region contains strong characteristic vibrational transitions
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of many important molecules, as well as two atmospheric transmission windows of 3–5 µm and 8–13
µm, which make it crucial for applications in fields such as night vision, IR astronomy, chemistry,
and meteorology [17,18].

The unique morphology of gyroid geometry imparts remarkable mechanical strength [19]
and a rich variety of optical and topological phenomena, from linear and circular dichroism (CD)
(different in transmission for left and right circularly polarized light) to OA [20] and the recent
demonstration of type-I Weyl points [2,3]. Geometrically, it is possible to intertwine more than one
like- or opposite-handed gyroid srs-network into cubically symmetric structures, which enables
engineering of network transmission and polarization properties. Combination of eight identical and
equal handed gyroid srs-networks creates the so-called 8-srs network (Figure 1a–c), a body-centered
cubic (BCC) structure belonging to the symmetry group I432 [13]. Despite the highly chiral nature of
the geometry, the 8-srs network prohibits CD due to the presence of four-fold rotational symmetry [13].
Secondly, it was shown that the 8-srs network possesses a high degree of OA [13,20]. This degree of
rotation was found to be comparable to that of metallic or plasmonic metamaterials [21,22], but as
the network can be made using dielectric materials, OA is accompanied by low loss and high,
almost unity transmission.
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(DLW) technique has proven to be particularly valuable [20,28–34] for PhC formation. However, the 
DLW method suffers from an elongated cross-section of the writing focal spot, i.e., unequal sizes in 
lateral and vertical axes of the voxel. This leads to a breaking of cubic symmetry, which affects optical 
performance of fabricated structures [33]. Various methods have been developed to correct for 
asymmetry due to elongation of the focal spot, including apodization [35] and multi-line writing 
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This fabrication method uses a galvo-mirror system to trace the focal spot in a circular motion within 
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reducing total exposure in the axial direction. Accordingly, asymmetry of the exposed volume can be 
reduced (Figure 2a). 
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an operative wavelength in the mid-IR using a custom-made GD-DLW system. Finally, we present 
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Figure 1. Formation of an 8-srs network. (a) Typical component of a right handed 1-srs network.
(b) Three copies of the 1-srs network are translated by half a unit cell along [100], [010], and [110]
crystallographic directions to form a 4-srs network. (c) A single copy of the 4-srs network is translated
by 1/4 of a unit cell along the [111] crystallographic direction to obtain an 8-srs network.

Experimentally, many micro- and nano-fabrication methods can be used for accurate formation of
PhCs and metamaterials from single and double srs-networks [23–27]. For more complex composite
networks such as 8-srs and for a high degree of design flexibility, the direct laser writing (DLW)
technique has proven to be particularly valuable [20,28–34] for PhC formation. However, the DLW
method suffers from an elongated cross-section of the writing focal spot, i.e., unequal sizes in lateral and
vertical axes of the voxel. This leads to a breaking of cubic symmetry, which affects optical performance
of fabricated structures [33]. Various methods have been developed to correct for asymmetry due
to elongation of the focal spot, including apodization [35] and multi-line writing techniques [36,37].
Whilst these methods can significantly reduce elongation, to remove asymmetry completely the
most effective method is galvo-dithered direct laser writing (GD-DLW) [29–31,33]. This fabrication
method uses a galvo-mirror system to trace the focal spot in a circular motion within the focal plane.
The circular motion exposes a larger lateral volume of material, whilst simultaneously reducing total
exposure in the axial direction. Accordingly, asymmetry of the exposed volume can be reduced
(Figure 2a).

In the following we will describe our method for fabricating cubically symmetric 8-srs PhCs with
an operative wavelength in the mid-IR using a custom-made GD-DLW system. Finally, we present
and discuss results of numerical and experimental characterization of 8-srs PhCs.
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instruments that deflect a light beam with a mirror on receipt of an electronic signal. Using galvo-
mirrors, the angle of the laser beam is modulated and steered into an oil immersion objective (100X, 
1.4 N.A., Olympus, Tokyo, Japan) using a 4-f imaging system. Radius of the dithered correction, R, is 
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directions and shorter in the axial direction, improving overall resolution of the 3D fabrication 
method and leading to a correction of voxel asymmetry. A piezoelectric nano-translation stage 
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organic-inorganic photoresist was used to create templates due to its excellent resistance to shrinkage 
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Figure 2. Galvo-dithered direct laser writing (GD-DLW) system. (a) Illustration of circular dithered
correction applied by galvo-mirrors. Radius of the dithered correction, R, is comparable to the voxel
resolution. This causes the fabrication voxel to become shorter in the Z direction, improving overall
resolution of the 3D fabrication method and leading to correction of voxel asymmetry. (b) Schematic of
the GD-DLW setup.

2. Materials and Methods

2.1. Galvo-Dithered Direct Laser Writing

The 8-srs PhCs were fabricated using a GD-DLW system (Figure 2b). The GD-DLW setup consists
of illumination with a frequency doubled femtosecond laser (Coherent Fidelity 2) with an operating
wavelength of 535 nm. Pulse width is 55 fs and repetition rate is 70 MHz. Power of the laser beam is
controlled electronically using a rotating half-wave plate and linear polarizer. A mechanical shutter
is used to control light exposure during fabrication. The most important addition to the GD-DLW
setup is the introduction of two computer-controlled galvo-mirrors, electromechanical instruments
that deflect a light beam with a mirror on receipt of an electronic signal. Using galvo-mirrors, the angle
of the laser beam is modulated and steered into an oil immersion objective (100X, 1.4 N.A., Olympus,
Tokyo, Japan) using a 4-f imaging system. Radius of the dithered correction, R, is comparable to the
voxel resolution. This causes the fabrication voxel to become larger in lateral directions and shorter
in the axial direction, improving overall resolution of the 3D fabrication method and leading to a
correction of voxel asymmetry. A piezoelectric nano-translation stage (Physik Instrumente, Karlsruhe,
Germany) mounted on a stepper motor controller (Thorlabs, Newton, NJ, USA) was used to trace out
microstructures in a photoresist. A zirconium-based hybrid organic-inorganic photoresist was used to
create templates due to its excellent resistance to shrinkage [38]. GD-DLW of 3D microstructures starts
by writing the top unit cell layer to ensure the laser passes through a homogeneous material, as the
fabrication system is in an inverted configuration. The bottom layer is intentionally written 3 µm below
the glass-polymer interface to ensure the microstructure will be attached to the glass coverslip over the
entire area of the microstructure. Failing to do this procedure may result in the microstructure being
written entirely within the polymer and being lost during the wash out process. After the GD-DLW
procedure, the sample is rinsed in a 1-Propanol:2-Propanol (30:70) solvent mixture for 60 min and then
dried at room temperature.



Appl. Sci. 2018, 8, 2104 4 of 10

2.2. Experimental Characterization

For optical characterization a commercial Fourier-transformed infrared spectrometer (Vertex 70,
Bruker, Billerica, Massachusetts, USA) coupled with an infrared microscope (Hyperion 2000, Bruker,
Bruker, Billerica, Massachusetts, USA) was used to measure transmission spectra of 8-srs PhCs placed
between both parallel and crossed linear polarizers. For the parallel condition, both input and output
polarizers were aligned to the x-axis and we denote transmission Txx. For the crossed condition,
input and output polarizers were aligned to the x- and y-axis respectively and we denote transmission
Txy. For each measurement, transmission spectra were normalized relative to transmission through
the silica substrate and illumination angle was limited to 8◦ using a pinhole in the light source plane
of the optical path, such that light was incident mostly (but not completely) along the [001] axis of
the network.

For structural characterization, scanning electron microscopy (SEM) and focused ion beam (FIB)
milling (FEI Scios Dualbeam FIBSEM, Thermo Fischer Scientific, Waltham, MA, USA) were utilized to
image 8-srs PhCs along both the [001] and [011] directions. SEM images were used to determine lateral
and axial line widths of the network segments respectively and FIB milling was utilized to enable
observation of the interior 8-srs network morphology.

2.3. Simulations

Transmission simulations were conducted to evaluate transmission properties of 8-srs networks
using the finite element method software (CST Microwave Studio). Numerical simulations assumed
periodic boundary conditions laterally and four-unit cell repetitions along the propagation direction,
i.e., along the [001] direction. The effect of the converging beam (α = 8◦) was taken into consideration
by using a moving-average filter to approximate focusing conditions numerically from a single
normal-incidence numerical simulation. Geometrical parameters for calculation were taken from
measured SEM images: A unit cell size of 3.5 µm, a rod diameter in the xy plane of 550 nm, and a
refractive index of 1.52 [33].

3. Results and Discussion

3.1. Fabrication

In this section, we demonstrate advantages of the GD-DLW method over traditional DLW by
fabricating cubically symmetric 8-srs PhCs. This fabrication method is described in the Materials and
Methods (Section 2.1). A key feature of the GD-DLW method is its ability to increase exposure in
lateral dimensions whilst slightly reducing exposure in axial directions, leading to a correction of voxel
asymmetry (Figure 2).

The impact of GD-DLW on symmetry and resolution of PhCs can be seen in Figure 3, which shows
SEM images of fabricated structures. To clearly visualize effects of GD-DLW we considered 2-srs
networks (two intertwined srs-networks), a structure with a simple geometry compared to 8-srs
networks. Figure 3a shows a SEM image along the [011] direction of a 2-srs network fabricated with
traditional DLW. Axial and lateral linewidths of ∆Z = 1835 nm and ∆X = 581 nm produce an aspect
ratio of e = 3.159 (Figure S1). In comparison, Figure 3b shows the corresponding SEM image for a 2-srs
network fabricated with GD-DLW. Lateral and axial linewidths are ∆Z = 651 nm and ∆X = 649 nm
respectively, corresponding to an aspect ratio of e = 1.003 and a cubically symmetric 8-srs network
(Figure S1).

In addition to the ability to regain cubic symmetry, use of GD-DLW also enables improvements in
fabrication resolution. Figure 3c shows a qualitative comparison of 8-srs networks fabricated at various
fabrication powers and dithering radius (See Figure S2 for a complete matrix). Under traditional DLW
conditions (R = 0 nm) 8-srs networks fabricated with powers from 0.6 to 1.0 mW are significantly
distorted, due to bending and collapse of their individual network segments. When GD-DLW is
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applied (R = 900 nm), 8-srs networks are mostly undistorted when fabricated with the same fabrication
powers, despite the inherent reduction influence that results from dithering.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 10 
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Figure 3. Fabrication results. SEM images of focused ion beam cut polymer achiral 2-srs networks
fabricated with (a) traditional direct laser writing (DLW) method and (b) GD-DLW showing a transition
from elliptical to circular cross section respectively. In the inserts, cross sections are highlighted in green.
(c) Top view of 8-srs PhCs fabricated using both DLW and GD-DLW. (d) Top view of an optimized
8-srs PhC.

These results show that not only can cubic symmetry be achieved with GD-DLW, but that
fabrication powers (and hence fabrication line-widths and resolutions) previously inaccessible
(e.g., 0.6 mW) can be accessed when GD-DLW is implemented. This agrees with similar observations
for simple 1-srs networks [37] and has enabled us to intricately intertwine eight cubically symmetric
1-srs networks (with lattice constants of 3.5 µm) without intersection, such as that shown in Figure 3d.

3.2. Impact of Cubic Symmetry on Optical Activity

To understand and quantify the effect of cubic symmetry on transmission properties of 8-srs PhCs,
we simulated transmission spectra for structures with different aspect ratios, corresponding to the
different radius, R, of the galvo-dithered (GD) correction. In a perfectly symmetric case, the focal spot
of the writing laser beam is spherical and this is reflected into the model by utilizing an aspect ratio of e
= 1. In other cases, the non-spherical focal spot has an elliptical shape and is implemented in the model
by utilizing an aspect ratio e 6= 1, as shown in inserts in Figure 4. If the radius of the GD correction
is smaller than elongation of the focal spot (under-correction case), we have elongated features with
an aspect ratio e > 1 (axial dimension being greater than lateral dimension). If the radius of the GD
correction is larger than the elongation (over-correction), the aspect ratio is e < 1.
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Figure 4. Simulation of transmission and optical activity (OA). (a) 8-srs transmission as a function of
aspect ratio, e. (b) 8-srs OA as a function of aspect ratio, e.

Transmission spectra were obtained by a well-established finite element method approach
(see Materials and Methods section) and simulation inputs were the geometric parameters measured
from SEM images; a unit cell size of 3.5 µm and rod diameter of 550 nm. Numerical simulations in
Figure 4a shows that position, intensity, and width of photonic stop bands (PSB) are strongly related
to the aspect ratio. In the perfectly symmetric case (e = 1) PSB is 200 nm wide and centred at 3.6 µm.
When cubic symmetry is broken and e > 1, PSB undergoes a redshift, broadening, and a drop-in
strength. For e = 3, PSB is redshifted by 200 nm, increases in strength by 40%, and width is increased by
50% compared to the perfectly symmetric case (e = 1). When e < 1 PBS intensity does not change, but
in this case PSB undergoes a blueshift of 50 nm and PSB bandwidth decreases by approximately 50%.

Since 8-srs PhCs belong to the I432 symmetry group, they possess remarkable chiral-optical
properties [13], in particular OA. To quantify OA numerically, finite element simulations were
conducted to evaluate the level of linear polarization rotation. The 8-srs networks were excited
with a single linearly polarized plane wave oriented along the x-axis and transmission coefficients of
both unconverted (Txx) and converted (Txy) polarization components were recorded. The level of OA
for networks was then calculated according to equation [13]:

OA = 2· cos−1

√
Txx

Txx + Txy
(1)

or OA = 2· sin−1

√
Txy

Txx + Txy
(2)

The calculated OA for different values of aspect ratio are reported in Figure 4b.
In the symmetric case (e = 1) OA is centred at 3.6 µm and 200 nm wide. When cubic symmetry is

broken and e < 1, we observe a drop in OA of more than 60% and a blueshift of 50 nm compared to the
e = 1 case. However, when e is increased and assumes values > 1, OA intensity remains constant but
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undergoes a redshift and broadening. Simulation for e = 3, for example, shows a redshift of 200 nm
and bandwidth of OA is more than tripled. When cubic symmetry is broken (e > or e < 1), we observe
redshift or blueshift in transmission dips respectively and a drop in transmission intensity.

3.3. Experimental Characterization

To characterize optical properties of 8-srs PhCs fabricated with GD-DLW and to quantify the
effect of cubic symmetry on OA and transmission, we compared simulated transmission and OA
spectra (Figure 5a,b) calculated for structures with a different aspect ratio with experimental spectra
of structures fabricated with different R (Figure 5c,d). Both experimental and simulated PhCs have a
lattice constant of 3.5 µm and rod diameter of 550 nm in the xy plane.
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Figure 5. Comparison of experimental and theoretical results. (a) Theoretical transmission and (b)
theoretical OA calculated for 8-srs PhCs with lattice constant of 3.5 µm and rod diameter of 550 nm for
aspect ratio e = 1 (blue) and e = 3 (orange). (c) Experimental transmission and (d) experimental OA for
8-srs PhC fabricated via GD-DLW with different GD radius (R): 900 nm (e~1) (blue) and 300 nm (e~3)
(orange).

Optical transmissions for different light polarizations were obtained using a Fourier-transformed
infrared spectrometer measured with angle resolution along the [001] direction of PhCs, as described
in the Materials and Methods section.

Figure 5c,d shows total experimental transmission (Txx + Txy) and OA respectively, across 8-srs
PhCs with a lattice constant of 3.5 µm, fabricated with GD radius of R = 900 nm (blue) corresponding
to an aspect ratio of e ≈ 1 and R = 300 nm (orange) corresponding to an aspect ratio of e ≈ 3. For the
complexity of the structure and the chosen period of 3.5 µm, the transmission spectra of PhCs fabricated
with R = 0 nm, corresponding to simple DLW, do not show any PSB (Figure S3), the index of a poor
quality structure. Corresponding simulated total transmission and OA for structures of the same
geometry can be seen in Figure 5a,b. Whilst the 8◦ focused beam, presence of material absorptions,
and scattering losses in experiments broaden and weaken spectral features in the experimental results,
there is good agreement between experiment and simulated behavior. Specifically, changes in spectral
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position, transmission suppression, and stop-gap bandwidth compare well with changes expected
from simulations. In the case of OA, we observe that strength of OA remains constant as expected,
whilst bandwidth increases. Quantitatively, we conserve peak OA of 1 Rad at a wavelength of 4.68 µm
and 4.97 µm through our 8-srs PhCs of height 14 µm (4-unit cells) and we observe a minimum OA of
0.5 Rad across a bandwidth of 500 nm and 780 nm, centered at a wavelength of 4.50 µm and 4.20 µm
for e ≈ 1 and e ≈ 3, respectively.

4. Conclusions

We have fabricated 8-srs PhCs using a symmetry-preserving laser direct fabrication method.
The numerically and experimentally characterized transmission properties of 8-srs networks reveal the
influence of cubic symmetry on optical properties. Specifically, we have demonstrated that by using
GD correction, cubic symmetry of the structures is greatly improved. Optically, OA and PSB intensity,
position, and bandwidth can be modulated by adjusting cubic symmetry. The 8-srs PhCs fabricated in
this work are optically active materials that can finely control in three-dimensions the propagation of
light in mid-IR and tune rotation of the polarization plane of light by 1 Rad through a layer of four-unit
cells. The 8-srs PhCs can be considered for gas or liquid sensing due to their ability to detect refractive
index changes in the material they are immersed in. OA through a gas filled interaction volume serves
as a sensing signal for determination of gas composition or concentration. Moreover, thickness, PSB,
and OA are crucial prerequisites for many ultra-thin optical devices such as optical filters [39–41] and
polarization rotators [42,43].

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/11/2104/s1,
Figure S1: Axial and lateral linewidths obtained from SEM images taken along the [011] direction. (a) In this
configuration the sample is tilted by an angle of 45◦, therefore the lateral dimension ∆X can directly be extracted
by the images. To obtain the real ∆Z value, it is necessary to multiply the measured value by

√
2. (b) SEM image

of 2-srs PhC fabricated using DLW and corresponding values of ∆X, ∆Z and e. (c) SEM image of 2-srs PhC
fabricated using GD-DLW and corresponding values of ∆X, ∆Z and e. The software used for the measurements is
ImageJ; Figure S2: SEM image of 8-srs PhCs fabricated using GD-DLW demonstrating the beneficial effects of the
galvo-dithering on the mechanical stability. The power of the laser (P) is varied from 0.6 mW to 1 mW and the
galvo-dithering radius (R) is varied from 0 nm to 900 nm; Figure S3: Experimental transmission spectra for 8-srs
PhC fabricated via DLW (R = 0).
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